Search results for: forest cover-type dataset
1629 Valorization of a Forest Waste, Modified P-Brutia Cones, by Biosorption of Methyl Geen
Authors: Derradji Chebli, Abdallah Bouguettoucha, Abdelbaki Reffas Khalil Guediri, Abdeltif Amrane
Abstract:
The removal of Methyl Green dye (MG) from aqueous solutions using modified P-brutia cones (PBH and PBN), has been investigated work. The physical parameters such as pH, temperature, initial MG concentration, ionic strength are examined in batch experiments on the sorption of the dye. Adsorption removal of MG was conducted at natural pH 4.5 because the dye is only stable in the range of pH 3.8 to 5. It was observed in experiments that the P-brutia cones treated with NaOH (PBN) exhibited high affinity and adsorption capacity compared to the MG P-brutia cones treated with HCl (PBH) and biosorption capacity of modified P-brutia cones (PBN and PBH) was enhanced by increasing the temperature. This is confirmed by the thermodynamic parameters (ΔG° and ΔH°) which show that the adsorption of MG was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase in the randomness for both adsorbent (PBN and PBH) during the adsorption process. The kinetic model pseudo-first order, pseudo-second order, and intraparticle diffusion coefficient were examined to analyze the sorption process; they showed that the pseudo-second-order model is the one that best describes the adsorption process (MG) on PBN and PBH with a correlation coefficient R²> 0.999. The ionic strength has shown that it has a negative impact on the adsorption of MG on two supports. A reduction of 68.5% of the adsorption capacity for a value Ce=30 mg/L was found for the PBH, while the PBN did not show a significant influence of the ionic strength on adsorption especially in the presence of NaCl. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P-brutia cones with a correlation factor R²>0.999. The capacity adsorption of P-brutia cones, was confirmed for the removal of a dye, MG, from aqueous solution. We note also that P-brutia cones is a material very available in the forest and low-cost biomaterialKeywords: adsorption, p-brutia cones, forest wastes, dyes, isotherm
Procedia PDF Downloads 3791628 Examining the Role of Tree Species in Absorption of Heavy Metals; Case Study: Abidar Forest Park
Authors: Jahede Tekeykhah, Seyed Mohsen Hossini, Gholamali Jalali
Abstract:
Industrial and traffic activities cause large amounts of heavy metals enter into the atmosphere and the use of plant species can be effective in assessing and reducing air pollution by metals. This study aimed to investigate the adsorption level of heavy metals in leaves of Fraxinus rotundifolia, Robinia, Platanus orientalis, Platycladus orientalis and Pinus eldarica trees in Abidar forest park. For this purpose, samples leaves of the trees were prepared from the contaminated and control areas in each region in 3 stations with 3 replicates in mid-August and finally 90 samples were sent to the laboratory. Then, the concentrations of heavy metals were measured by graphite furnace. To do this, factorial experiment based on a completely randomized design with two factors of location on two levels (contaminated area and control area) and the factor of species on five levels (Fraxinus rotundifolia, Robinia, Platanus orientalis, Platycladus orientalis and Pinus eldarica) with three replications was used. The analysis of collected data was performed by SPSS software and Duncan's multiple range test was used to compare the means. The results showed that the accumulation of all metals in the leaves of most species in the infected area with a significant difference at 95% level was higher than the control area. In the contaminated area, with a significant difference at 5% level, the highest accumulations of metals were observed as the following: lead, cadmium, zinc and manganese in Platanus orientalis, nickel in Fraxinus rotundifolia and copper in Platycladus orientalis.Keywords: airborne, tree species, heavy metals, absorption, Abidar Forest Park
Procedia PDF Downloads 3111627 Effect of Human Use, Season and Habitat on Ungulate Densities in Kanha Tiger Reserve
Authors: Neha Awasthi, Ujjwal Kumar
Abstract:
Density of large carnivores is primarily dictated by the density of their prey. Therefore, optimal management of ungulates populations permits harbouring of viable large carnivore populations within protected areas. Ungulate density is likely to respond to regimes of protection and vegetation types. This has generated the need among conservation practitioners to obtain strata specific seasonal species densities for habitat management. Kanha Tiger Reserve (KTR) of 2074 km2 area comprises of two distinct management strata: The core (940 km2), devoid of human settlements and buffer (1134 km2) which is a multiple use area. In general, four habitat strata, grassland, sal forest, bamboo-mixed forest and miscellaneous forest are present in the reserve. Stratified sampling approach was used to access a) impact of human use and b) effect of habitat and season on ungulate densities. Since 2013 to 2016, ungulates were surveyed in winter and summer of each year with an effort of 1200 km walk in 200 spatial transects