Search results for: metal waste
4550 Heavy Metal Pollution of the Soils around the Mining Area near Shamlugh Town (Armenia) and Related Risks to the Environment
Authors: G. A. Gevorgyan, K. A. Ghazaryan, T. H. Derdzyan
Abstract:
The heavy metal pollution of the soils around the mining area near Shamlugh town and related risks to human health were assessed. The investigations showed that the soils were polluted with heavy metals that can be ranked by anthropogenic pollution degree as follows: Cu>Pb>As>Co>Ni>Zn. The main sources of the anthropogenic metal pollution of the soils were the copper mining area near Shamlugh town, the Chochkan tailings storage facility and the trucks transferring are from the mining area. Copper pollution degree in some observation sites was unallowable for agricultural production. The total non-carcinogenic chronic hazard index (THI) values in some places, including observation sites in Shamlugh town, were above the safe level (THI<1) for children living in this territory. Although the highest heavy metal enrichment degree in the soils was registered in case of copper, the highest health risks to humans especially children were posed by cobalt which is explained by the fact that heavy metals have different toxicity levels and penetration characteristics.Keywords: Armenia, copper mine, heavy metal pollution of soil, health risks
Procedia PDF Downloads 4154549 Co-Pyrolysis Characteristics of Waste Polyolefins
Authors: Si̇nem Uğuz, Yuksel Ardali
Abstract:
Nowadays rapid population growth causes a mandatory increase in consumption. As a result of production activities which meet this consumption, energy sources decrease rapidly on our world. As well as with this production activities various waste occurs. At the end of the production and accumulation of this waste need a mandatory disposal. In this context, copyrolysis of waste polyolefins were investigated. In this study for pyrolysis process, polyethylene and polyprophylene are selected as polyolefins. The pyrolysis behavior (efficiency of solid, liquid and gas production) of selected materials were examined at the different temperatures and different mixtures. Pyrolysis process was carried out at 550 °C and 600 °C without air in a fixed bed pyrolysis oven solid under the nitrogen flow to provide inertness of medium. Elemental analyses (C, H, O, N, S) of this solid and liquid (bitumen) products were made and the calorific value was calculated. The availability of liquid product as a fuel was investigated. In addition different products’ amounts formed like solid, liquid and gas at different temperatures were evaluated.Keywords: alternative energy, elemental analysis, pyrolysis, waste reduction
Procedia PDF Downloads 3144548 Generation of Waste Streams in Small Model Reactors
Authors: Sara Mostofian
Abstract:
The nuclear industry is a technology that can fulfill future energy needs but requires special attention to ensure safety and reliability while minimizing any environmental impact. To meet these expectations, the nuclear industry is exploring different reactor technologies for power production. Several designs are under development and the technical viability of these new designs is the subject of many ongoing studies. One of these studies considers the radioactive emissions and radioactive waste generated during the life of a nuclear power production plant to allow a successful license process. For all the modern technologies, a good understanding of the radioactivity generated in the process systems of the plant is essential. Some of that understanding may be gleaned from the performance of some prototype reactors of similar design that operated decades ago. This paper presents how, with that understanding, a model can be developed to estimate the emissions as well as the radioactive waste during the normal operation of a nuclear power plant. The model would predict the radioactive material concentrations in different waste streams. Using this information, the radioactive emission and waste generated during the life of these new technologies can be estimated during the early stages of the design of the plant.Keywords: SMRs, activity transport, model, radioactive waste
Procedia PDF Downloads 1094547 Biochar as a Strong Adsorbent for Multiple-Metal Removal from Contaminated Water
Authors: Eman H. El-Gamal, Mai E. Khedr, Randa Ghonim, Mohamed Rashad
Abstract:
In the past few years, biochar - a highly carbon-rich material produced from agro-wastes by pyrolysis process - was used as an effective adsorbent for heavy metals removal from polluted water. In this study, different types of biochar (rice straw 'RSB', corn cob 'CCB', and Jatropha shell 'JSB' were used to evaluate the adsorption capacity of heavy metals removal from multiple-metal solutions (Cu, Mn, Zn, and Cd). Kinetics modeling has been examined to illustrate potential adsorption mechanisms. The results showed that the potential removal of metal is dependent on the metal and biochar types. The adsorption capacity of the biochars followed the order: RSB > JSB > CCB. In general, RSB and JSB biochars presented high potential removal of heavy metals from polluted water, which was higher than 90 and 80% after 2 hrs of contact time for all metals, respectively. According to the kinetics data, the pseudo-second-order model was agreed strongly with Cu, Mn, Zn, and Cd adsorption onto the biochars (R2 ≥ 0.97), indicating the dominance of specific adsorption process, i.e., chemisorption. In conclusion, this study revealed that RSB and JSB biochar have the potential to be a strong adsorbent for multiple-metal removal from wastewater.Keywords: adsorption, biochar, chemisorption, polluted water
Procedia PDF Downloads 1504546 Biomphalaria alexandrina Snail as a Bio-Indicator of Pollution With Manganese Metal and Its Effect on Physiological, Immunological, Histopathological Parameters and Larvicidal Potencies
Authors: Amina M. Ibrahim, Ahmed A. Abdel-Haleem, Rania G. Taha
Abstract:
