Search results for: geothermal gradient anomalies
735 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence
Authors: Chawarat Rotejanaprasert, Andrew Lawson
Abstract:
Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.Keywords: Bayesian, spatial, temporal, surveillance, prospective
Procedia PDF Downloads 312734 Investigating the Atmospheric Phase Distribution of Inorganic Reactive Nitrogen Species along the Urban Transect of Indo Gangetic Plains
Authors: Reema Tiwari, U. C. Kulshrestha
Abstract:
As a key regulator of atmospheric oxidative capacity and secondary aerosol formations, the signatures of reactive nitrogen (Nr) emissions are becoming increasingly evident in the cascade of air pollution, acidification, and eutrophication of the ecosystem. However, their accurate estimates in N budget remains limited by the photochemical conversion processes where occurrence of differential atmospheric residence time of gaseous (NOₓ, HNO₃, NH₃) and particulate (NO₃⁻, NH₄⁺) Nr species becomes imperative to their spatio temporal evolution on a synoptic scale. The present study attempts to quantify such interactions under tropical conditions when low anticyclonic winds become favorable to the advections from west during winters. For this purpose, a diurnal sampling was conducted using low volume sampler assembly where ambient concentrations of Nr trace gases along with their ionic fractions in the aerosol samples were determined with UV-spectrophotometer and ion chromatography respectively. The results showed a spatial gradient of the gaseous precursors with a much pronounced inter site variability (p < 0.05) than their particulate fractions. Such observations were confirmed for their limited photochemical conversions where less than 1 ratios of day and night measurements (D/N) for the different Nr fractions suggested an influence of boundary layer dynamics at the background site. These phase conversion processes were further corroborated with the molar ratios of NOₓ/NOᵧ and NH₃/NHₓ where incomplete titrations of NOₓ and NH₃ emissions were observed irrespective of their diurnal phases along the sampling transect. Their calculations with equilibrium based approaches for an NH₃-HNO₃-NH₄NO₃ system, on the other hand, were characterized by delays in equilibrium attainment where plots of their below deliquescence Kₘ and Kₚ values with 1000/T confirmed the role of lower temperature ranges in NH₄NO₃ aerosol formation. These results would help us in not only resolving the changing atmospheric inputs of reduced (NH₃, NH₄⁺) and oxidized (NOₓ, HNO₃, NO₃⁻) Nr estimates but also in understanding the dependence of Nr mixing ratios on their local meteorological conditions.Keywords: diurnal ratios, gas-aerosol interactions, spatial gradient, thermodynamic equilibrium
Procedia PDF Downloads 128733 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 81732 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases
Abstract:
Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases
Procedia PDF Downloads 73731 Analysis of the Black Sea Gas Hydrates
Authors: Sukru Merey, Caglar Sinayuc
Abstract:
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.Keywords: CH4 hydrate, Black Sea hydrates, gas hydrate experiments, HydrateResSim
Procedia PDF Downloads 624730 Effectiveness of Adrenal Venous Sampling in the Management of Primary Aldosteronism: Single Centered Cohort Study at a Tertiary Care Hospital in Sri Lanka
Authors: Balasooriya B. M. C. M., Sujeeva N., Thowfeek Z., Siddiqa Omo, Liyanagunawardana J. E., Jayawardana Saiu, Manathunga S. S., Katulanda G. W.