distributed throughout Kanha Tiger Reserve. We used a single detection function for each species within each habitat stratum for each season for estimating species specific seasonal density, using program DISTANCE. Our key results state that the core area had 4.8 times higher wild ungulate biomass compared with the buffer zone, highlighting the importance of undisturbed area. Chital was found to be most abundant, having a density of 30.1(SE 4.34)/km2 and contributing 33% of the biomass with a habitat preference for grassland. Unlike other ungulates, Gaur being mega herbivore, showed a major seasonal shift in density from bamboo-mixed and sal forest in summer to miscellaneous forest in winter. Maximum diversity and ungulate biomass were supported by grassland followed by bamboo-mixed habitat. Our study stresses the importance of inviolate core areas for achieving high wild ungulate densities and for maintaining populations of endangered and rare species. Grasslands accounts for 9% of the core area of KTR maintained in arrested stage of succession, therefore enhancing this habitat would maintain ungulate diversity, density and cater to the needs of only surviving population of the endangered barasingha and grassland specialist the blackbuck. We show the relevance of different habitat types for differential seasonal use by ungulates and attempt to interpret this in the context of nutrition and cover needs by wild ungulates. Management for an optimal habitat mosaic that maintains ungulate diversity and maximizes ungulate biomass is recommended.Keywords: distance sampling, habitat management, ungulate biomass, diversity
Procedia PDF Downloads 3031626 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 5381625 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 4651624 A Preliminary Survey on Butterfly Fauna at Rajagala Archaeological Site, Ampara, Sri Lanka
Authors: D. Eranda N. Mandawala, P. A. D. Mokshi V. Perera
Abstract:
The RajagalaArchaeological site (RAS) is located 26 km from Ampara town (7º29'25.22" N, 81º36'59.05" E) accessible through the Ampara-Uhana-MahaOya highway of the Eastern province of Sri Lanka. This site has recently been added to the tentative list of UNESCO world heritage site and is also a forest reserve. This dry zone forest consists of tropical mixed evergreen vegetation and scrublands on a rocky outcrop of elevation of about 350 meters above mean sea level. It is also scattered with several ponds of differing sizes on rocky outcrops, rocky cliffs, and about 50 cave dwellings. No comprehensive biodiversity survey of any sorts has been conducted at the RAS so far. Therefore, a preliminary survey was conducted to determine its butterfly fauna diversity. An opportunistic Visual Encounter Survey method was used to observe various butterfly species during the morning between 8:00am-12:00noon and in the evening between 2:00-6:00pm on 3 site visits in October 2017, February 2018, and November 2019. All encountered species were photographed using a Nikon D750 camera with Sigma 105mm f/2.8 EX DG OS HSM macro lens, and field guide books were used to identify them. Sri Lanka is home to 248 species of butterflies, of which are 26 are endemic. At RAS, we observed a total of 39 species (15%) of butterflies belonging to 5 Lepidoptera families. Out of these, one endemic species(4%) and 9 endemic subspecieswere also identified. The former was Troidesdarsius, also known as the Sri Lanka birdwing which is the national butterfly and the largest butterfly in Sri Lanka, and the latter were Plains cupid (Chiladespandavalanka), Yamfly (Loxuraatymnus arcuate), Common Cerulean (Jamidescelenotissama), Tawny Rajah(Charaxespsaphonpsaphon), Tamil Yeoman(Cirrochroathaislanka), Angled Castor(Ariadne ariadneminorata), GladeyeBushbrown(Mycalesispatnia patina), Common Crow (Euploea core asela)and Blue Mormon (Papiliopolymnestorparinda). The endemic subspecies belonged to 3 Lepidoptera families (3from Lycaenidae, 5 from Nymphalidae, and 1 from Papilionidae family). Anthropogenic activities such as unauthorized cattle farming, forest clearance, and man-made forest fires currently threaten this site. If such trends continue, it may lead to the reduction of butterfly fauna diversity within this area in the future.Keywords: lepidoptera, rajagala, Sri Lanka birdwing, endemic
Procedia PDF Downloads 1621623 Analysing the Perception of Climate Hazards on Biodiversity Conservation in Mining Landscapes within Southwestern Ghana
Authors: Salamatu Shaibu, Jan Hernning Sommer
Abstract:
Integrating biodiversity conservation practices in mining landscapes ensures the continual provision of various ecosystem services to the dependent communities whilst serving as ecological insurance for corporate mining when purchasing reclamation security bonds. Climate hazards such as long dry seasons, erratic rainfall patterns, and extreme weather events contribute to biodiversity loss in addition to the impact due to mining. Both corporate mining and mine-fringe communities perceive the effect of climate on biodiversity from the context of the benefits they accrue, which motivate their conservation practices. In this study, pragmatic approaches including semi-structured interviews, field visual observation, and review were used to collect data on corporate mining employees and households of fringing communities in the southwestern mining hub. The perceived changes in the local climatic conditions and the consequences on environmental management practices that promote biodiversity conservation were examined. Using a thematic content analysis tool, the result shows that best practices such as concurrent land rehabilitation, reclamation ponds, artificial wetlands, land clearance, and topsoil management are directly affected by prolonging long dry seasons and erratic rainfall patterns. Excessive dust and noise generation directly affect both floral and faunal diversity coupled with excessive fire outbreaks in rehabilitated lands and nearby forest reserves. Proposed adaptive measures include engaging national conservation authorities to promote reforestation projects around forest reserves. National government to desist from using permit for mining concessions in forest reserves, engaging local communities through educational campaigns to control forest encroachment and burning, promoting community-based resource management to promote community ownership, and provision of stricter environmental legislation to compel corporate, artisanal, and small scale mining companies to promote biodiversity conservation.Keywords: biodiversity conservation, climate hazards, corporate mining, mining landscapes
Procedia PDF Downloads 2191622 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: facial expression recognittion, image preprocessing, deep learning, CNN
Procedia PDF Downloads 1431621 Preliminary Study of Medicinal Plants in Phu Langka National Park, Nakhon Phanom Province, Thailand
Authors: W. Chatan, W. Promprom
Abstract:
Phu Langka National Park is located in Nakhon Phanom Province, the Northeast of Thailand. It contains about 50 km2 of one mountain and three types of forest including deciduous dipterocarp, mixed deciduous and dry evergreen forests. It was interesting area because of that there were some local ethnic groups living around the national park and most people use plants in this area for their life. The objective of this research is to preliminary survey of the use of medicinal plants from this area by local ethnic groups living around the national park. Colour photographs of each species were prepared. In addition, ecology, distribution in the study area, utilization and vernacular names were provided. The result showed that sixteen species of medicinal plant species were found and most plants were used for digestive system and wound. The voucher specimens were deposited in the Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation (BKF), Thailand.Keywords: diversity, ethnobotany, ethnophamacology, taxonomy, utilization
Procedia PDF Downloads 1971620 Sourcing and Compiling a Maltese Traffic Dataset MalTra
Authors: Gabriele Borg, Alexei De Bono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale.Keywords: Big Data, vehicular traffic, traffic management, mobile data patterns
Procedia PDF Downloads 1091619 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 1361618 Balance of Natural Resources to Manage Land Use Changes in Subosukawonosraten Area
Authors: Sri E. Wati, D. Roswidyatmoko, N. Maslahatun, Gunawan, Andhika B. Taji
Abstract:
Natural resource is the main sources to fulfill human needs. Its utilization must consider not only human prosperity but also sustainability. Balance of natural resources is a tool to manage natural wealth and to control land use change. This tool is needed to organize land use planning as stated on spatial plan in a certain region. Balance of natural resources can be calculated by comparing two-series of natural resource data obtained at different year. In this case, four years data period of land and forest were used (2010 and 2014). Land use data were acquired through satellite image interpretation and field checking. By means of GIS analysis, its result was then assessed with land use plan. It is intended to evaluate whether existing land use is suitable with land use plan. If it is improper, what kind of efforts and policies must be done to overcome the situation. Subosukawonosraten is rapid developed areas in Central Java Province. This region consists of seven regencies/cities which are Sukoharjo Regency, Boyolali Regency, Surakarta City, Karanganyar Regency, Wonogiri Regency, Sragen Regency, and Klaten Regency. This region is regarding to several former areas under Karasidenan Surakarta and their location is adjacent to Surakarta. Balance of forest resources show that width of forest area is not significantly changed. Some land uses within the area are slightly changed. Some rice field areas are converted into settlement (0.03%) whereas water bodies become vacant areas (0.09%). On the other hand, balance of land resources state that there are many land use changes in this region. Width area of rice field decreases 428 hectares and more than 50% of them have been transformed into settlement area and 11.21% is converted into buildings such as factories, hotels, and other infrastructures. It occurs mostly in Sragen, Sukoharjo, and Karanganyar Regency. The results illustrate that land use change in this region is mostly influenced by increasing of population number. Some agricultural lands have been converted into built-up area since demand of settlement, industrial area, and other infrastructures also increases. Unfortunately, recent utilization of more than a half of total area is not appropriate with land use plan declared in spatial planning document. It means, local government shall develop a strict regulation and law enforcement related to any violation in land use management.Keywords: balance, forest, land, spatial plan