Metal pollution results in many dangerous consequences to the environment and human health due to the bioaccumulation in their tissues. The present study aims to measure the bioaccumulation factor of the Manganese (Mn) heavy metal in Biomphlaria alexandrina snails' tissues and water samples. The present results showed the concentration of Mn heavy metal in water (87.5 mg/l) and its bioaccumulation factor in Helisoma duryi tissue was higher than that in tissues of Physa acuta and B. alexandrina snails. Results showed that 87.5 mg/l Mn concentration had miracidial and cercaricidal activities. Also, this concentration decreased the mean total number of the hemocytes after exposure for 24h or 48h, while increased both the mean mortality and phagocytic indices of the hemocytes of exposed snails. It caused alterations in the cytomorphology of the hemocytes of exposed snails after 24 or 48h, where, the granulocytes had irregular cell membrane, and forming pseudopodia. Besides, both levels of Testosterone (T) and Estradiol (E) were increased after exposure to 87.5mg/l Mn metal compared to the control group. Also, it increased MDA (Malonaldehyde) and TAC (Total antioxidant capacity) contents, while, decreased SOD (superoxide dismutase). Besides, it caused great histopathological damages in both hermaphrodite and digestive glands, represented in the degeneration of the gonadal, digestive, secretory cells and the connective tissues. Therefore, B. alexandrina might be used as sensitive bio-indicator of pollution with Mn heavy metal to avoid ethics rules; beside they are easily available and large in number.Keywords: manganese metal, B. alexandrina, hormonal alterations, histopathology
Procedia PDF Downloads 584545 Metal Contamination in an E-Waste Recycling Community in Northeastern Thailand
Authors: Aubrey Langeland, Richard Neitzel, Kowit Nambunmee
Abstract:
Electronic waste, ‘e-waste’, refers generally to discarded electronics and electrical equipment, including products from cell phones and laptops to wires, batteries and appliances. While e-waste represents a transformative source of income in low- and middle-income countries, informal e-waste workers use rudimentary methods to recover materials, simultaneously releasing harmful chemicals into the environment and creating a health hazard for themselves and surrounding communities. Valuable materials such as precious metals, copper, aluminum, ferrous metals, plastic and components are recycled from e-waste. However, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), and heavy metals are toxicants contained within e-waste and are of great concern to human and environmental health. The current study seeks to evaluate the environmental contamination resulting from informal e-waste recycling in a predominantly agricultural community in northeastern Thailand. To accomplish this objective, five types of environmental samples were collected and analyzed for concentrations of eight metals commonly associated with e-waste recycling during the period of July 2016 through July 2017. Rice samples from the community were collected after harvest and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and gas furnace atomic spectroscopy (GF-AS). Soil samples were collected and analyzed using methods similar to those used in analyzing the rice samples. Surface water samples were collected and analyzed using absorption colorimetry for three heavy metals. Environmental air samples were collected using a sampling pump and matched-weight PVC filters, then analyzed using Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICAP-AES). Finally, surface wipe samples were collected from surfaces in homes where e-waste recycling activities occur and were analyzed using ICAP-AES. Preliminary1 results indicate that some rice samples have concentrations of lead and cadmium significantly higher than limits set by the United States Department of Agriculture (USDA) and the World Health Organization (WHO). Similarly, some soil samples show levels of copper, lead and cadmium more than twice the maximum permissible level set by the USDA and WHO, and significantly higher than other areas of Thailand. Surface water samples indicate that areas near e-waste recycling activities, particularly the burning of e-waste products, result in increased levels of cadmium, lead and copper in surface waters. This is of particular concern given that many of the surface waters tested are used in irrigation of crops. Surface wipe samples measured concentrations of metals commonly associated with e-waste, suggesting a danger of ingestion of metals during cooking and other activities. Of particular concern is the relevance of surface contamination of metals to child health. Finally, air sampling showed that the burning of e-waste presents a serious health hazard to workers and the environment through inhalation and deposition2. Our research suggests a need for improved methods of e-waste recycling that allows workers to continue this valuable revenue stream in a sustainable fashion that protects both human and environmental health. 1Statistical analysis to be finished in October 2017 due to follow-up field studies occurring in July and August 2017. 2Still awaiting complete analytic results.Keywords: e-waste, environmental contamination, informal recycling, metals
Procedia PDF Downloads 3624544 A Method Development for Improving the Efficiency of Solid Waste Collection System Using Network Analyst
Authors: Dhvanidevi N. Jadeja, Daya S. Kaul, Anurag A. Kandya
Abstract:
Municipal Solid Waste (MSW) collection in a city is performed in less effective manner which results in the poor management of the environment and natural resources. Municipal corporation does not possess efficient waste management and recycling programs because of the complex task involving many factors. Solid waste collection system depends upon various factors such as manpower, number and size of vehicles, transfer station size, dustbin size and weight, on-road traffic, and many others. These factors affect the collection cost, energy and overall municipal tax for the city. Generally, different types of waste are scattered throughout the city in a heterogeneous way that poses changes for efficient collection of solid waste. Efficient waste collection and transportation strategy must be effectively undertaken which will include optimization of routes, volume of waste, and manpower. Being these optimized, the overall cost can be reduced as the fuel and energy requirements would be less and also the municipal waste taxes levied will be less. To carry out the optimization study of collection system various data needs to be collected from the Ahmedabad municipal corporation such as amount of waste generated per day, number of workers, collection schedule, road maps, number of transfer station, location of transfer station, number of equipment (tractors, machineries), number of zones, route of collection etc. The ArcGis Network Analyst is introduced for the best routing identification applied in municipal waste collection. The simulation consists of scenarios of visiting loading spots in the municipality of Ahmedabad, considering dynamic factors like network traffic changes, closed roads due to natural or technical causes. Different routes were selected in a particular area of Ahmedabad city, and present routes were optimized to reduce the length of the routes, by using ArcGis Network Analyst. The result indicates up to 35% length minimization in the routes.Keywords: collection routes, efficiency, municipal solid waste, optimization