Abstract:
Introduction and objectives: Adrenal venous sampling (AVS) is the gold standard to discriminate unilateral primary aldosteronism (UPA) from bilateral disease (BPA). AVS is technically demanding and only performed in a limited number of centers worldwide. To the best of our knowledge, Except for one study conducted in India, no other research studies on this area have been conducted in South Asia. This study aimed to evaluate the effectiveness of AVS in the management of primary aldosteronism. Methods: A total of 32 patients who underwent AVS at the National Hospital of Sri Lanka from April 2021 to April 2023 were enrolled. Demographic, clinical and laboratory data were obtained retrospectively. A procedure was considered successful when adequate cannulation of both adrenal veins was demonstrated. Cortisol gradient across the adrenal vein (AV) and the peripheral vein was used to establish the success of venous cannulation. Lateralization was determined by the aldosterone gradient between the two sides. Continuous and categorical variables were summarized with mean, SD, and proportions, respectively. The mean and standard deviation of the contralateral suppression index (CSI) were estimated with an intercept-only Bayesian inference model. Results: Of the 32 patients, the average age was 52.47 +26.14 and 19 (59.4%) were males. Both AVs were successfully cannulated in 12 (37.5%). Among them, lateralization was demonstrated in 11(91.7%), and one was diagnosed as a bilateral disease. There were no total failures. Right AV cannulation was unsuccessful in 18 (56.25%), of which lateralization was demonstrated in 9 (50%), and others were inconclusive. Left AV cannulation was unsuccessful only in 2 (6.25%); one was lateralized, and the other remained inconclusive. The estimated mean of the CSI was 0.33 (89% credible interval 0.11-0.86). Seven patients underwent unilateral adrenalectomy and demonstrated significant improvement in blood pressure during follow-up. Two patients await surgery. Others were treated medically. Conclusions: Despite failure due to procedural difficulties, AVS remained useful in the management of patients with PA. Moreover, the success of the procedure needs experienced hands and advanced equipment to achieve optimal outcomes in PA.Keywords: adrenal venous sampling, lateralization, contralateral suppression index, primary aldosteronism
Procedia PDF Downloads 66729 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges
Authors: Francesco Morgan Bono, Simone Cinquemani
Abstract:
This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.Keywords: structural health monitoring, dynamic models, sindy, railway bridges
Procedia PDF Downloads 45728 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 76727 Digitalization in Aggregate Quarries
Authors: José Eugenio Ortiz, Pierre Plaza, Josefa Herrero, Iván Cabria, José Luis Blanco, Javier Gavilanes, José Ignacio Escavy, Ignacio López-Cilla, Virginia Yagüe, César Pérez, Silvia Rodríguez, Jorge Rico, Cecilia Serrano, Jesús Bernat
Abstract:
The development of Artificial Intelligence services in mining processes, specifically in aggregate quarries, is facilitating automation and improving numerous aspects of operations. Ultimately, AI is transforming the mining industry by improving efficiency, safety and sustainability. With the ability to analyze large amounts of data and make autonomous decisions, AI offers great opportunities to optimize mining operations and maximize the economic and social benefits of this vital industry. Within the framework of the European DIGIECOQUARRY project, various services were developed for the identification of material quality, production estimation, detection of anomalies and prediction of consumption and production automatically with good results.Keywords: aggregates, artificial intelligence, automatization, mining operations
Procedia PDF Downloads 89726 The Use of Image Processing Responses Tools Applied to Analysing Bouguer Gravity Anomaly Map (Tangier-Tetuan's Area-Morocco)
Authors: Saad Bakkali
Abstract:
Image processing is a powerful tool for the enhancement of edges in images used in the interpretation of geophysical potential field data. Arial and terrestrial gravimetric surveys were carried out in the region of Tangier-Tetuan. From the observed and measured data of gravity Bouguer gravity anomalies map was prepared. This paper reports the results and interpretations of the transformed maps of Bouguer gravity anomaly of the Tangier-Tetuan area using image processing. Filtering analysis based on classical image process was applied. Operator image process like logarithmic and gamma correction are used. This paper also present the results obtained from this image processing analysis of the enhancement edges of the Bouguer gravity anomaly map of the Tangier-Tetuan zone.Keywords: bouguer, tangier, filtering, gamma correction, logarithmic enhancement edges
Procedia PDF Downloads 422725 Contribution to the Compliance Study of Drugs for Herbal Teas Sold in Pharmacies
Authors: Mahiout Tassadit
Abstract:
As part of the study of a compliance and quality aspect concerning one of the plant-based products: drugs for herbal teas sold in pharmacies, a survey targeting: the general population (100 people of different age groups) as well as dispensary pharmacists (40 pharmacists from rural or urban areas) of the wilaya of Tizi-Ouzou (central Algeria) was carried out followed by a macroscopic and microscopic analysis of 4 samples of the said drugs, the survey carried out using two questionnaires, the data of which were collected and then analyzed, made it possible to estimate the population's use of herbal products and medicinal plants, and the place occupied by herbal medicine in our pharmacies. The second part made it possible to control and evaluate the information present on the packaging of drugs for herbal teas; anomalies concerning the packaging, labeling and composition of these products were noted. As a result, it is more than necessary to establish regulations for this type of product; the community pharmacist again places himself as an essential element for the proper dispensation of these remedies.Keywords: drugs, herbal teas, macroscopic analysis, microscopic analysis
Procedia PDF Downloads 84724 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography
Authors: Y. Laib Dit Leksir, S. Bouhouche
Abstract:
Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment
Procedia PDF Downloads 477723 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 149722 Laser Beam Bending via Lenses
Authors: Remzi Yildirim, Fatih. V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin
Abstract:
This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.Keywords: laser, bending, lens, light, nonlinear optics
Procedia PDF Downloads 489721 Laser Light Bending via Lenses
Authors: Remzi Yildirim, Fatih V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin
Abstract:
This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.Keywords: laser, bending, lens, light, nonlinear optics
Procedia PDF Downloads 704720 Major Mechanisms of Atmospheric Moisture Transport and Their Role in Precipitation Extreme Events in the Amazonia
Authors: Luis Gimeno, Rosmeri da Rocha, Raquel Nieto, Tercio Ambrizzi, Alex Ramos, Anita Drumond
Abstract:
The transport of moisture from oceanic sources to the continents represents the atmospheric branch of the water cycle, forming the connection between evaporation from the ocean and precipitation over the continents. In this regard two large scale dynamical/meteorological structures appear to play a key role, namely Low Level Jet (LLJ) systems and Atmospheric Rivers (ARs). The former are particularly important in tropical and subtropical regions; the latter is mostly confined to extratropical regions. A key question relates to the anomalies in the transport of moisture observed during natural hazards related to extremes of precipitation (i.e., drought or wet spells). In this study we will be focused on these two major atmospheric moisture transport mechanisms (LLJs and ARs) and its role in precipitation extreme events (droughts and wet spells) in the Amazonia paying particular attention to i) intensification (decreasing) of moisture transport by them and its role in wet spells (droughts), and ii) changes in their positions and occurrence with associated flooding and wet spells.Keywords: droughts, wet spells, amazonia, LLJs, atmospheric rivers
Procedia PDF Downloads 302719 The Effect of Degraded Shock Absorbers on the Safety-Critical Stationary and Non-Stationary Lateral Dynamics of Passenger Cars
Authors: Tobias Schramm, Günther Prokop
Abstract:
The average age of passenger cars is rising steadily around the world. Older vehicles are more sensitive to the degradation of chassis components. A higher age and a higher mileage of passenger cars correlate with an increased failure rate of vehicle shock absorbers. The most common degradation mechanism of vehicle shock absorbers is the loss of oil and gas. It is not yet fully understood how the loss of oil and gas in twin-tube shock absorbers affects the lateral dynamics of passenger cars. The aim of this work is to estimate the effect of degraded twin-tube shock absorbers of passenger cars on their safety-critical lateral dynamics. A characteristic curve-based five-mass full vehicle model and a semi-physical phenomenological shock absorber model were set up, parameterized and validated. The shock absorber model is able to reproduce the damping characteristics of vehicle twin-tube shock absorbers with oil and gas loss for various excitations. The full vehicle model was used to simulate stationary cornering and steering wheel angle step maneuvers on road classes A to D. The simulations were carried out in a realistic parameter space in order to demonstrate the influence of various vehicle characteristics on the effect of degraded shock absorbers. As a result, it was shown that degraded shock absorbers have a negative effect on the understeer gradient of vehicles. For stationary lateral dynamics, degraded shock absorbers for high road excitations reduce the maximum lateral accelerations. Degraded rear axle shock absorbers can change the understeer gradient of a vehicle in the direction of oversteer. Degraded shock absorbers also lead to increased rolling angles. Furthermore, degraded shock absorbers have a major impact on driving stability during steering wheel angle steps. Degraded rear axle shock absorbers, in particular, can lead to unstable handling. Especially the tire stiffness, the unsprung mass and the stabilizer stiffness influence the effect of degraded shock absorbers on the lateral dynamics of passenger cars.Keywords: driving dynamics, numerical simulation, road safety, shock absorber degradation, stationary and nonstationary lateral dynamics.
