Search results for: k-means clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 608

Search results for: k-means clustering

188 Study on the Characteristics of Chinese Urban Network Space from the Perspective of Innovative Collaboration

Authors: Wei Wang, Yilun Xu

Abstract:

With the development of knowledge economy era, deepening the mechanism of cooperation and adhering to sharing and win-win cooperation has become new direction of urban development nowadays. In recent years, innovative collaborations between cities are becoming more and more frequent, whose influence on urban network space has aroused many scholars' attention. Taking 46 cities in China as the research object, the paper builds the connectivity of innovative network between cities and the linkages of urban external innovation using patent cooperation data among cities, and explores urban network space in China by the application of GIS, which is a beneficial exploration to the study of social network space in China in the era of information network. The result shows that the urban innovative network space and geographical entity space exist differences, and the linkages of external innovation are not entirely related to the city innovative capacity and the level of economy development. However, urban innovative network space and geographical entity space are similar in hierarchical clustering. They have both formed Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta three metropolitan areas and Beijing-Shenzhen-Shanghai-Hangzhou four core cities, which lead the development of innovative network space in China.

Keywords: innovative collaboration, urban network space, the connectivity of innovative network, the linkages of external innovation

Procedia PDF Downloads 178
187 Phylogenetic Analysis of the Thunnus Tuna Fish Using Cytochrome C Oxidase Subunit I Gene Sequence

Authors: Yijun Lai, Saber Khederzadeh, Lingshaung Han

Abstract:

Species in Thunnus are organized due to the similarity between them. The closeness between T. maccoyii, T. thynnus, T. Tonggol, T. atlanticus, T. albacares, T. obsesus, T. alalunga, and T. orientails are in different degrees. However, the genetic pattern of differentiation has not been presented based on individuals yet, to the author’s best knowledge. Hence, we aimed to analyze the difference in individuals level of tuna species to identify the factors that contribute to the maternal lineage variety using Cytochrome c oxidase subunit I (COXI) gene sequences. Our analyses provided evidence of sharing lineages in the Thunnus. A phylogenetic analysis revealed that these lineages are basal to the other sequences. We also showed a close connection between the T. tonggol, T. thynnus, and T. albacares populations. Also, the majority of the T. orientalis samples were clustered with the T. alalunga and, then, T. atlanticus populations. Phylogenetic trees and migration modeling revealed high proximity of T. thynnus sequences to a few T. orientalis and suggested possible gene flow with T. tonggol and T. albacares lineages, while all T. obsesus samples indicated unique clustering with each other. Our results support the presence of old maternal lineages in Thunnus, as a legacy of an ancient wave of colonization or migration.

Keywords: Thunnus Tuna, phylogeny, maternal lineage, COXI gene

Procedia PDF Downloads 290
186 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics

Authors: M. Bodner, M. Scampicchio

Abstract:

Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.

Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA

Procedia PDF Downloads 143
185 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 226
184 Screening of Risk Phenotypes among Metabolic Syndrome Subjects in Adult Pakistani Population

Authors: Muhammad Fiaz, Muhammad Saqlain, Abid Mahmood, S. M. Saqlan Naqvi, Rizwan Aziz Qazi, Ghazala Kaukab Raja

Abstract:

Background: Metabolic Syndrome is a clustering of multiple risk factors including central obesity, hypertension, dyslipidemia and hyperglycemia. These risk phenotypes of metabolic syndrome (MetS) prevalent world-wide, Therefore we aimed to identify the frequency of risk phenotypes among metabolic syndrome subjects in local adult Pakistani population. Methods: Screening of subjects visiting out-patient department of medicine, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad was performed to assess the occurrence of risk phenotypes among MetS subjects in Pakistani population. The Metabolic Syndrome was defined based on International Diabetes Federation (IDF) criteria. Anthropometric and biochemical assay results were recorded. Data was analyzed using SPSS software (16.0). Results: Our results showed that dyslipidemia (31.50%) and hyperglycemia (30.50%) was most population specific risk phenotypes of MetS. The results showed the order of association of metabolic risk phenotypes to MetS as follows hyperglycemia>dyslipidemia>obesity >hypertension. Conclusion: The hyperglycemia and dyslipidemia were found be the major risk phenotypes among the MetS subjects and have greater chances of deceloping MetS among Pakistani Population.