Procedia PDF Downloads 1354543 Enzyme Redesign: From Metal-Dependent to Metal-Independent, a Symphony Orchestra without Concertmasters
Authors: Li Na Zhao, Arieh Warshel
Abstract:
The design of enzymes is an extremely challenging task, and this is also true for metalloenzymes. In the case of naturally evolved enzymes, one may consider the active site residues as the musicians in the enzyme orchestra, while the metal can be considered as their concertmaster. Together they catalyze reactions as if they performed a masterpiece written by nature. The Lactonase can be thought as a member of the amidohydrolase family, with two concertmasters, Fe and Zn, at its active site. It catalyzes the quorum sensing signal- N-acyl homoserine lactones (AHLs or N-AHLs)- by hydrolyzing the lactone ring. This process, known as quorum quenching, provides a strategy in the treatment of infectious diseases without introducing selection pressure. However, the activity of lactonase is metal-dependent, and this dependence hampers the clinic usage. In our study, we use the empirical valence bond (EVB) approach to evaluate the catalytic contributions decomposing them to electrostatic and other components.Keywords: enzyme redesign, empirical valence bond, lactonase, quorum quenching
Procedia PDF Downloads 2514542 Method of Estimating Absolute Entropy of Municipal Solid Waste
Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards
Abstract:
Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% ≤ C ≤ 95.1%, 0.0% ≤ H ≤ 14.3%, 0.0% ≤ O ≤ 71.1%, 0.0 ≤ N ≤ 66.7%, 0.0% ≤ S ≤ 42.1%, 0.0% ≤ Cl ≤ 89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.Keywords: absolute entropy, irreversibility, municipal solid waste, waste-to-energy
Procedia PDF Downloads 3094541 Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency
Authors: Herlina Abdul Rahim, Javad Abbaszadeh, Ruzairi Abdul Rahim
Abstract:
In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated.Keywords: ultrasonic transmission tomography, ultrasonic sensors, ultrasonic wave, non-invasive tomography, metal pipe
Procedia PDF Downloads 3584540 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously
Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen
Abstract:
Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO₂ cycle, transcritical CO₂ cycle
Procedia PDF Downloads 2604539 Development of Swing Valve for Gasoline Turbocharger Using Hybrid Metal Injection Molding
Authors: B. S. So, Y. H. Yoon, J. O. Jung, K. S. Bae
Abstract:
Metal Injection Molding (MIM) is a technology that combines powder metallurgy and injection molding. Particularly, it is widely applied to the manufacture of precision mobile parts and automobile turbocharger parts because compact precision parts with complicated three-dimensional shapes that are difficult to machining are formed into a large number of finished products. The swing valve is a valve that adjusts the boost pressure of the turbocharger. Since the head portion is exposed to the harsh temperature condition of about 900 degrees in the gasoline GDI engine, it is necessary to use Inconel material with excellent heat resistance and abrasion resistance, resulting in high manufacturing cost. In this study, we developed a swing valve using a metal powder injection molding based hybrid material (Inconel 713C material with heat resistance is applied to the head part, and HK30 material with low price is applied to the rest of the body part). For this purpose, the process conditions of the metal injection molding were optimized to minimize the internal defects, and the effectiveness was confirmed by the fracture strength and fatigue test.Keywords: hybrid metal injection molding, swing valve, turbocharger, double injection
Procedia PDF Downloads 2134538 Application of Microbially Induced Calcite Precipitation Technology in Construction Materials: A Comprehensive Review of Waste Stream Contributions
Authors: Amir Sina Fouladi, Arul Arulrajah, Jian Chu, Suksun Horpibulsuk
Abstract:
Waste generation is a growing concern in many countries across the world, particularly in urban areas with high rates of population growth and industrialization. The increasing amount of waste generated from human activities has led to environmental, economic, and health issues. Improper disposal of waste can result in air and water pollution, land degradation, and the spread of diseases. Waste generation also consumes large amounts of natural resources and energy, leading to the depletion of valuable resources and contributing to greenhouse gas emissions. To address these concerns, there is a need for sustainable waste management practices that reduce waste generation and promote resource recovery and recycling. Amongst these, developing innovative technologies such as Microbially Induced Calcite Precipitation (MICP) in construction materials is an effective approach to transforming waste into valuable and sustainable applications. MICP is an environmentally friendly microbial-chemical technology that applies microorganisms and chemical reagents to biological processes to produce carbonate mineral. This substance can be an energy-efficient, cost-effective, sustainable solution to environmental and engineering challenges. Recent research has shown that waste streams can replace several MICP-chemical components in the cultivation media of microorganisms and cementation reagents (calcium sources and urea). In addition to its effectiveness in treating hazardous waste streams, MICP has been found to be cost-effective and sustainable solution applicable to various waste media. This comprehensive review paper aims to provide a thorough understanding of the environmental advantages and engineering applications of MICP technology, with a focus on the contribution of waste streams. It also provides researchers with guidance on how to identify and overcome the challenges that may arise applying the MICP technology using waste streams.Keywords: waste stream, microbially induced calcite precipitation, construction materials, sustainability
