Search results for: mutual recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2161

Search results for: mutual recognition

1741 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze

Abstract:

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

Keywords: auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter

Procedia PDF Downloads 425
1740 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
1739 The Influence of Migration on Migrants' Culture: A Study on Egyptian Nubians' Migration to Investigate Culture Changes

Authors: Tarek Hassan, Sanaa Abouras

Abstract:

Some factors such as interaction of migration process, cultural identity have an impact in a way that may lead to cultural disinheritance. Even if migrants' culture would not be lost, it may be affected by the new society culture. Therefore, it is anticipated that migration of an ethnic group would impact the culture of that group. Nubians; an ethnic group originated in South Egypt, have experienced migration that took place in the sixties of the past century. Nubians were forced to leave their origin land and relocate to Kom Ombo; an Egyptian town to the north of Aswan. The effect of migration on national culture, social homogeneity or the interest of social contact influences the attitudes of natives towards migration. Hence, it is very important for societies to help migrants to adapt to the new culture and at the same time not to impede migrants' effort to maintain their own culture. This study aims to investigate the effect of internal migration on the culture of Egyptian Nubians in order to predict if Nubian can maintain their own culture after the migration. Research question: what is the cultural influence of Nubians' migration from Egyptian Nubia to their new destinations? The researchers' hypothesis: there is mutual influence between the two cultures of Nubians and non-Nubians in Egypt. Results supported researchers' hypothesis as they observed that the Nubians managed to reserve balance between the maintenance of their own culture and the adoption of some cultural features of the community of their new destination(s). Also, the study examined why Nubians adhere to their culture although they left their land forever. Questionnaire and interviews were used to collect data from 80 informants; 40 Nubians and 40 non-Nubians in Kom-Ombo and the two cities of Cairo and Alexandria. Results suggested that there is obvious mutual cultural impact between Nubians and non-Nubians. The findings of this study would trigger the researchers to conduct further research on minorities for the deeper understanding of the impact of/on the culture of minorities.

Keywords: culture change, culture influence, culture maintenance, minority migration

Procedia PDF Downloads 228
1738 Working Conditions, Motivation and Job Performance of Hotel Workers

Authors: Thushel Jayaweera

Abstract:

In performance evaluation literature, there has been no investigation indicating the impact of job characteristics, working conditions and motivation on the job performance among the hotel workers in Britain. This study tested the relationship between working conditions (physical and psychosocial working conditions) and job performance (task and contextual performance) with motivators (e.g. recognition, achievement, the work itself, the possibility for growth and work significance) as the mediating variable. A total of 254 hotel workers in 25 hotels in Bristol, United Kingdom participated in this study. Working conditions influenced job performance and motivation moderated the relationship between working conditions and job performance. Poor workplace conditions resulted in decreasing employee performance. The results point to the importance of motivators among hotel workers and highlighted that work be designed to provide recognition and sense of autonomy on the job to enhance job performance of the hotel workers. These findings have implications for organizational interventions aimed at increasing employee job performance.

Keywords: hotel workers, working conditions, motivation, job characteristics, job performance

Procedia PDF Downloads 598
1737 Item-Trait Pattern Recognition of Replenished Items in Multidimensional Computerized Adaptive Testing

Authors: Jianan Sun, Ziwen Ye

Abstract:

Multidimensional computerized adaptive testing (MCAT) is a popular research topic in psychometrics. It is important for practitioners to clearly know the item-trait patterns of administered items when a test like MCAT is operated. Item-trait pattern recognition refers to detecting which latent traits in a psychological test are measured by each of the specified items. If the item-trait patterns of the replenished items in MCAT item pool are well detected, the interpretability of the items can be improved, which can further promote the abilities of the examinees who attending the MCAT to be accurately estimated. This research explores to solve the item-trait pattern recognition problem of the replenished items in MCAT item pool from the perspective of statistical variable selection. The popular multidimensional item response theory model, multidimensional two-parameter logistic model, is assumed to fit the response data of MCAT. The proposed method uses the least absolute shrinkage and selection operator (LASSO) to detect item-trait patterns of replenished items based on the essential information of item responses and ability estimates of examinees collected from a designed MCAT procedure. Several advantages of the proposed method are outlined. First, the proposed method does not strictly depend on the relative order between the replenished items and the selected operational items, so it allows the replenished items to be mixed into the operational items in reasonable order such as considering content constraints or other test requirements. Second, the LASSO used in this research improves the interpretability of the multidimensional replenished items in MCAT. Third, the proposed method can exert the advantage of shrinkage method idea for variable selection, so it can help to check item quality and key dimension features of replenished items and saves more costs of time and labors in response data collection than traditional factor analysis method. Moreover, the proposed method makes sure the dimensions of replenished items are recognized to be consistent with the dimensions of operational items in MCAT item pool. Simulation studies are conducted to investigate the performance of the proposed method under different conditions for varying dimensionality of item pool, latent trait correlation, item discrimination, test lengths and item selection criteria in MCAT. Results show that the proposed method can accurately detect the item-trait patterns of the replenished items in the two-dimensional and the three-dimensional item pool. Selecting enough operational items from the item pool consisting of high discriminating items by Bayesian A-optimality in MCAT can improve the recognition accuracy of item-trait patterns of replenished items for the proposed method. The pattern recognition accuracy for the conditions with correlated traits is better than those with independent traits especially for the item pool consisting of comparatively low discriminating items. To sum up, the proposed data-driven method based on the LASSO can accurately and efficiently detect the item-trait patterns of replenished items in MCAT.

Keywords: item-trait pattern recognition, least absolute shrinkage and selection operator, multidimensional computerized adaptive testing, variable selection

Procedia PDF Downloads 130
1736 Importance of Developing a Decision Support System for Diagnosis of Glaucoma

Authors: Murat Durucu

Abstract:

Glaucoma is a condition of irreversible blindness, early diagnosis and appropriate interventions to make the patients able to see longer time. In this study, it addressed that the importance of developing a decision support system for glaucoma diagnosis. Glaucoma occurs when pressure happens around the eyes it causes some damage to the optic nerves and deterioration of vision. There are different levels ranging blindness of glaucoma disease. The diagnosis at an early stage allows a chance for therapies that slows the progression of the disease. In recent years, imaging technology from Heidelberg Retinal Tomography (HRT), Stereoscopic Disc Photo (SDP) and Optical Coherence Tomography (OCT) have been used for the diagnosis of glaucoma. This better accuracy and faster imaging techniques in response technique of OCT have become the most common method used by experts. Although OCT images or HRT precision and quickness, especially in the early stages, there are still difficulties and mistakes are occurred in diagnosis of glaucoma. It is difficult to obtain objective results on diagnosis and placement process of the doctor's. It seems very important to develop an objective decision support system for diagnosis and level the glaucoma disease for patients. By using OCT images and pattern recognition systems, it is possible to develop a support system for doctors to make their decisions on glaucoma. Thus, in this recent study, we develop an evaluation and support system to the usage of doctors. Pattern recognition system based computer software would help the doctors to make an objective evaluation for their patients. It is intended that after development and evaluation processes of the software, the system is planning to be serve for the usage of doctors in different hospitals.

Keywords: decision support system, glaucoma, image processing, pattern recognition

Procedia PDF Downloads 302
1735 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 58
1734 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
1733 An Integrated Cognitive Performance Evaluation Framework for Urban Search and Rescue Applications

Authors: Antonio D. Lee, Steven X. Jiang

Abstract:

A variety of techniques and methods are available to evaluate cognitive performance in Urban Search and Rescue (USAR) applications. However, traditional cognitive performance evaluation techniques typically incorporate either the conscious or systematic aspect, failing to take into consideration the subconscious or intuitive aspect. This leads to incomplete measures and produces ineffective designs. In order to fill the gaps in past research, this study developed a theoretical framework to facilitate the integration of situation awareness (SA) and intuitive pattern recognition (IPR) to enhance the cognitive performance representation in USAR applications. This framework provides guidance to integrate both SA and IPR in order to evaluate the cognitive performance of the USAR responders. The application of this framework will help improve the system design.

Keywords: cognitive performance, intuitive pattern recognition, situation awareness, urban search and rescue

Procedia PDF Downloads 328
1732 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 143
1731 A Robust Spatial Feature Extraction Method for Facial Expression Recognition

Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda

Abstract:

This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.

Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure

Procedia PDF Downloads 425
1730 Its about Cortana, Microsoft’s Virtual Assistant

Authors: Aya Idriss, Esraa Othman, Lujain Malak

Abstract:

Artificial intelligence is the emulation of human intelligence processes by machines, particularly computer systems that act logically. Some of the specific applications of AI include natural language processing, speech recognition, and machine vision. Cortana is a virtual assistant and she’s an example of an AI Application. Microsoft made it possible for this app to be accessed not only on laptops and PCs but can be downloaded on mobile phones and used as a virtual assistant which was a huge success. Cortana can offer a lot apart from the basic orders such as setting alarms and marking the calendar. Its capabilities spread past that, for example, it provides us with listening to music and podcasts on the go, managing my to-do list and emails, connecting with my contacts hands-free by simply just telling the virtual assistant to call somebody, gives me instant answers and so on. A questionnaire was sent online to numerous friends and family members to perform the study, which is critical in evaluating Cortana's recognition capacity and the majority of the answers were in favor of Cortana’s capabilities. The results of the questionnaire assisted us in determining the level of Cortana's skills.

Keywords: artificial intelligence, Cortana, AI, abstract

Procedia PDF Downloads 177
1729 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.

Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village

Procedia PDF Downloads 308
1728 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 50
1727 Caped Intervention: A Single Country Comparative Study of the Role of Russia in Its Involvement in the Crimean Crisis 2014

Authors: Katrina Angeline Santos, Francis Mark Fernandez, Francheska Esmao

Abstract:

Intervention is defined as a forcible interference by a state or states with power in the affairs of another state using force or the threat of force. On the other hand, a military intervention is an intervention, specifically used to define an intervention which uses force. With these, the authors realized a lack in the concept of intervention wherein it is an invited one.The authors wrote this paper to introduce a concept of intervention wherein the intervening state is offering assistance to the state in crisis which asked for one. The authors decided to make a contextual description of this phenomenon because of the lack of concepts regarding intervention between the idea of a single state performing a ‘heroic’ role of intervening in the crisis of another state. The problem that the authors would like to address is regarding the lack of availability in the concept of intervention wherein the state in crisis is seeking the assistance of another state. The authors utilized a contextual description approach to the study through the descriptive presentation of the series of events, by utilizing the news articles and news reports published, which happened in Ukraine and Crimea. This concept is further demonstrated through the utilization of a conceptual framework which shows the mutual relationship between the states. From the analysis of the behavior of Russia and its role in the Crimean Crisis 2014, the authors are able to coin the term, 'Caped Intervention' to describe an intervention of a state as a response to the invitation of assistance of a state in crisis in order for them to achieve their goals. This concept entails a mutual relationship between an intervening state and a sate in crisis. The concept of Caped Intervention describes the role of Russia as a Caped State or an intervening state observed through its action towards Crimea. This concept will help in the observation of the behavior of actors or states in events such as this. It will further help in analyzing the actors’ role in intervention by making it possible to classify the intervening acts into another concept.

Keywords: assistance, caped intervention, crisis, heroic

Procedia PDF Downloads 312
1726 Smart Multifunctionalized and Responsive Polymersomes as Targeted and Selective Recognition Systems

Authors: Silvia Moreno, Banu Iyisan, Hannes Gumz, Brigitte Voit, Dietmar Appelhans

Abstract:

Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. In addition, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.

Keywords: multifunctionalized, pH stimulus, controllable release, cellular uptake

Procedia PDF Downloads 320
1725 Binarization and Recognition of Characters from Historical Degraded Documents

Authors: Bency Jacob, S.B. Waykar

Abstract:

Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.

Keywords: binarization, denoising, global thresholding, local thresholding, thresholding

Procedia PDF Downloads 344
1724 Molecular Characterization and Identification of C-Type Lectin in Red Palm Weevil, Rhynchophorus ferrugineus Oliver

Authors: Hafiza Javaria Ashraf, Xinghong Wang, Zhanghong Shi, Youming Hou

Abstract:

Insect’s innate immunity depends on a variety of defense responses for the recognition of invading pathogens. Pathogen recognition involves particular proteins known as pattern recognition receptors (PRRs). These PRRs interact with pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens to distinguish between self and non-self. C-type lectins (CTLs) belong to a superfamily of PPRs which involved in insect immunity and defense mechanism. Rhynchophorus ferrugineus Olivier is a devastating pest of Palm cultivations in China. Although studies on R. ferrugineus immune mechanism and host defense have conducted, however, the role of CTL in immune responses of R. ferrugineus remains elusive. Here, we report RfCTL, which is a secreted protein containing a single-CRD domain. The open reading frame (ORF) of CTL is 226 bp, which encodes a putative protein of 168 amino acids. Transcript expression analysis revealed that RfCTL highly expressed in immune-related tissues, i.e., hemolymph and fat body. The abundance of RfCTL in the gut and fat body dramatically increased upon Staphylococcus aureus and Escherichia coli bacterial challenges, suggesting a role in defense against gram-positive and gram-negative bacterial infection. Taken together, we inferred that RfCTL might be involved in the immune defense of R. ferrugineus and established a solid foundation for future studies on R. ferrugineus CTL domain proteins for better understanding of insect immunity.

Keywords: biological invasion, c-type lectin, insect immunity, Rhynchophorus ferrugineus Oliver

Procedia PDF Downloads 157
1723 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks

Authors: Tanu Aneja, Harsha Malaviya

Abstract:

Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.

Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks

Procedia PDF Downloads 18
1722 Enhancing Metaverse Security: A Multi-Factor Authentication Scheme

Authors: R. Chinnaiyaprabhu, S. Bharanidharan, V. Dharsana, Rajalavanya

Abstract:

The concept of the Metaverse represents a potential evolution in the realm of cyberspace. In the early stages of Web 2.0, we observed a proliferation of online pseudonyms or 'nyms,' which increased the prevalence of fake accounts and made it challenging to establish unique online identities for various roles. However, in the era of Web 3.0, particularly in the context of the Metaverse, an individual's digital identity is intrinsically linked to their real-world identity. Consequently, actions taken in the Metaverse can carry significant consequences in the physical world. In light of these considerations, we propose the development of an innovative authentication system known as 'Metasec.' This system is designed to enhance security for digital assets, online identities, avatars, and user accounts within the Metaverse. Notably, Metasec operates as a password less authentication solution, relying on a multifaceted approach to security, encompassing device attestation, facial recognition, and pattern-based security keys.

Keywords: metaverse, multifactor authentication, security, facial recognition, patten password

Procedia PDF Downloads 67
1721 An Analysis of Learners’ Reports for Measuring Co-Creational Education

Authors: Takatoshi Ishii, Koji Kimita, Keiichi Muramatsu, Yoshiki Shimomura

Abstract:

To increase the quality of learning, teacher and learner need mutual effort for realization of educational value. For this purpose, we need to manage the co-creational education among teacher and learners. In this research, we try to find a feature of co-creational education. To be more precise, we analyzed learners’ reports by natural language processing, and extract some features that describe the state of the co-creational education.

Keywords: co-creational education, e-portfolios, ICT integration, latent dirichlet allocation

Procedia PDF Downloads 622
1720 Examining the Possibility of Establishing Regional Environmental Governance in the Middle East

Authors: Somayeh Bahrami, Seyed Jalal Dehghani Firoozabadi

Abstract:

Environmental governance is an interdisciplinary concept in political ecology and environmental policy focusing on the necessity of embedding the environmental issues in all levels of decision-making and act of states. Similar to sustainable development the concept of environmental governance believes that economic and political life of societies and countries need to be considered as a subset of the environment. This concept has been accepted by North Countries, those that have done the most irreparable environmental damage since the Industrial Revolution. Although North Countries are more responsible for damage to the environment, considering the global fluidity logic of environmental challenges, such an impression doesn’t cause developing countries to disavow responsibility for regional and international cooperation to protect the environment. Establishing an environmental governance at all levels of local, national, regional and global is one of the most significant ways to improve sustainable development. Given to the various political and economic difficulties developing countries including the Middle East face, building environmental governance in these countries is difficult but feasible, as these difficulties have not impeded their mutual partnership for confronting joint environmental issues. However, the environmental issues wouldn’t be solved only by mutual partnership but by establishing environmental governance, establishing regional environmental institutions (an introduction to building Regional Environmental Governance) and delegation of some environmental authorities to the mentioned institutions. The research is aimed at examining necessities, opportunities, and barriers to establishing Regional Environmental Governance in the Middle East. Therefore, this research seeks to answer the question of whether establishing Regional Environmental Governance is possible in the Middle East and if so then why. This study used descriptive-analytical methods and the inferential methodology has been used to reach the goals. Data has been collected by using library and internet sources as well as news sources on the basis of objective-historical data.