Keywords: dyslipidemia, hypertention, metabolic syndrome, obesity

Procedia PDF Downloads 209
183 A Mixed Integer Programming Model for Optimizing the Layout of an Emergency Department

Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee

Abstract:

During the recent years, demand for healthcare services has dramatically increased. As the demand for healthcare services increases, so does the necessity of constructing new healthcare buildings and redesigning and renovating existing ones. Increasing demands necessitate the use of optimization techniques to improve the overall service efficiency in healthcare settings. However, high complexity of care processes remains the major challenge to accomplish this goal. This study proposes a method based on process mining results to address the high complexity of care processes and to find the optimal layout of the various medical centers in an emergency department. ProM framework is used to discover clinical pathway patterns and relationship between activities. Sequence clustering plug-in is used to remove infrequent events and to derive the process model in the form of Markov chain. The process mining results served as an input for the next phase which consists of the development of the optimization model. Comparison of the current ED design with the one obtained from the proposed method indicated that a carefully designed layout can significantly decrease the distances that patients must travel.

Keywords: Mixed Integer programming, Facility layout problem, Process Mining, Healthcare Operation Management

Procedia PDF Downloads 339
182 Revisiting the Swadesh Wordlist: How Long Should It Be

Authors: Feda Negesse

Abstract:

One of the most important indicators of research quality is a good data - collection instrument that can yield reliable and valid data. The Swadesh wordlist has been used for more than half a century for collecting data in comparative and historical linguistics though arbitrariness is observed in its application and size. This research compare s the classification results of the 100 Swadesh wordlist with those of its subsets to determine if reducing the size of the wordlist impact s its effectiveness. In the comparison, the 100, 50 and 40 wordlists were used to compute lexical distances of 29 Cushitic and Semitic languages spoken in Ethiopia and neighbouring countries. Gabmap, a based application, was employed to compute the lexical distances and to divide the languages into related clusters. The study shows that the subsets are not as effective as the 100 wordlist in clustering languages into smaller subgroups but they are equally effective in di viding languages into bigger groups such as subfamilies. It is noted that the subsets may lead to an erroneous classification whereby unrelated languages by chance form a cluster which is not attested by a comparative study. The chance to get a wrong result is higher when the subsets are used to classify languages which are not closely related. Though a further study is still needed to settle the issues around the size of the Swadesh wordlist, this study indicates that the 50 and 40 wordlists cannot be recommended as reliable substitute s for the 100 wordlist under all circumstances. The choice seems to be determined by the objective of a researcher and the degree of affiliation among the languages to be classified.

Keywords: classification, Cushitic, Swadesh, wordlist

Procedia PDF Downloads 298
181 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity

Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang

Abstract:

The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.

Keywords: text information retrieval, natural language processing, new word discovery, information extraction

Procedia PDF Downloads 95
180 Combined Analysis of m⁶A and m⁵C Modulators on the Prognosis of Hepatocellular Carcinoma

Authors: Hongmeng Su, Luyu Zhao, Yanyan Qian, Hong Fan

Abstract:

Aim: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors that endanger human health seriously. RNA methylation, especially N6-methyladenosine (m⁶A) and 5-methylcytosine (m⁵C), a crucial epigenetic transcriptional regulatory mechanism, plays an important role in tumorigenesis, progression and prognosis. This research aims to systematically evaluate the prognostic value of m⁶A and m⁵C modulators in HCC patients. Methods: Twenty-four modulators of m⁶A and m⁵C were candidates to analyze their expression level and their contribution to predict the prognosis of HCC. Consensus clustering analysis was applied to classify HCC patients. Cox and LASSO regression were used to construct the risk model. According to the risk score, HCC patients were divided into high-risk and low/medium-risk groups. The clinical pathology factors of HCC patients were analyzed by univariate and multivariate Cox regression analysis. Results: The HCC patients were classified into 2 clusters with significant differences in overall survival and clinical characteristics. Nine-gene risk model was constructed including METTL3, VIRMA, YTHDF1, YTHDF2, NOP2, NSUN4, NSUN5, DNMT3A and ALYREF. It was indicated that the risk score could serve as an independent prognostic factor for patients with HCC. Conclusion: This study constructed a Nine-gene risk model by modulators of m⁶A and m⁵C and investigated its effect on the clinical prognosis of HCC. This model may provide important consideration for the therapeutic strategy and prognosis evaluation analysis of patients with HCC.

Keywords: hepatocellular carcinoma, m⁶A, m⁵C, prognosis, RNA methylation

Procedia PDF Downloads 68
179 Study on the Layout of 15-Minute Community-Life Circle in the State of “Community Segregation” Based on Poi: Shengwei Community and Other Two Communities in Chongqing

Authors: Siyuan Cai

Abstract:

This paper takes community segregation during major infectious diseases as the background, based on the physiological needs and safety needs of citizens during home segregation, and based on the selection of convenient facilities and medical facilities as the main research objects. Based on the POI data of public facilities in Chongqing, the spatial distribution characteristics of the convenience and medical facilities in the 15-minute living circle centered on three neighborhoods in Shapingba, namely Shengwei Community, Anju Commmunity and Fengtian Garden Community, were explored by means of GIS spatial analysis. The results show that the spatial distribution of convenience and medical facilities in this area has significant clustering characteristics, with a point-like distribution pattern of "dense in the west and sparse in the east", and a grouped and multi-polar spatial structure. The spatial structure is multi-polar and has an obvious tendency to the intersections and residential areas with dense pedestrian flow. This study provides a preliminary exploration of the distribution of medical and convenience facilities within the 15-minute living circle of a segregated community, which makes up for the lack of spatial research in this area.

Keywords: ArcGIS, community segregation, convenient facilities; distribution pattern, medical facilities, POI, 15-minute community life circle

Procedia PDF Downloads 120
178 Predicting Destination Station Based on Public Transit Passenger Profiling

Authors: Xuyang Song, Jun Yin

Abstract:

The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.

Keywords: travel behavior, destination prediction, public transit, passenger profiling

Procedia PDF Downloads 19
177 Small and Medium Enterprises Owner-Managers/Entrepreneurs and Their Risk Perception in Songkhla Province, Thailand

Authors: Patraporn Kaewkhanitarak, Weerawan Marangkun

Abstract:

The objective of this study was to explore the establishment and to investigate the relationship between the gender (male or female) of SME owner-managers/ entrepreneurs and their risk perception in business activity. The study examines the data by interviewing 76 SME owner-managers/entrepreneurs’ responses (37 males, 39 females) in manufacturing, finance, human resources and marketing sector in the economic regions of Songkhla province, Thailand. This study found that four tools which were operation, cash flow, staff, and new market were perceived by the SME owner-managers/entrepreneurs at high level. However, male and female SME owner-managers/entrepreneurs perceived some factors such as the age of SME owner-managers/entrepreneurs, the duration of firm operation, type of firm, and type of business without significant differences. In contrast, the gender affected the risk perception about increasing cost, fierce competition, leapfrog development of firm, substandard staff, namely that male and female perceived these factors with significant differences. According to the research, SME owner-managers/entrepreneurs should develop their risk management competency to deal with the risk efficiently. Secondly, SME firms should gather into groups. Furthermore, it was shown that the five key tools used to manage these risky situations were the use of managerial competencies and clustering.