Procedia PDF Downloads 3191617 Community Perception towards the Major Drivers for Deforestation and Land Degradation of Choke Afro-alpine and Sub-afro alpine Ecosystem, Northwest Ethiopia
Authors: Zelalem Teshager
Abstract:
The Choke Mountains have several endangered and endemic wildlife species and provide important ecosystem services. Despite their environmental importance, the Choke Mountains are found in dangerous conditions. This raised the need for an evaluation of the community's perception of deforestation and its major drivers and suggested possible solutions in the Choke Mountains of northwestern Ethiopia. For this purpose, household surveys, key informant interviews, and focus group discussions were used. A total sample of 102 informants was used for this survey. A purposive sampling technique was applied to select the participants for in-depth interviews and focus group discussions. Both qualitative and quantitative data analyses were used. Computation of descriptive statistics such as mean, percentages, frequency, tables, figures, and graphs was applied to organize, analyze, and interpret the study. This study assessed smallholder agricultural land expansion, Fuel wood collection, population growth; encroachment, free grazing, high demand of construction wood, unplanned resettlement, unemployment, border conflict, lack of a strong forest protecting system, and drought were the serious causes of forest depletion reported by local communities. Loss of land productivity, Soil erosion, soil fertility decline, increasing wind velocity, rising temperature, and frequency of drought were the most perceived impacts of deforestation. Most of the farmers have a holistic understanding of forest cover change. Strengthening forest protection, improving soil and water conservation, enrichment planting, awareness creation, payment for ecosystem services, and zero grazing campaigns were mentioned as possible solutions to the current state of deforestation. Applications of Intervention measures, such as animal fattening, beekeeping, and fruit production can contribute to decreasing the deforestation causes and improve communities’ livelihood. In addition, concerted efforts of conservation will ensure that the forests’ ecosystems contribute to increased ecosystem services. The major drivers of deforestation should be addressed with government intervention to change dependency on forest resources, income sources of the people, and institutional set-up of the forestry sector. Overall, further reduction in anthropogenic pressure is urgent and crucial for the recovery of the afro-alpine vegetation and the interrelated endangered wildlife in the Choke Mountains.Keywords: choke afro-alpine, deforestation, drivers, intervention measures, perceptions
Procedia PDF Downloads 551616 Global Based Histogram for 3D Object Recognition
Authors: Somar Boubou, Tatsuo Narikiyo, Michihiro Kawanishi
Abstract:
In this work, we address the problem of 3D object recognition with depth sensors such as Kinect or Structure sensor. Compared with traditional approaches based on local descriptors, which depends on local information around the object key points, we propose a global features based descriptor. Proposed descriptor, which we name as Differential Histogram of Normal Vectors (DHONV), is designed particularly to capture the surface geometric characteristics of the 3D objects represented by depth images. We describe the 3D surface of an object in each frame using a 2D spatial histogram capturing the normalized distribution of differential angles of the surface normal vectors. The object recognition experiments on the benchmark RGB-D object dataset and a self-collected dataset show that our proposed descriptor outperforms two others descriptors based on spin-images and histogram of normal vectors with linear-SVM classifier.Keywords: vision in control, robotics, histogram, differential histogram of normal vectors
Procedia PDF Downloads 2791615 Mite Soil as Biological Indicators the Quality of the Soil in the Forested Area of the Coast of Algeria
Authors: Soumeya Fekkoun, Djelloul Ghezali, Doumandji Salaheddine
Abstract:
The majority of the mite soil contributes to decompose the organic matter in the soil, the richness or poverty is a way of knowing the quality of the soil, in this regard we studied the ecological side of the soil mite in a forest park «coast of Algeria». 6 by taking soil samples every month for the year 2010/2011 .The samples are collected and extracted using the technique of Berlese Tullgren. It was obtained 604 individuals. These riches can indicate the fertility of soil and knead the high proportion of organic material in it. The largest number observed in the spring, followed by the separation of the 252 individuals fall 222 individuals and then the summer with 106 individuals and winter 80 individuals. Among the 18 families obtained. Scheloribatidae is the most dominant with 30.6% followed by Ceratozetidae with 16%, then Euphthiracaridae 14%. The families remain involved with low percentages. the diversity index Schanonweaver varied between 2.3 bits in the summer and 3.83 bits in the spring. As the results of the analysis statistic confirm the existence of a clear difference between the four seasons and the richness of soil mite and diversity.Keywords: soil mite, forest, coast of Algeria, diversity
Procedia PDF Downloads 4071614 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.Keywords: Haraz basin, change detection, land-use, satellite data
Procedia PDF Downloads 4151613 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches
Authors: Chaima Babi, Said Gadri
Abstract:
The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification
Procedia PDF Downloads 951612 Monitoring of Latent Tree Mortality after Forest Fires: A Biosensor Approach
Authors: Alessio Giovannelli, Claudia Cocozza, Enrico Marchi, Valerio Giorgio Muzzini, Eleftherios Touloupakis, Raffaella Margherita Zampieri
Abstract:
In Mediterranean countries, forest fires are recurrent events that need to be considered as a central component of regional and global forest management strategies and biodiversity restoration programmes. The response of tree function to fire damage can vary widely, also taking into account species, season, age of the tree, etc. Trees that survive fire may have different levels of physiological functionality, which may result in reduced growth or increased susceptibility to delayed mortality. An approach to assessing irreversible physiological injury in trees could help to inform management decisions at burned sites for biodiversity restoration, environmental safety and understanding of ecosystem functional adaptations. Physiological proxies for latent tree mortality, such as cambial cell death, reduced or absent starch and soluble sugar content in C sinks, and ethanol accumulation in the phloem, are considered proxies for cell death. However, their determination requires time-consuming laboratory protocols, making the approach unfeasible as a practical option in the field, but recent findings have shown that biosensors could be usefully applied to overcome these limitations. The study will focus on the development of amperometric biosensors capable of detecting a few target molecules in the phloem and xylem (such as ethanol and glucose) that have recently been identified as proxies for latent tree mortality. The results of a specific experiment on a stand of Pinus pinaster subjected to prescribed fire are reported.Keywords: enzymes, glucose, ethanol, prescribed fires
Procedia PDF Downloads 181611 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning
Procedia PDF Downloads 1511610 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence
Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno
Abstract:
Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index
Procedia PDF Downloads 1681609 Women as Victims of Land Grabbing: Implications for Household Food Security and Livelihoods in Cameroon
Authors: Valentine Ndi
Abstract:
This multi-sited research will make use of primary and secondary data to understand the multiple implications of land grabbing for local food production and rural livelihoods in Cameroon. Amidst restricted access to land and forest resources, this study will demonstrate how land previously accessed by communities to grow crops and to harvest forest resources is being acquired and transformed into commercial oil palm plantations by Herakles Farms, a US-based company, with Sithe Global Sustainable Oils Cameroon as its local subsidiary. Focusing on selected land grabbing communities in Cameroon, the study uses a feminist political ecology lens to examine the gendered nature in resources access and its impacts for women’s food production in particular, and rural livelihoods in general. The paper will argue that the change in land use particularly erodes women’s rights to access land and forest resources, and in turn negatively affects local food production and rural livelihood in the region. It will show how women in the region play instrumental and dominant roles in ensuring local food production through subsistence and semi-subsistence agriculture but are unfortunately the main losers of territory that the state considers as ‘empty’ or underutilized - and is subjected to appropriation. The paper will conclude that, rural women’s active participation in the decision-making processes concerning the use of and/or allotment of land to foreign investors is indispensable to guarantee local, national and global food security, but also to ensure that alternative livelihood options are provided, particularly to those rural women facing dispossession or at risk of being dispossessed.Keywords: land grabbing, feminst political ecology, gender, access to resources, rural livelihoods, Cameroon
Procedia PDF Downloads 2661608 Awning: An Unsung Trait in Rice (Oryza Sativa L.)