Procedia PDF Downloads 794537 Investigation of the Heavy Metal Pollution of the River Ecosystems in the Lake Sevan Basin, Armenia
Authors: G. Gevorgyan, S. Khudaverdyan, A. Vaseashta
Abstract:
The Lake Sevan basin is situated in the eastern part of the Republic of Armenia (Gegharquniq marz/district). The heavy metal pollution of the some tributaries of Lake Sevan was investigated. Water sampling was performed in August and December, 2014 from the 4 observation sites: 1) Sotq river upstream (about 600 meters upstream from the Sotq gold mine); 2) Sotq river mouth; 3) Masrik river mouth; 4) Dzknaget river mouth. Heavy metal (V, Fe, Ni, Cu, As, Mo, Pb) concentrations in the water samples were determined by the standard methods using an atomic absorption spectrophotometer. The results of the study showed that heavy metal content mainly increased from the upstream of the Sotq river to the mouth of the Masrik river which may have been conditioned by the influence of gold mining activity as the Masrik and its tributary-Sotq rivers passing through the gold mining area were exposed to heavy metal pollution. The observation sites can be ranked by pollution degree as follows: №3> №2> №1> №4. The highest heavy metal pollution degree was observed in the Masrik river mouth which may have been conditioned by the direct impact of gold mining activity and the pressure of its tributary–the Sotq river which flows through the gold mining area. The lowest heavy metal pollution degree was registered in the Dzknaget river mouth which flowing through rural areas wasn’t subject to significant heavy metal pollution. According to the observation sites of the Sotq and Masrik rivers, high positive correlation was mainly observed between the concentrations of the investigated heavy metals (except nickel) which indicated that all the heavy metals except the nickel had the same anthropogenic pollution source which was the activity of the Sotq gold mine. In general, it is possible to state that the activity of the Sotq gold mine in the Lake Sevan basin caused the heavy metal pollution of the Sotq and Masrik rivers which may have posed environmental hazards. Heavy metals are nondegradable substances, and heavy metal pollution of freshwater systems may pose risks to the environment and human health through accumulation in the tissues of aquatic organisms, water-food chain as well as oral ingestion and dermal contact.Keywords: Armenia, Lake Sevan basin, gold mining activity, river ecosystems, heavy metal pollution
Procedia PDF Downloads 5844536 Optimization of Synergism Extraction of Toxic Metals (Lead, Copper) from Chlorides Solutions with Mixture of Cationic and Solvating Extractants
Authors: F. Hassaine-Sadi, S. Chelouaou
Abstract:
In recent years, environmental contamination by toxic metals such as Pb, Cu, Ni, Zn ... has become a worldwide crucial problem, particularly in some areas where the population depends on groundwater for drinking daily consumption. Thus, the sources of metal ions come from the metal manufacturing industry, fertilizers, batteries, paints, pigments and so on. Solvent extraction of metal ions has given an important role in the development of metal purification processes such as the synergistic extraction of some divalent cations metals ( M²⁺), the ions metals from various sources. This work consists of a water purification technique that involves the lead and copper systems: Pb²⁺, H₃O+, Cl⁻ and Cu²⁺, H₃O⁺, Cl⁻ for diluted solutions by a mixture of tri-n-octylphosphine oxide (TOPO) or Tri-n-butylphosphate(TBP) and di (2-ethyl hexyl) phosphoric acid (HDEHP) dissolved in kerosene. The study of the fundamental parameters influencing the extraction synergism: cation exchange/extraction solvent have been examined.Keywords: synergistic extraction, lead, copper, environment
Procedia PDF Downloads 4454535 Preliminary Treatment in Wastewater Treatment Plants: Operation and Maintenance Aspects
Authors: Priscila M. Lima, Corine A. P. de Almeida, Muriele R. de Lima, Fernando J. C. Magalhães Filho
Abstract:
This work characterized the preliminary treatment in WWTPs in the state of Mato Grosso Do Sul (Brazil) and analyzed aspects of operation and maintenance of solid waste retained, and was evaluated the interference of this step in treatment efficiency beyond the relationship between solid waste generation with rainfall and seasonality in the region of each WTPs. The results shown that the standard setting in the preliminary treatment consists of grid along with Sand Trap, followed by Parshall that is used in 94.12% of WWTPs analyzed, and in 5.88% of WWTPs it was added the air-lift to the Sand Trap. Was concluded that the influence of rainfall, flow and seasonality associated with the rate of waste generation in the preliminary treatment, had little relation to the operation and maintenance of the primary treatment. But in some cases, precipitation data showed increased rainfall converging with increased flow and solid waste generation.Keywords: pretreatment, sewage, solid waste, wastewater
Procedia PDF Downloads 4684534 Synthesis and Characterization of Some Nano-Structured Metal Hexacyanoferrates Using Sapindus mukorossi, a Natural Surfactant
Authors: Uma Shanker, Vidhisha Jassal
Abstract:
A novel green route was used to synthesize few metal hexacyanoferrates (FeHCF, NiHCF, CoHCF and CuHCF) nanoparticles using Sapindus mukorossias a natural surfactant and water as a solvent. The synthesized nanoparticles were characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermo gravimetric techniques. Trasmission electron microscopic images showed that synthesized MHCF nanoparticles exhibited cubic and spherical shapes with exceptionally small sizes ranging from 3nm - 186 nm.Keywords: metal hexacyanoferrates, natural surfactant, Sapindus mukorossias, nanoparticles
Procedia PDF Downloads 5264533 From Waste Recycling to Waste Prevention by Households : Could Eco-Feedback Strategies Fill the Gap?