Keywords: environmental democracy (ED), environmental governance (EG), middle east (ME), regional environmental governance (REG)

Procedia PDF Downloads 456
1719 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform

Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya

Abstract:

A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.

Keywords: AWGN, onset detection, piano note, STFT

Procedia PDF Downloads 160
1718 Adaptive Certificate-Based Mutual Authentication Protocol for Mobile Grid Infrastructure

Authors: H. Parveen Begam, M. A. Maluk Mohamed

Abstract:

Mobile Grid Computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using different types of electronic portable devices. In a grid environment the security issues are like authentication, authorization, message protection and delegation handled by GSI (Grid Security Infrastructure). Proving better security between mobile devices and grid infrastructure is a major issue, because of the open nature of wireless networks, heterogeneous and distributed environments. In a mobile grid environment, the individual computing devices may be resource-limited in isolation, as an aggregated sum, they have the potential to play a vital role within the mobile grid environment. Some adaptive methodology or solution is needed to solve the issues like authentication of a base station, security of information flowing between a mobile user and a base station, prevention of attacks within a base station, hand-over of authentication information, communication cost of establishing a session key between mobile user and base station, computing complexity of achieving authenticity and security. The sharing of resources of the devices can be achieved only through the trusted relationships between the mobile hosts (MHs). Before accessing the grid service, the mobile devices should be proven authentic. This paper proposes the dynamic certificate based mutual authentication protocol between two mobile hosts in a mobile grid environment. The certificate generation process is done by CA (Certificate Authority) for all the authenticated MHs. Security (because of validity period of the certificate) and dynamicity (transmission time) can be achieved through the secure service certificates. Authentication protocol is built on communication services to provide cryptographically secured mechanisms for verifying the identity of users and resources.

Keywords: mobile grid computing, certificate authority (CA), SSL/TLS protocol, secured service certificates

Procedia PDF Downloads 306
1717 Electrical Interactions and Patterning of Bio-Polymers and Nanoparticles in Water Suspensions

Authors: N. V. Klassen, A. A. Vasin, A. M. Likhter, K. A. Voronin, A. V. Mariasevskaya, I. M. Shmit’ko

Abstract:

Regular patterning in mixtures of bio-polymers (chitosan and collagen) and nanoparticles in water suspensions has been found by means of optical microscopy. The patterning was created either by external electrical field of moderate amplitude (200–1000 v/cm) or spontaneously. Simultaneously with the patterning pushing out of water drops mixed with nanoparticles to the external regions was observed. These phenomena are explained by interactions of charged bio-polymers and nanoparticles with external and internal electrical fields as well as with the regions of decreased dielectrical permittivity surrounding nano-objects in water which possesses anomalously high dielectrical permittivity. Electrical charges of opposite signs of the nano-objects induce their mutual attraction whereas dipole moments created around these nano-objects by the electrical fields are pushing these particles to the regions with lower fields. Due to this reason, non-homogeneities of dielectrical permittivity around nano-objects immersed into water suspension induces mutual repulsion of the objects. This spatial decrease of this repulsion with the inter-particle distances is more sharp than that of the Coulomb attraction. So, at longer distances, the attractions are stronger whereas at shorter distances the repulsion prevails. At a certain distance these two forces compensate each other creating the equilibrium state of the mixture of nano-objects with opposite charges. When the groups of positive and negative nano-objects consist from identical particles, quasi-periodical pattern of the suspension is observed like mesoscopic two-dimensional super-crystal. These results can clarify the mechanisms of healing of internal organs with direct or alternative electrical fields.

Keywords: bio-polymers, chitosan, collagen, nanoparticles, Coulomb attraction, polarization repulsion, periodical patterning, electrical low frequency resonances

Procedia PDF Downloads 444
1716 From Faces to Feelings: Exploring Emotional Contagion and Empathic Accuracy through the Enfacement Illusion

Authors: Ilenia Lanni, Claudia Del Gatto, Allegra Indraccolo, Riccardo Brunetti

Abstract:

Empathy represents a multifaceted construct encompassing affective and cognitive components. Among these, empathic accuracy—defined as the ability to accurately infer another person’s emotions or mental state—plays a pivotal role in fostering empathetic understanding. Emotional contagion, the automatic process through which individuals mimic and synchronize facial expressions, vocalizations, and postures, is considered a foundational mechanism for empathy. This embodied simulation enables shared emotional experiences and facilitates the recognition of others’ emotional states, forming the basis of empathic accuracy. Facial mimicry, an integral part of emotional contagion, creates a physical and emotional resonance with others, underscoring its potential role in enhancing empathic understanding. Building on these findings, the present study explores how manipulating emotional contagion through the enfacement illusion impacts empathic accuracy, particularly in the recognition of complex emotional expressions. The enfacement illusion was implemented as a visuo-tactile multisensory manipulation, during which participants experienced synchronous and spatially congruent tactile stimulation on their own face while observing the same stimulation being applied to another person’s face. This manipulation enhances facial mimicry, which is hypothesized to play a key role in improving empathic accuracy. Following the enfacement illusion, participants completed a modified version of the Diagnostic Analysis of Nonverbal Accuracy–Form 2 (DANVA2-AF). The task included 48 images of adult faces expressing happiness, sadness, or morphed emotions blending neutral with happiness or sadness to increase recognition difficulty. These images featured both familiar and unfamiliar faces, with familiar faces belonging to the actors involved in the prior visuo-tactile stimulation. Participants were required to identify the target’s emotional state as either "happy" or "sad," with response accuracy and reaction times recorded. Results from this study indicate that emotional contagion, as manipulated through the enfacement illusion, significantly enhances empathic accuracy, particularly for the recognition of happiness. Participants demonstrated greater accuracy and faster response times in identifying happiness when viewing familiar faces compared to unfamiliar ones. These findings suggest that the enfacement illusion strengthens emotional resonance and facilitates the processing of positive emotions, which are inherently more likely to be shared and mimicked. Conversely, for the recognition of sadness, an opposite but non-significant trend was observed. Specifically, participants were slightly faster at recognizing sadness in unfamiliar faces compared to familiar ones. This pattern suggests potential differences in how positive and negative emotions are processed within the context of facial mimicry and emotional contagion, warranting further investigation. These results provide insights into the role of facial mimicry in emotional contagion and its selective impact on empathic accuracy. This study highlights how the enfacement illusion can precisely modulate the recognition of specific emotions, offering a deeper understanding of the mechanisms underlying empathy.

Keywords: empathy, emotional contagion, enfacement illusion, emotion recognition

Procedia PDF Downloads 3
1715 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering

Authors: Sara Hasani

Abstract:

This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.

Keywords: disaster management, natural disaster, pattern recognition, prediction

Procedia PDF Downloads 153
1714 Cultural Disposition and Implicit Dehumanization of Sexualized Females by Women

Authors: Hong Im Shin

Abstract:

Previous research demonstrated that self-objectification (women view themselves as objects for use) is related to system-justification. Three studies investigated whether cultural disposition as its system-justifying function could have an impact on self-objectification and dehumanization of sexualized women and men. Study 1 (N = 91) employed a survey methodology to examine the relationship between cultural disposition (collectivism vs. individualism), trait of system-justification, and self-objectification. The results showed that the higher tendency of collectivism was related to stronger system-justification and self-objectification. Study 2 (N = 60 females) introduced a single category implicit association task (SC-IAT) to assess the extent to which sexually objectified women were associated with uniquely human attributes (i.e., culture) compared to animal-related attributes (i.e., nature). According to results, female participants associated sexually objectified female targets less with human attributes compared to animal-related attributes. Study 3 (N = 46) investigated whether priming to individualism or collectivism was associated to system justification and sexual objectification of men and women with the use of a recognition task involving upright and inverted pictures of sexualized women and men. The results indicated that the female participants primed to individualism showed an inversion effect for sexualized women and men (person-like recognition), whereas there was no inversion effect for sexualized women in the priming condition of collectivism (object-like recognition). This implies that cultural disposition plays a mediating role for rationalizing the gender status, implicit dehumanization of sexualized females and self-objectification. Future research directions are discussed.

Keywords: cultural disposition, dehumanization, implicit test, self-objectification

Procedia PDF Downloads 238
1713 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 355
1712 Biosignal Recognition for Personal Identification

Authors: Hadri Hussain, M.Nasir Ibrahim, Chee-Ming Ting, Mariani Idroas, Fuad Numan, Alias Mohd Noor

Abstract:

A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted.

Keywords: electrocardiogram, phonocardiogram, hidden markov model, mel frequency cepstral coeffiecients, client identification

Procedia PDF Downloads 280