Authors: Chamin Chimyang
Abstract:
The fast-changing global trend and declining forest region have impacted agricultural lands; animals, especially birds, might become one of the major pests in the near future and go neglected or unreported in many kinds of literature and events, which is mainly because of bird infestation being a pocket-zone problem. This bird infestation can be attributed to the balding of the forest region and the decline in their foraging hotspot due to anthropogenic activity. There are many ways to keep away the birds from agricultural fields, both conventional and non-conventional. But the question here is whether the traditional approach of bird scarring methods such as scare-crows are effective enough. There are many traits in rice that are supposed to keep the birds away from foraging in paddy fields, and the selection of such traits might be rewarding, such as the angle of the flag leaf from the stem, grain size, novelty of any trait in that particular region and also an awning. Awning, as such, is a very particular trait on which negative selection was imposed to such an extent that there has been a decline in the nucleotide responsible for the said trait. Thus, in this particular session, histology, genetics, genes behind the trait and how awns might be one of the solutions to the problem stated above will be discussed in detail.Keywords: bird infestation, awning, negative selection, domestication
Procedia PDF Downloads 281607 A Study on Local Wisdom towards Career Building of People in Kamchanoad Community
Authors: Phusit Phukamchanoad, Thananya Santithammakul, Suwaree Yordchim, Pennapa Palapin
Abstract:
This research gathered local wisdom towards career building of people in Kamchanoad Community, Baan Muang sub-district, Baan Dung district, Udon Thani province. Data was collected through in-depth interviews with village headmen, community board, teachers, monks, Kamchanoad forest managers and revered elderly aged over 60 years old. All of these 30 interviewees have resided in Kamchanoad Community for more than 40. Descriptive data analysis result revealed that the most prominent local wisdom of Kamchanoad community is their beliefs and religion. Most people in the community have strongly maintained local tradition, the festival of appeasing Chao Pu Sri Suttho on the middle of the 6th month of Thai lunar calendar which falls on the same day with Vesak Day. 100 percent of the people in this community are Buddhist. They believe that Naga, an entity or being, taking the form of a serpent, named “Sri Suttho” lives in Kamchanoad forest. The local people worship the serpent and ask for blessings. Another local wisdom of this community is Sinh fabric weaving.Keywords: local wisdoms, careers, Kamchanoad Community, career building
Procedia PDF Downloads 3141606 Parallel Genetic Algorithms Clustering for Handling Recruitment Problem
Authors: Walid Moudani, Ahmad Shahin
Abstract:
This research presents a study to handle the recruitment services system. It aims to enhance a business intelligence system by embedding data mining in its core engine and to facilitate the link between job searchers and recruiters companies. The purpose of this study is to present an intelligent management system for supporting recruitment services based on data mining methods. It consists to apply segmentation on the extracted job postings offered by the different recruiters. The details of the job postings are associated to a set of relevant features that are extracted from the web and which are based on critical criterion in order to define consistent clusters. Thereafter, we assign the job searchers to the best cluster while providing a ranking according to the job postings of the selected cluster. The performance of the proposed model used is analyzed, based on a real case study, with the clustered job postings dataset and classified job searchers dataset by using some metrics.Keywords: job postings, job searchers, clustering, genetic algorithms, business intelligence
Procedia PDF Downloads 3291605 Biodiversity and Distribution of Tettigonioidea, Ensifera of Pakistan
Authors: Riffat Sultana Pathan, Waheed Ali Panhwar, Muhammad Saeed Wagan
Abstract:
Tettigonioidea are phytophagous insects damaging agricultural crops, forest, fruit orchards, berry shrubs, and grasses. The material was collected from different agricultural fields of rice, sugarcane, wheat, maize surrounding by different grasses. Beside this, forest, hilly areas, semi-desert and desert regions were also inspected time to time. All material was captured, killed and stored by using the standard entomological method. As a result of extensive survey fair numbers were captured from the different climatic zone of country. Seven sub-families of Tettigonioidea viz: Pseudophyllinae, Phaneropterinae, Conocephalinae, Tettigoniinae, Hexacentrinae, Mecopodinae and Decticinae came in collection. This fauna contributes 29 new records to Pakistan and 5 new species to science. Beside this, a brief description of each supra-generic category of Tettigonioidea along with photographs and synonymy is also documented. In addition to this, detailed list of host plants from Pakistan was also composed. This study provides important data for Integrated Pest Management (IPM) of Tettigonioidea biodiversity conservation and grassland restoration in Pakistan.Keywords: agriculture, conocephalinae, pest, phaneropterinae, tettigoniidae