Authors: I. Dangeard, S. Meineri, M. Dupré
Abstract:
large body of research on energy consumption reveals that regular information on energy consumption produces a positive effect on behavior. The present research aims to test this feedback paradigm on waste management. A small-scale experiment on residual household waste was performed in a large french urban area, in partnership with local authorities, as part of the development of larger-scale project. A two-step door-to-door recruitment scheme led to 85 households answering a questionnaire. Among them, 54 accepted to participate in a study on waste (second step). Participants were then randomly assigned to one of the 3 experimental conditions : self-reported feedback on curbside waste, external feedback on waste weight based on information technologies, and no feedback for the control group. An additional control group was added, including households who were not requested to answer the questionnaire. Household residual waste was collected every week, and tags on curbside bins fed a database with waste weight of households. The feedback period lasted 14 weeks (february-may 2014). Quantitative data on waste weight were analysed, including these 14 weeks and the 7 previous weeks. Households were then contacted by phone in order to confirm the quantitative results. Regarding the recruitment questionnaire, results revealed high pro-environmental attitude on the NEP scale, high recycling behavior level and moderate level of source reduction behavior on the adapted 3R scale, but no statistical difference between the 3 experimental groups. Regarding the feedback manipulation paradigm, waste weight reveals important differences between households, but doesn't prove any statistical difference between the experimental conditions. Qualitative phone interviews confirm that recycling is a current practice among participants, whereas source reduction of waste is not, and mainly appears as a producer problem of packaging limitation. We conclude that triggering waste prevention behaviors among recycling households involves long-term feedback and should promote benchmarking, in order to clearly set waste reduction as an objective to be managed through feedback figures.Keywords: eco-feedback, household waste, waste reduction, experimental research
Procedia PDF Downloads 3924532 A Brief Review of Titanium Powders Used in Laser Powder-Bed Fusion Additive Manufacturing
Authors: Ali Alhajeri, Tarig Makki, Mosa Almutahhar, Mohammed Ahmed, Usman Ali
Abstract:
Metal powder is the raw material used for laser powder-bed fusion (LPBF) additive manufacturing (AM). There are many metal materials that can be used in LPBF. The properties of these materials are varied between each other, which can affect the building part. The objective of this paper is to do an overview of the titanium powders available in LBPF. Comparison between different literature works will lead us to study the similarities and differences between the powder properties such as size, shape, and chemical composition. Furthermore, the results of this paper will point out the significant titanium powder properties in order to clearly illustrate their effect on the build parts.Keywords: LPBF, titanium, Ti-6Al-4V, Ti-5553, metal powder, AM
Procedia PDF Downloads 1744531 Food Waste and Sustainable Management
Authors: Farhana Nosheen, Moeez Ahmad
Abstract:
Throughout the food chain, the food waste from initial agricultural production to final household consumption has become a serious concern for global sustainability because of its adverse impacts on food security, natural resources, the environment, and human health. About a third of tomatoes (Lycopersicon esculentum L.) delivered to processing plants end as processing waste. The amount of such waste material is estimated to have increased with the emergence of mechanical harvesting. Experiments were made to determine the nutritional profile and antioxidant activity of tomato processing waste and to explore the bioactive compound in tomato waste, i.e., Lycopene. Tomato Variety of ‘SAHARA F1’ was used to make tomato waste. The tomatoes were properly cleaned, and then unwanted impurities were removed properly. The tomatoes were blanched at 90 ℃ for 5 minutes. After which, the skin of the tomatoes was removed, and the remaining part passed through the electric pulper. The pulp and seeds were collected separately. The seeds and skin of tomatoes were mixed and saved in a sterilized jar. The samples of tomato waste were found to contain 89.11±0.006 g/100g moisture, 10.13±0.115 g/100g protein, 2.066±0.57 g/100g fat, 4.81±0.10 g/100g crude fiber, and 4.06±0.057 g/100g ash and NFE 78.92±0.066 g/100g. The results confirmed that tomato waste contains a considerable amount of Lycopene 51.0667±0.00577 mg/100g and exhibited good antioxidant properties. Total phenolics showed average contents of 122.9600±0.01000 mg GAE/100g, of which flavonoids accounted for 41.5367±0.00577 mg QE/100g. Antioxidant activity of tomato processing waste was found 0.6833±0.00577 mmol Trolox/100g. Unsaturated fatty acids represent the major portion of total fatty acids, Linoleic acid being the major one. The mineral content of tomato waste showed a good amount of potassium 3030.1767 mg/100g and calcium 131.80 mg/100g, respectively were present in it. These findings suggest that tomato processing waste is rich in nutrients, antioxidants, fatty acids, and minerals. I recommend that this waste should be sun-dried to be used in the combination of feed of the animals. It can also be used in making some other products like lycopene tea or several other health-beneficial products.Keywords: food waste, tomato, bioactive compound, sustainable management