Procedia PDF Downloads 16718 Evaluation of Fetal brain using Magnetic Resonance Imaging
Authors: Mahdi Farajzadeh Ajirlou
Abstract:
Ordinary fetal brain development can be considered by in vivo attractive reverberation imaging (MRI) from the 18th gestational week (GW) to term and depends fundamentally on T2-weighted and diffusion-weighted (DW) arrangements. The foremost commonly suspected brain pathologies alluded to fetal MRI for assist assessment are ventriculomegaly, lost corpus callosum, and anomalies of the posterior fossa. Brain division could be a crucial to begin with step in neuroimage examination. Within the case of fetal MRI it is especially challenging and critical due to the subjective introduction of the hatchling, organs that encompass the fetal head, and irregular fetal movement. A few promising strategies have been proposed but are constrained in their execution in challenging cases and in realtime division. Fetal MRI is routinely performed on a 1.5-Tesla scanner without maternal or fetal sedation. The mother lies recumbent amid the course of the examination, the length of which is ordinarily 45 to 60 minutes. The accessibility and continuous approval of standardizing fetal brain development directions will give critical devices for early discovery of impeded fetal brain development upon which to oversee high-risk pregnancies.Keywords: brain, fetal, MRI, imaging
Procedia PDF Downloads 79717 The Role of the Internal Audit Unit in Detecting and Preventing Fraud at Public Universities in West Java, Indonesia
Authors: Fury Khristianty Fitriyah
Abstract:
This study aims to identify the extent of the role of the Satuan Pengawas Intern (Internal Audit Unit) in detecting and preventing fraud in public universities in West Java under the Ministry of Research, Technology and Higher Education. The research method applied was a qualitative case study approach, while the unit of analysis for this study is the Internal Audit Unit at each public university. Results of this study indicate that the Internal Audit Unit is able to detect and prevent fraud within a public university environment by means of red flags to mark accounting anomalies. These stem from inaccurate budget planning that prompts inappropriate use of funds, exacerbated by late disbursements of funds, which potentially lead to fictitious transactions, and discrepancies in recording state-owned assets into a state property management system (SIMAK BMN), which, if not conducted properly, potentially causes loss to the state.Keywords: governance, internal control, fraud, public university
Procedia PDF Downloads 286716 Spectral Anomaly Detection and Clustering in Radiological Search
Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk
Abstract:
Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.Keywords: radiological search, radiological mapping, radioactivity, radiation protection
Procedia PDF Downloads 696715 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India
Authors: Jenifer Alam, Rima Chatterjee
Abstract:
Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.Keywords: Eaton, strain, stress, poroelastic model
Procedia PDF Downloads 216714 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational
Authors: Hamza Rekab Djabri, Salah Daoud
Abstract:
The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN
Procedia PDF Downloads 100713 Enhancing Code Security with AI-Powered Vulnerability Detection
Authors: Zzibu Mark Brian
Abstract:
As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.Keywords: AI, machine language, cord security, machine leaning
Procedia PDF Downloads 40712 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 267711 A Review of Energy in the Democratic Republic of Congo
Authors: Kanzumba Kusakana
Abstract:
The Democratic Republic of Congo (DRC) is currently experiencing a general energy crisis due to lack of proper investment and management in the energy sector. 93, 6% of the country is highly dependent on wood fuels as main source of energy having severe impacts such as deforestation and general degradation of the environment. On the other hand, the major share of the electricity produced mainly from ill-conditioned hydro and thermal power stations is principally used to supply the industrial sector as well as very few urban areas. Nevertheless, DRC possesses huge potential in renewable resources such as hydropower, biomass, methane gas, solar geothermal and moderate wind potential that can be used for energy generation. Recently the country has initiated projects to build decentralized micro hydropower station to supply remotes and isolated areas; to rehabilitate its existent main hydropower plants and transmission lines as well as to extend its current generation capacity by building new hydropower stations able to respond to a major part of the African continent energy needs. This paper presents a comprehensive review of current energy resources as well as of the electricity situation in DRC. Recent energy projects, the energy policy as well as the energy challenges in the DRC are also presented.Keywords: energy, biomass, hydro power, renewable energy, energy policy, Democratic Republic of Congo
Procedia PDF Downloads 337710 Dosimetric Comparison of Conventional Plans versus Three Dimensional Conformal Simultaneously Integrated Boost Plans
Authors: Shoukat Ali, Amjad Hussain, Latif-ur-Rehman, Sehrish Inam
Abstract:
Radiotherapy plays an important role in the management of cancer patients. Approximately 50% of the cancer patients receive radiotherapy at one point or another during the course of treatment. The entire radiotherapy treatment of curative intent is divided into different phases, depending on the histology of the tumor. The established protocols are useful in deciding the total dose, fraction size, and numbers of phases. The objective of this study was to evaluate the dosimetric differences between the conventional treatment protocols and the three-dimensional conformal simultaneously integrated boost (SIB) plans for three different tumors sites (i.e. bladder, breast, and brain). A total of 30 patients with brain, breast and bladder cancers were selected in this retrospective study. All the patients were CT simulated initially. The primary physician contoured PTV1 and PTV2 in the axial slices. The conventional doses prescribed for brain and breast is 60Gy/30 fractions, and 64.8Gy/36 fractions for bladder treatment. For the SIB plans biological effective doses (BED) were calculated for 25 fractions. The two conventional (Phase I and Phase II) and a single SIB plan for each patient were generated on Eclipse™ treatment planning system. Treatment plans were compared and analyzed for coverage index, conformity index, homogeneity index, dose gradient and organs at risk doses.In both plans 95% of PTV volume received a minimum of 95% of the prescribe dose. Dose deviation in the optic chiasm was found to be less than 0.5%. There is no significant difference in lung V20 and heart V30 in the breast plans. In the rectum plans V75%, V50% and V25% were found to be less than 1.2% different. Deviation in the tumor coverage, conformity and homogeneity indices were found to be less than 1%. SIB plans with three dimensional conformal radiotherapy technique reduce the overall treatment time without compromising the target coverage and without increasing dose to the organs at risk. The higher dose per fraction may increase the late effects to some extent. Further studies are required to evaluate the late effects with the intention of standardizing the SIB technique for practical implementation.Keywords: coverage index, conformity index, dose gradient, homogeneity index, simultaneously integrated boost
Procedia PDF Downloads 478709 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection
Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt
Abstract:
Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor
Procedia PDF Downloads 154708 Structural and Electronic Properties of the Rock-salt BaxSr1−xS Alloys
Authors: B. Bahloul, K. Babesse, A. Dkhira, Y. Bahloul, L. Amirouche
Abstract:
Structural and electronic properties of the rock-salt BaxSr1−xS are calculated using the first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA). The calculated lattice parameters at equilibrium volume for x=0 and x=1 are in good agreement with the literature data. The BaxSr1−xS alloys are found to be an indirect band gap semiconductor. Moreoever, for the composition (x) ranging between [0-1], we think that our results are well discussed and well predicted.Keywords: semiconductor, Ab initio calculations, rocksalt, band structure, BaxSr1−xS
Procedia PDF Downloads 397707 Electrical Tortuosity across Electrokinetically Remediated Soils
Authors: Waddah S. Abdullah, Khaled F. Al-Omari
Abstract:
Electrokinetic remediation is one of the most influential and effective methods to decontaminate contaminated soils. Electroosmosis and electromigration are the processes of electrochemical extraction of contaminants from soils. The driving force that causes removing contaminants from soils (electroosmosis process or electromigration process) is voltage gradient. Therefore, the electric field distribution throughout the soil domain is extremely important to investigate and to determine the factors that help to establish a uniform electric field distribution in order to make the clean-up process work properly and efficiently. In this study, small-sized passive electrodes (made of graphite) were placed at predetermined locations within the soil specimen, and the voltage drop between these passive electrodes was measured in order to observe the electrical distribution throughout the tested soil specimens. The electrokinetic test was conducted on two types of soils; a sandy soil and a clayey soil. The electrical distribution throughout the soil domain was conducted with different tests properties; and the electrical field distribution was observed in three-dimensional pattern in order to establish the electrical distribution within the soil domain. The effects of density, applied voltages, and degree of saturation on the electrical distribution within the remediated soil were investigated. The distribution of the moisture content, concentration of the sodium ions, and the concentration of the calcium ions were determined and established in three-dimensional scheme. The study has shown that the electrical conductivity within soil domain depends on the moisture content and concentration of electrolytes present in the pore fluid. The distribution of the electrical field in the saturated soil was found not be affected by its density. The study has also shown that high voltage gradient leads to non-uniform electric field distribution within the electroremediated soil. Very importantly, it was found that even when the electric field distribution is uniform globally (i.e. between the passive electrodes), local non-uniformity could be established within the remediated soil mass. Cracks or air gaps formed due to temperature rise (because of electric flow in low conductivity regions) promotes electrical tortuosity. Thus, fracturing or cracking formed in the remediated soil mass causes disconnection of electric current and hence, no removal of contaminant occur within these areas.Keywords: contaminant removal, electrical tortuousity, electromigration, electroosmosis, voltage distribution
Procedia PDF Downloads 421706 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 34