Keywords: risk perception, owner-managers/entrepreneurs, SME, Songkhla, Thailand

Procedia PDF Downloads 435
176 Research on the Influencing Factors of Residents' Energy Consumption and Carbon Emission in Different Types of Communities - Taking Caijia New Town of Chongqing as an Example

Authors: Shuo Lei

Abstract:

In order to explore the influencing factors of residents' energy consumption and carbon emissions in different types of communities, this paper conducted research on residents' household energy consumption and carbon emissions in different types of communities in Caijia New Town, Chongqing. By calculating the carbon emissions of residents' household energy consumption, we analyze the structure and characteristics of the energy consumption of households in each type of community. At the same time, the key influencing factors affecting the carbon emissions of residents' energy consumption in Caijia New Town are analyzed from both social and spatial perspectives. The results of the study show that: (1) different types of neighborhoods have a clustering and locking effect on different types of resident groups, which makes the distribution of household energy consumption and carbon emissions closely related to the characteristics of the residents; (2) social and spatial factors have an impact on the residents' energy consumption and carbon emissions, and there is a significant difference in the carbon emission levels of different types of neighborhoods. Accordingly, an identification method is proposed to recognize the carbon emissions of Caijia New Town and even Chongqing City, which provides technical reference for the sustainable planning of low-carbon communities.

Keywords: community type, residential energy consumption and carbon emissions, residential differentiation, influencing factors, low-carbon community

Procedia PDF Downloads 19
175 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 414
174 Detection and Quantification of Active Pharmaceutical Ingredients as Adulterants in Garcinia cambogia Slimming Preparations Using NIR Spectroscopy Combined with Chemometrics

Authors: Dina Ahmed Selim, Eman Shawky Anwar, Rasha Mohamed Abu El-Khair

Abstract:

A rapid, simple and efficient method with minimal sample treatment was developed for authentication of Garcinia cambogia fruit peel powder, along with determining undeclared active pharmaceutical ingredients (APIs) in its herbal slimming dietary supplements using near infrared spectroscopy combined with chemometrics. Five featured adulterants, including sibutramine, metformin, orlistat, ephedrine, and theophylline are selected as target compounds. The Near infrared spectral data matrix of authentic Garcinia cambogia fruit peel and specimens degraded by intentional contamination with the five selected APIs was subjected to hierarchical clustering analysis to investigate their bundling figure. SIMCA models were established to ensure the genuiness of Garcinia cambogia fruit peel which resulted in perfect classification of all tested specimens. Adulterated samples were utilized for construction of PLSR models based on different APIs contents at minute levels of fraud practices (LOQ < 0.2% w/w).The suggested approach can be applied to enhance and guarantee the safety and quality of Garcinia fruit peel powder as raw material and in dietary supplements.

Keywords: Garcinia cambogia, Quality control, NIR spectroscopy, Chemometrics

Procedia PDF Downloads 77
173 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University

Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat

Abstract:

Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.

Keywords: big data platforms, cloudera manager, Hadoop, MapReduce

Procedia PDF Downloads 357
172 Mass Polarization in Three-Body System with Two Identical Particles

Authors: Igor Filikhin, Vladimir M. Suslov, Roman Ya. Kezerashvili, Branislav Vlahivic

Abstract:

The mass-polarization term of the three-body kinetic energy operator is evaluated for different systems which include two identical particles: A+A+B. The term has to be taken into account for the analysis of AB- and AA-interactions based on experimental data for two- and three-body ground state energies. In this study, we present three-body calculations within the framework of a potential model for the kaonic clusters K−K−p and ppK−, nucleus 3H and hypernucleus 6 ΛΛHe. The systems are well clustering as A+ (A+B) with a ground state energy E2 for the pair A+B. The calculations are performed using the method of the Faddeev equations in configuration space. The phenomenological pair potentials were used. We show a correlation between the mass ratio mA/mB and the value δB of the mass-polarization term. For bosonic-like systems, this value is defined as δB = 2E2 − E3, where E3 is three-body energy when VAA = 0. For the systems including three particles with spin(isospin), the models with average AB-potentials are used. In this case, the Faddeev equations become a scalar one like for the bosonic-like system αΛΛ. We show that the additional energy conected with the mass-polarization term can be decomposite to a sum of the two parts: exchenge related and reduced mass related. The state of the system can be described as the following: the particle A1 is bound within the A + B pair with the energy E2, and the second particle A2 is bound with the pair with the energy E3 − E2. Due to the identity of A particles, the particles A1 and A2 are interchangeable in the pair A + B. We shown that the mass polarization δB correlates with a type of AB potential using the system αΛΛ as an example.

Keywords: three-body systems, mass polarization, Faddeev equations, nuclear interactions

Procedia PDF Downloads 377
171 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism

Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng

Abstract:

Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.

Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition

Procedia PDF Downloads 183
170 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm

Authors: Vahid Bayrami Rad

Abstract:

In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.

Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability

Procedia PDF Downloads 66
169 The Diffusion of Membrane Nanodomains with Specific Ganglioside Composition

Authors: Barbora Chmelova, Radek Sachl

Abstract:

Gangliosides are amphipathic membrane lipids. Due to the composition of bulky oligosaccharide chains containing one or more sialic acids linked to the hydrophobic ceramide base, gangliosides are classified among glycosphingolipids. This unique structure induces a high self-aggregating tendency of gangliosides and, therefore, the formation of nanoscopic clusters called nanodomains. Gangliosides are preferentially present in an extracellular membrane leaflet of all human tissues and thus have an impact on a huge number of biological processes, such as intercellular communication, cell signalling, membrane trafficking, and regulation of receptor activity. Defects in their metabolism, impairment of proper ganglioside function, or changes in their organization lead to serious health conditions such as Alzheimer´s and Parkinson´s diseases, autoimmune diseases, tumour growth, etc. This work mainly focuses on ganglioside organization into nanodomains and their dynamics within the plasma membrane. Current research investigates static ganglioside nanodomains characterization; nevertheless, the information about their diffusion is missing. In our study, fluorescence correlation spectroscopy is implemented together with stimulated emission depletion (STED-FCS), which combines the diffraction-unlimited spatial resolution with high temporal resolution. By comparison of the experiments performed on model vesicles containing 4 % of either GM1, GM2, or GM3 and Monte Carlo simulations of diffusion on the plasma membrane, the description of ganglioside clustering, diffusion of nanodomains, and even diffusion of ganglioside molecules inside investigated nanodomains are described.

Keywords: gangliosides, nanodomains, STED-FCS, flourescence microscopy, membrane diffusion

Procedia PDF Downloads 81
168 Microsatellite-Based Genetic Variations and Relationships among Some Farmed Nile Tilapia Populations in Ghana: Implications for Nile Tilapia Culture

Authors: Acheampong Addo, Emmanuel Odartei Armah, Seth Koranteng Agyakwah, Ruby Asmah, Emmanuel Tetteh-Doku Mensah, Rhoda Lims Diyie, Sena Amewu, Catherine Ragasa, Edward Kofi Abban, Mike Yaw Osei-Atweneboana

Abstract:

The study investigated genetic variation and relationships among populations of Nile tilapia cultured in small-scale fish farms in selected regions of Ghana. A total of 700 samples were collected. All samples were screened with five microsatellite markers and results were analyzed using (Genetic Analysis in Excel), (Molecular and Evolutionary Genetic Analysis software, and Genpop on the web for Heterozygosity and Shannon diversity, (Analysis of Molecular Variance), and (Principal Coordinate Analysis). Fish from the 16 populations (made up of 14 farms and 2 selectively bred populations) clustered into three groups: 7 populations clustered with the GIFT-derived strain, 4 populations clustered with the Akosombo strain, and three populations were in a separate cluster. The clustering pattern indicated groups of different strains of Nile tilapia cultured. Mantel correlation test also showed low genetic variations among the 16 populations hence the need to boost seed quality in order to accelerate aquaculture production in Ghana.