Procedia PDF Downloads 1094530 Phytochemicals Quatification, Trace Metal Accumulation Pattern and Contamination Risk Assessment of Different Variety of Tomatoes Cultivated on Municipal Waste Sludge Treated Soil
Authors: Mathodzi Nditsheni, Olawole Emmanuel Aina, Joshua Oluwole Olowoyo
Abstract:
The ever-increasing world population is putting extreme pressure on the already limited agricultural resources for food production. Different soil enhancers were introduced by famers to meet the need of the ever-increasing population demand for food. One of the soil enhancers is the municipal waste sludge. This research investigated the differences in the concentrations of trace metals and levels of phytochemicals in four different tomato varieties cultivated on soil treated with municipal waste sludge in Pretoria, South Africa. Fruits were harvested at maturity and analyzed for trace metals and phytochemicals contents using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and a High-Performance Liquid Chromatography (HPLC) respectively. A one-way analysis of variance (ANOVA) was used to determine the differences in the concentrations of trace metals and phytochemical from different tomato varieties were significant. From the study, Rodade tomato bioaccumulated the highest concentrations of Mn, Cr, Cu and Ni, Roma bioaccumulated the highest concentrations of, Cd, Fe and Pb while Heinz bioaccumulated the highest concentrations of As and Zn. Cherry tomato on the other hand, recorded the lowest concentrations for most metals, Cd, Cr, Cu, Mn, Ni, Pb and Zn. The results of the study further showed that phenolic and flavonoids content were higher in the Solanum lycopersicum fruit grown in soils treated with municipal waste sludge. The study also showed that there was an inverse relationship between the levels of trace metals and phytochemicals. The calculated contamination factor values of trace metals like Cr, Cu, Pb and Zn were above the safe value of 1 which indicated that the tomato fruits may be unsafe for human consumption. However, the contamination factor values for the remaining trace metals were well below the safe value of 1. From the results obtained either for the control group or the treatment, the tomato varieties used in the study, bioaccumulated the toxic trace metals in their fruits and some of the values obtained were higher than the acceptable limit, which may then imply that the varieties of tomato used in this study bio accumulated the toxic trace metals from the soil, hence care should be taken when these tomato varieties are either cultivated or harvested from polluted areasKeywords: trace metals, flavonoids, phenolics, waste sludge, tomato, contamination factors
Procedia PDF Downloads 724529 Analysis of the Variation on Earth Pressure by Addition of Construction Demolition Waste (C&D Waste) In Black Cotton Soil
Authors: Nirav Jadav, M. G.Vanza
Abstract:
Black cotton soils mainly exhibit the property of swelling/shrinkage when they react to moisture variations. This property causes development of cracks in the structures resting on these soils, which poses instability to the structures. Soil stabilization is a technique to enhance the geotechnical characteristics of Black cotton soils by changing their properties. Due to rapid growth in construction industry, a lot of waste material is being generated every day, which poses the problem of its disposal. If the waste material can be utilized for soil stabilization, it will mitigate the problems of its disposal. The tests results evaluate that the strength of the Black cotton soils increased by the use of C&D waste material. This study determines various Index and engineering properties of soil and compare for different proportions of soil and C&D Waste. For finding properties of soil and C&D Waste, various test is carried out like sieve analysis, hydrometer test, specific gravity test, Atterberg’s limit test, Standard proctor test and soil Triaxial unconsolidated undrained test. It also takes into account the characteristics alteration due to addition of C&D Waste in active and passive pressure. This study presents the efficacy for use of C&D Waste as a stabilizing material to be mixed with backfill soil in retaining walls. Standard proctor test was conducted at proportions S1W0 (soil = 100%, Waste = 0%), S7W1 (soil = 87.5%, waste = 12.5%), S3W1, S5W3 and S1W1. From these, S5W3 showed optimum results, so this proportion was considered for Soil Triaxial UU-Test. Also, S1W0 was considered too. When 37.5% of soil is replaced by C&D Waste, the Optimum moisture content (OMC) decrease by 11.48%, further, increase C&D Waste in soil OMC remains constant, and maximum dry density (MDD) were observed to be increased by 9.27%, further increased C&D Waste in soil MDD reduces. Carried out strength test, which shows cohesion decreased by 162% and the internal friction angle increased by 49.4% with compare to virgin soil. The study focuses on the potential use of C&D Waste as a stabilizing material in the retaining wall backfill. The active earth pressure decreases, and the passive earth pressure increases in the S5W3 mixture compared to the S1W0 mixture at the same depth.Keywords: black cotton soil, construction demolition waste, compaction test, strength test
Procedia PDF Downloads 824528 Extent of Fruit and Vegetable Waste at Wholesaler Stage of the Food Supply Chain in Western Australia
Authors: P. Ghosh, S. B. Sharma
Abstract:
The growing problem of food waste is causing unacceptable economic, environmental and social impacts across the globe. In Australia, food waste is estimated at about AU$8 billion per year; however, information on the extent of wastage at different stages of the food value chain from farm to fork is very limited. This study aims to identify causes for and extent of food waste at wholesaler stage of the food value chain in the state of Western Australia. It also explores approaches applied to reduce and utilize food waste by the wholesalers. The study was carried out at Perth city market in Caning Vale, the main wholesale distribution centre for fruits and vegetables in Western Australia. A survey questionnaire was prepared and shared with 51 wholesalers and their responses to 10 targeted questions on quantity of produce (fruits and vegetables) delivery received and further supplied, reasons for waste generation and innovations applied or being considered to reduce and utilize food waste. Data were computed using the Statistical Package for the Social Sciences (SPSS version 21). Among the wholesalers 52% were primary wholesalers (buy produce directly from growers) and 48% were secondary wholesalers (buy produce in bulk from major wholesalers and supply to the local retail market, caterers, and customers with specific requirements). Average fruit and vegetable waste was 180 Kilogram per week per primary wholesaler and 30 Kilogram per secondary wholesaler. Based on this survey, the fruit and vegetable waste at wholesaler stage was estimated at about 286 tonnes per year. The secondary wholesalers distributed pre-ordered commodities, which minimized the potential to cause waste. Non-parametric test (Mann Whitney test) was carried out to assess contributions of wholesalers to waste generation. Over 56% of secondary wholesalers generally had nothing to bin as waste. Pearson’s correlation coefficient analysis showed positive correlation (r = 0.425; P=0.01) between the quantity of produce received and waste generated. Low market demand was the predominant reason identified by the wholesalers for waste generation. About a third of the wholesalers suggested that high cosmetic standards for fruits and vegetables - appearance, shape, and size - should be relaxed to reduce waste. Donation of unutilized fruits and vegetables to charity was overwhelmingly (95%) considered as one of the best options for utilization of discarded produce. The extent of waste at other stages of fruit and vegetable supply chain is currently being studied.Keywords: food waste, fruits and vegetables, supply chain, waste generation
Procedia PDF Downloads 3124527 Application of Metroxylon Sagu Waste in Textile Process
Authors: Nazlina Shaari
Abstract:
Sustainability is economic, social and environmental systems that make up the community in providing a healthy, productive, meaningful life for all community residents, present and future. The environmental profile of goods and services that satisfy our individual and societal needs were shaped by design activities. The integration of environmental aspect of product design, especially in textiles present much confusion surrounds the incorporation of environmental objectives into the design process. This paper explores the effective use of waste materials that can contribute to the development of more environmentally responsible practice in textile sector. It introduces key elements of the ecological approach and innovative ideas from waste to wealth. The paper focuses on the potential methods of utilizing sago residue as a natural colour enhancer in natural dyeing process. It will discover the potential of waste materials to be fully utilized to attempt to make the production of that textile more environmentally friendly.Keywords: sustainability, textiles, waste materials, environmentally friendly
Procedia PDF Downloads 3184526 Waste Minimization through Vermicompost: An Alternative Approach
Authors: Mary Fabiola
Abstract:
Vermicompost is the product or process of composting using various worms. Large-scale vermicomposting is practiced in Canada, Italy, Japan, Malaysia, the Philippines, and the United States. The vermicompost may be used for farming, landscaping, and creating compost tea or for sale. Some of these operations produce worms for bait and/or home vermicomposting. As a processing system, The vermicomposting of organic waste is very simple. Worms ingest the waste material-break it up in their rudimentary. Gizzards, consume the digestible/putrefiable portion and then excrete a stable, Humus-like material that can be immediately marketed. Vermitechnology can be a promising technique that has shown its potential in certain challenging areas like augmentation of food production, waste recycling, management of solid wastes etc. There is no doubt that in India, where on side pollution is increasing due to accumulation of organic wastes and on the other side there is shortage of organic manure, which could increase the fertility and productivity of the land and produce nutritive and safe food. So, the scope for vermicomposting is enormous.Keywords: pollution, solid wastes, vermicompost, waste recycling
Procedia PDF Downloads 4314525 Incorporation of Foundry Sand in Asphalt Pavement
Authors: L. P. Nascimento, M. Soares, N. Valério, A. Ribeiro, J. R. M. Oliveira, J. Araújo, C. Vilarinho, J. Carvalho
Abstract:
With the growing need to save natural resources and value waste that was previously worthless, waste recycling becomes imperative. Thus, with the techno-scientific growth and in the perspective of sustainability, it is observed that waste has the potential to replace significant percentages of materials considered “virgin”. An example is the replacement of crushed aggregates with foundry sand. In this work, a mix design study of two asphalt mixes, a base mix (AC 20) and a surface mix (AC14) was carried out to evaluate the maximum amount of foundry sand residue that could be used. Water sensitivity tests were performed to evaluate the mechanical behavior of these mixtures. For the superficial mixture with foundry sand (AC14FS), the maximum of sand used was 5%, with satisfactory results of sensitivity to water. In the base mixture with sand (AC20FS), the maximum of sand used was 12%, which had less satisfactory results. However, from an environmental point of view, the re-incorporation of this residue in the pavement is beneficial because it prevents it from being deposited in landfills.Keywords: foundry sand, hot mix asphalt, industrial waste, waste valorization, sustainability
