Search results for: electrical units
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3371

Search results for: electrical units

2951 Vertical and Horizantal Distribution Patterns of Major and Trace Elements: Surface and Subsurface Sediments of Endhorheic Lake Acigol Basin, Denizli Turkey

Authors: M. Budakoglu, M. Karaman

Abstract:

Lake Acıgöl is located in area with limited influences from urban and industrial pollution sources, there is nevertheless a need to understand all potential lithological and anthropogenic sources of priority contaminants in this closed basin. This study discusses vertical and horizontal distribution pattern of major, trace elements of recent lake sediments to better understand their current geochemical analog with lithological units in the Lake Acıgöl basin. This study also provides reliable background levels for the region by the detailed surfaced lithological units data. The detail results of surface, subsurface and shallow core sediments from these relatively unperturbed ecosystems, highlight its importance as conservation area, despite the high-scale industrial salt production activity. While P2O5/TiO2 versus MgO/CaO classification diagram indicate magmatic and sedimentary origin of lake sediment, Log(SiO2/Al2O3) versus Log(Na2O/K2O) classification diagrams express lithological assemblages of shale, iron-shale, vacke and arkose. The plot between TiO2 vs. SiO2 and P2O5/TiO2 vs. MgO/CaO also supports the origin of the primary magma source. The average compositions of the 20 different lithological units used as a proxy for geochemical background in the study area. As expected from weathered rock materials, there is a large variation in the major element content for all analyzed lake samples. The A-CN-K and A-CNK-FM ternary diagrams were used to deduce weathering trends. Surface and subsurface sediments display an intense weathering history according to these ternary diagrams. The most of the sediments samples plot around UCC and TTG, suggesting a low to moderate weathering history for the provenance. The sediments plot in a region clearly suggesting relative similar contents in Al2O3, CaO, Na2O, and K2O from those of lithological samples.

Keywords: Lake Acıgöl, recent lake sediment, geochemical speciation of major and trace elements, heavy metals, Denizli, Turkey

Procedia PDF Downloads 406
2950 Geoelectrical Investigation Around Bomo Area, Kaduna State, Nigeria

Authors: B. S. Jatau, Baba Adama, S. I. Fadele

Abstract:

Electrical resistivity investigation was carried out around Bomo area, Zaria, Kaduna state in order to study the subsurface geologic layer with a view of determining the depth to the bedrock and thickness of the geologic layers. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at fifteen (15) VES stations. ABEM terrameter (SAS 300) was used for the data acquisition. The field data obtained have been analyzed using computer software (IPI2win) which gives an automatic interpretation of the apparent resistivity. The VES results revealed heterogeneous nature of the subsurface geological sequence. The geologic sequence beneath the study area is composed of hard pan top soil (clayey and sandy-lateritic), weathered layer, partly weathered or fractured basement and fresh basement. The resistivity value for the topsoil layer varies from 40Ωm to 450Ωm with thickness ranging from 1.25 to 7.5 m. The weathered basement has resistivity values ranging from 50Ωm to 593Ωm and thickness between 1.37 and 20.1 m. The fractured basement has resistivity values ranging from 218Ωm to 520Ωm and thickness of between 12.9 and 26.3 m. The fresh basement (bedrock) has resistivity values ranging from 1215Ωm to 2150Ωm with infinite depth. However, the depth of the earth’s surface to the bedrock surface varies between 2.63 and 34.99 m. The study further stressed the importance of the findings in civil engineering structures and groundwater prospecting.

Keywords: electrical resistivity, CERT (CT), vertical electrical sounding (VES), top soil (TP), weathered basement (WB), partly weathered basement (PWB), fresh basement (FB)

Procedia PDF Downloads 324
2949 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals

Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam

Abstract:

The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study

Procedia PDF Downloads 315
2948 The Cartometric-Geographical Analysis of Ivane Javakhishvili 1922: The Map of the Republic of Georgia

Authors: Manana Kvetenadze, Dali Nikolaishvili

Abstract:

The study revealed the territorial changes of Georgia before the Soviet and Post-Soviet periods. This includes the estimation of the country's borders, its administrative-territorial arrangement change as well as the establishment of territorial losses. Georgia’s old and new borders marked on the map are of great interest. The new boundary shows the condition of 1922 year, following the Soviet period. Neither on this map nor in other works Ivane Javakhishvili talks about what he implies in the old borders, though it is evident that this is the Pre-Soviet boundary until 1921 – i.e., before the period when historical Tao, Zaqatala, Lore, Karaia represented the parts of Georgia. According to cartometric-geographical terms, the work presents detailed analysis of Georgia’s borders, along with this the comparison of research results has been carried out: 1) At the boundary line on Soviet topographic maps, the maps of 100,000; 50,000 and 25,000 scales are used; 2) According to Ivane Javakhishvili’s work ('The borders of Georgia in terms of historical and contemporary issues'). During that research, we used multi-disciplined methodology and software. We used Arc GIS for Georeferencing maps, and after that, we compare all post-Soviet Union maps, in order to determine how the borders have changed. During this work, we also use many historical data. The features of the spatial distribution of the territorial administrative units of Georgia, as well as the distribution of administrative-territorial units of the objects depicted on the map, have been established. The results obtained are presented in the forms of thematic maps and diagrams.