Keywords: microsatellites, small- scale, Nile tilapia, akosombo strain, GIFT strain

Procedia PDF Downloads 166
167 A Quasi Z-Source Based Full Bridge Isolated DC-DC Converter as a Power Module for PV System Connected to HVDC Grid

Authors: Xinke Huang, Huan Wang, Lidong Guo, Changbin Ju, Runbiao Liu, Guoen Cao, Yibo Wang, Honghua Xu

Abstract:

Grid connected photovoltaic (PV) power system is to be developed in the direction of large-scale, clustering. Large-scale PV generation systems connected to HVDC grid have many advantages compared to its counterpart of AC grid, and DC connection is the tendency. DC/DC converter as the most important device in the system, has become one of the hot spots recently. The paper proposes a Quasi Z-Source(QZS) based Boost Full Bridge Isolated DC/DC Converter(BFBIC) topology as a basis power module and combination through input parallel output series(IPOS) method to improve power capacity and output voltage to match with the HVDC grid. The topology has both traditional voltage source and current source advantages, it permit the H-bridge short through and open circuit, which adopt utility duty cycle control and achieved input current and output voltage balancing through input current sharing control strategy. A ±10kV/200kW system model is built in MATLAB/SIMULINK to verify the proposed topology and control strategy.

Keywords: PV Generation System, Cascaded DC/DC converter, HVDC, Quasi Z Source Converter

Procedia PDF Downloads 392
166 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: classification, singing, spectral analysis, vocal emission, vocal register

Procedia PDF Downloads 303
165 The Evolutionary Characteristics and Mechanisms and of Multi-scale Intercity Innovation Enclave Networks in China’s Yangtze River Delta Region

Authors: Yuhua Yang, Yingcheng Li

Abstract:

As a new form of intercity economic cooperation, innovation enclaves have received much attention from governments and scholars in China, which are of great significance in promoting the flow of innovation elements and advancing regional integration. Utilizing inter-city linkages of innovation enclaves within and beyond the Yangtze River Delta Region, we construct multi-scalar innovation enclave networks in 2018 and 2022, and analyze the evolutionary characteristics and underlying mechanisms of the networks. Overall, we find that: (1) The intercity innovation enclave networks have the characteristics of preferential connection and are gradually forming a clear multi-scale and hierarchical structure, with Shanghai, Hangzhou and Nanjing as the core and other cities as the general nodes; (2) The intercity innovation enclave networks exhibit local clustering dominated by geographical proximity connections, and are becoming more noticeable in the effect of distance decay and functionally polycentric as the spatial scale decreases; (3) The intercity innovation enclave networks are influenced by both functional distance and multidimensional proximity. While the innovation potential differences caused by urban attributes internally drive the formation of innovation enclave cooperation, geographic proximity, technological proximity and institutional proximity externally affect the selection of cooperation partners.

Keywords: economic enclave, intercity cooperation, proximity, yangtze river delta region

Procedia PDF Downloads 24
164 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 320
163 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen

Abstract:

Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection

Procedia PDF Downloads 306
162 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives

Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović

Abstract:

In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).