Procedia PDF Downloads 1104524 Brine Waste from Seawater Desalination in Malaysia
Authors: Cynthia Mahadi, Norhafezah Kasmuri
Abstract:
Water scarcity is a growing issue these days. As a result, saltwater is being considered a limitless supply of fresh water through the desalination process, which is likely to address the worldwide water crisis, including in Malaysia. This study aims to offer the best management practice for controlling brine discharge in Malaysia by comparing environmental regulations on brine waste management in other countries. Then, a survey was distributed to the public to acquire further information about their level of awareness of the harmful effects of brine waste and to find out their perspective on the proposed solutions to ensure the effectiveness of the measures. As a result, it has been revealed that Malaysia still lacks regulations regarding the disposal of brine waste. Thus, a recommendation based on practices in other nations has been put forth by this study. This study suggests that the government and Malaysia's environmental regulatory body should govern brine waste disposal in the Environmental Quality Act 1974. Also, to add the construction of a desalination plant in Schedule 1 of prescribed activities was necessary. Because desalination plants can harm the environment during both construction and operation, every proposal for the construction of a desalination plant should involve the submission of an environmental impact assessment (EIA).Keywords: seawater desalination, brine waste, environmental impact assessment, fuzzy Delphi method
Procedia PDF Downloads 804523 Smart Disassembly of Waste Printed Circuit Boards: The Role of IoT and Edge Computing
Authors: Muhammad Mohsin, Fawad Ahmad, Fatima Batool, Muhammad Kaab Zarrar
Abstract:
The integration of the Internet of Things (IoT) and edge computing devices offers a transformative approach to electronic waste management, particularly in the dismantling of printed circuit boards (PCBs). This paper explores how these technologies optimize operational efficiency and improve environmental sustainability by addressing challenges such as data security, interoperability, scalability, and real-time data processing. Proposed solutions include advanced machine learning algorithms for predictive maintenance, robust encryption protocols, and scalable architectures that incorporate edge computing. Case studies from leading e-waste management facilities illustrate benefits such as improved material recovery efficiency, reduced environmental impact, improved worker safety, and optimized resource utilization. The findings highlight the potential of IoT and edge computing to revolutionize e-waste dismantling and make the case for a collaborative approach between policymakers, waste management professionals, and technology developers. This research provides important insights into the use of IoT and edge computing to make significant progress in the sustainable management of electronic wasteKeywords: internet of Things, edge computing, waste PCB disassembly, electronic waste management, data security, interoperability, machine learning, predictive maintenance, sustainable development
Procedia PDF Downloads 304522 Volatile Organic Compounds from Decomposition of Local Food Waste and Potential Health Risk
Authors: Siti Rohana Mohd Yatim, Ku Halim Ku Hamid, Kamariah Noor Ismail, Zulkifli Abdul Rashid
Abstract:
The aim of this study is to investigate odour emission profiles from storage of food waste and to assess the potential health risk caused by exposure to volatile compounds. Food waste decomposition process was conducted for 14 days and kept at 20°C and 30°C in self-made bioreactor. VOCs emissions from both samples were collected at different stages of decomposition starting at day 0, day 1, day 3, day 5, day 7, day 10, day 12 and day 14. It was analyzed using TD-GC/MS. Findings showed that various VOCs were released during decomposition of food waste. Compounds produced were influenced by time, temperature and the physico-chemical characteristics of the compounds. The most abundant compound released was dimethyl disulfide. Potential health risk of exposure to this compound is represented by hazard ratio, HR, calculated at 1.6 x 1011. Since HR equal to or less than 1.0 is considered negligible risk, this indicates that the compound posed a potential risk to human health.Keywords: volatile organic compounds, decomposition process, food waste, health risk
Procedia PDF Downloads 5204521 Negative Pressures of Ca. -20 MPA for Water Enclosed into a Metal Berthelot Tube under a Vacuum Condition
Authors: K. Hiro, Y. Imai, M. Tanji, H. Deguchi, K. Hatari
Abstract:
Negative pressures of liquids have been expected to contribute many kinds of technology. Nevertheless, experiments for subjecting liquids which have not too small volumes to negative pressures are difficult even now. The reason of the difficulties is because the liquids tend to generate cavities easily. In order to remove cavitation nuclei, an apparatus for enclosing water into a metal Berthelot tube under vacuum conditions was developed. By using the apparatus, negative pressures for water rose to ca. -20 MPa. This is the highest value for water in metal Berthelot tubes. Results were explained by a traditional crevice model. KeywordsKeywords: Berthelot method, negative pressure, cavitation nuclei, water
Procedia PDF Downloads 333