Procedia PDF Downloads 3481604 Impacts of Oil Palm Plantation on Mammal and Herpetofauna Diversity: A Case Study in Riau Province, Indonesia
Authors: Yanto Santosa, Yohanna Dalimunthe, Intan Purnamasari
Abstract:
Expansion of Indonesia oil palm plantations has contributed significantly to the national revenue annually and has been able to absorb millions of workers. Behind all these positive contributions, such expansion was accused as the cause of the decline in wildlife populations such as mammal and herpetofauna. Research was carried out in 8 oil palm plantations in Riau Province of Indonesia from March to April 2016, to determine the impacts of oil palm plantations on mammal and herpetofauna biodiversity. Direct observation was conducted simultaneously equipped with camera traps placed (for mammal) on various land cover types. For mammals' survey, line transect method was used, and for herpetofauna, Visual Encounter Survey (VES) method was used. Landsat imagery was used to interpret land cover types 3 years prior to the establishment of the oil palm plantations. The study revealed that one year before the oil palm plantations was established, most the land covers were comprised of 49.96% rubber plantations, 35.99% secondary forest, 10.17% bare land, 3.03% shrubs and 0.84% mixed dryland farming-shrubs. Based on the number of species found, it was identified that on the average, mammal diversity in 4 of 8 oil palm plantations, showed a decrease by 14.29%-100%, whereas 2 plantations did not experienced any changes in the number of species and one plantation showed an increased in the number of mammal species. The plantations that experienced a reduction in the number of mammal’s diversity were previously dominated covered by secondary forest (40%) and rubber plantation (40%), while those experiencing no changes in the number of species were also dominated by secondary forest. The area with an increased number of mammal species was historically dominated by rubber plantation. On the contrary, significant results were shown for herpetofauna, where all study sites showed a sharp increase in the number of herpetofauna species, by 100%-225.00%.Keywords: herpetofauna, impact, mammal, oil palm plantations
Procedia PDF Downloads 2351603 An Integrated Ecosystem Service-based Approach for the Sustainable Management of Forested Islands in South Korea
Authors: Jang-Hwan Jo
Abstract:
Implementing sustainable island forest management policies requires categorizing islands into groups based on key indicators and establishing a consistent management system. Building on the results of previous studies, a typology of forested islands was established: Type 1 – connected islands with high natural vegetation cover; Type 2 – connected islands with moderate natural vegetation cover; Type 3 – connected islands with low natural vegetation cover; Type 4 – unconnected islands with high natural vegetation cover; Type 5 – unconnected islands with moderate natural vegetation cover; and Type 6 – unconnected islands with low natural vegetation cover. An AHP analysis was conducted with island forest experts to identify priority ecosystem services (ESs) for the sustainable management of each island type. In connected islands, provisioning services (natural resources, natural medicines, etc.) assumed greater importance than regulating (erosion control) and supporting services (genetic diversity). In unconnected islands, particularly those with a small proportion of natural vegetation, regulating services (erosion control) requires greater emphasis in management. Considering that Type 3 islands require urgent management as connectivity to the mainland makes natural vegetation-sparse island forest ecosystems vulnerable to anthropogenic activities, the land-use scoring method was carried out on Jin-do, a Type 3 forested island. Comparisons between AHP-derived expert demand for key island ESs and the spatial distribution of ES supply potential revealed mismatches between the supply and demand of erosion control, freshwater supply, and habitat provision. The framework developed in this study can help guide decisions and indicate where interventions should be focused to achieve sustainable island management.Keywords: ecosystem service, sustainable management, forested islands, Analytic hierarchy process
Procedia PDF Downloads 751602 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies
Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr
Abstract:
Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool
Procedia PDF Downloads 2321601 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.Keywords: color space, neural network, random forest, skin detection, statistical feature
Procedia PDF Downloads 4621600 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 345