Keywords: benzimidazoles, QSAR, ADME, in silico

Procedia PDF Downloads 375
161 Pyramidal Lucas-Kanade Optical Flow Based Moving Object Detection in Dynamic Scenes

Authors: Hyojin Lim, Cuong Nguyen Khac, Yeongyu Choi, Ho-Youl Jung

Abstract:

In this paper, we propose a simple moving object detection, which is based on motion vectors obtained from pyramidal Lucas-Kanade optical flow. The proposed method detects moving objects such as pedestrians, the other vehicles and some obstacles at the front-side of the host vehicle, and it can provide the warning to the driver. Motion vectors are obtained by using pyramidal Lucas-Kanade optical flow, and some outliers are eliminated by comparing the amplitude of each vector with the pre-defined threshold value. The background model is obtained by calculating the mean and the variance of the amplitude of recent motion vectors in the rectangular shaped local region called the cell. The model is applied as the reference to classify motion vectors of moving objects and those of background. Motion vectors are clustered to rectangular regions by using the unsupervised clustering K-means algorithm. Labeling method is applied to label groups which is close to each other, using by distance between each center points of rectangular. Through the simulations tested on four kinds of scenarios such as approaching motorbike, vehicle, and pedestrians to host vehicle, we prove that the proposed is simple but efficient for moving object detection in parking lots.

Keywords: moving object detection, dynamic scene, optical flow, pyramidal optical flow

Procedia PDF Downloads 349
160 The Design of a Mixed Matrix Model for Activity Levels Extraction and Sub Processes Classification of a Work Project (Case: Great Tehran Electrical Distribution Company)

Authors: Elham Allahmoradi, Bahman Allahmoradi, Ali Bonyadi Naeini

Abstract:

Complex systems have many aspects. A variety of methods have been developed to analyze these systems. The most efficient of these methods should not only be simple, but also provide useful and comprehensive information about many aspects of the system. Matrix methods are considered the most commonly methods used to analyze and design systems. Each matrix method can examine a particular aspect of the system. If these methods are combined, managers can access to more comprehensive and broader information about the system. This study was conducted in four steps. In the first step, a process model of a real project has been extracted through IDEF3. In the second step, activity levels have been attained by writing a process model in the form of a design structure matrix (DSM) and sorting it through triangulation algorithm (TA). In the third step, sub-processes have been obtained by writing the process model in the form of an interface structure matrix (ISM) and clustering it through cluster identification algorithm (CIA). In the fourth step, a mixed model has been developed to provide a unified picture of the project structure through the simultaneous presentation of activities and sub-processes. Finally, the paper is completed with a conclusion.

Keywords: integrated definition for process description capture (IDEF3) method, design structure matrix (DSM), interface structure matrix (ism), mixed matrix model, activity level, sub-process

Procedia PDF Downloads 494
159 Analyzing the Impact of Global Financial Crisis on Interconnectedness of Asian Stock Markets Using Network Science

Authors: Jitendra Aswani

Abstract:

In the first section of this study, impact of Global Financial Crisis (GFC) on the synchronization of fourteen Asian Stock Markets (ASM’s) of countries like Hong Kong, India, Thailand, Singapore, Taiwan, Pakistan, Bangladesh, South Korea, Malaysia, Indonesia, Japan, China, Philippines and Sri Lanka, has been analysed using the network science and its metrics like degree of node, clustering coefficient and network density. Then in the second section of this study by introducing the US stock market in existing network and developing a Minimum Spanning Tree (MST) spread of crisis from the US stock market to Asian Stock Markets (ASM) has been explained. Data used for this study is adjusted the closing price of these indices from 6th January, 2000 to 15th September, 2013 which further divided into three sub-periods: Pre, during and post-crisis. Using network analysis, it is found that Asian stock markets become more interdependent during the crisis than pre and post crisis, and also Hong Kong, India, South Korea and Japan are systemic important stock markets in the Asian region. Therefore, failure or shock to any of these systemic important stock markets can cause contagion to another stock market of this region. This study is useful for global investors’ in portfolio management especially during the crisis period and also for policy makers in formulating the financial regulation norms by knowing the connections between the stock markets and how the system of these stock markets changes in crisis period and after that.

Keywords: global financial crisis, Asian stock markets, network science, Kruskal algorithm

Procedia PDF Downloads 424