Keywords: border, GIS, georgia, historical cartography, old maps

Procedia PDF Downloads 236
2947 Treating Complex Pain and Addictions with Bioelectrode Therapy: An Acupuncture Point Stimulus Method for Relieving Human Suffering

Authors: Les Moncrieff

Abstract:

In a world awash with potent opioids flaming an international crisis, the need to explore safe alternatives has never been more urgent. Bio-electrode Therapy is a novel adjunctive treatment method for relieving acute opioid withdrawal symptoms and many types of complex acute and chronic pain (often the underlying cause of opioid dependence). By combining the science of developmental bioelectricity with Traditional Chinese Medicine’s theory of meridians, rapid relief from pain is routinely being achieved in the clinical setting. Human body functions are dependent on electrical factors, and acupuncture points on the body are known to have higher electrical conductivity than surrounding skin tissue. When tiny gold- and silver-plated electrodes are secured to the skin at specific acupuncture points using established Chinese Medicine principles and protocols, an enhanced microcurrent and electrical field are created between the electrodes, influencing the entire meridian and connecting meridians. No external power source or electrical devices are required. Endogenous DC electric fields are an essential fundamental component for development, regeneration, and wound healing. Disruptions in the normal ion-charge in the meridians and circulation of blood will manifest as pain and development of disease. With the application of these simple electrodes (gold acting as cathode and silver as anode) according to protocols, the resulting microcurrent is directed along the selected meridians to target injured or diseased organs and tissues. When injured or diseased cells have been stimulated by the microcurrent and electrical fields, the permeability of the cell membrane is affected, resulting in an immediate relief of pain, a rapid balancing of positive and negative ions (sodium, potassium, etc.) in the cells, the restoration of intracellular fluid levels, replenishment of electrolyte levels, pH balance, removal of toxins, and a re-establishment of homeostasis.

Keywords: bioelectricity, electrodes, electrical fields, acupuncture meridians, complex pain, opioid withdrawal management

Procedia PDF Downloads 69
2946 Probabilistic Modeling Laser Transmitter

Authors: H. S. Kang

Abstract:

Coupled electrical and optical model for conversion of electrical energy into coherent optical energy for transmitter-receiver link by solid state device is presented. Probability distribution for travelling laser beam switching time intervals and the number of switchings in the time interval is obtained. Selector function mapping is employed to regulate optical data transmission speed. It is established that regulated laser transmission from PhotoActive Laser transmitter follows principal of invariance. This considerably simplifies design of PhotoActive Laser Transmission networks.

Keywords: computational mathematics, finite difference Markov chain methods, sequence spaces, singularly perturbed differential equations

Procedia PDF Downloads 427
2945 Geostatistical Models to Correct Salinity of Soils from Landsat Satellite Sensor: Application to the Oran Region, Algeria

Authors: Dehni Abdellatif, Lounis Mourad

Abstract:

The new approach of applied spatial geostatistics in materials sciences, agriculture accuracy, agricultural statistics, permitted an apprehension of managing and monitoring the water and groundwater qualities in a relationship with salt-affected soil. The anterior experiences concerning data acquisition, spatial-preparation studies on optical and multispectral data has facilitated the integration of correction models of electrical conductivity related with soils temperature (horizons of soils). For tomography apprehension, this physical parameter has been extracted from calibration of the thermal band (LANDSAT ETM+6) with a radiometric correction. Our study area is Oran region (Northern West of Algeria). Different spectral indices are determined such as salinity and sodicity index, the Combined Spectral Reflectance Index (CSRI), Normalized Difference Vegetation Index (NDVI), emissivity, Albedo, and Sodium Adsorption Ratio (SAR). The approach of geostatistical modeling of electrical conductivity (salinity), appears to be a useful decision support system for estimating corrected electrical resistivity related to the temperature of surface soils, according to the conversion models by substitution, the reference temperature at 25°C (where hydrochemical data are collected with this constraint). The Brightness temperatures extracted from satellite reflectance (LANDSAT ETM+) are used in consistency models to estimate electrical resistivity. The confusions that arise from the effects of salt stress and water stress removed followed by seasonal application of the geostatistical analysis in Geographic Information System (GIS) techniques investigation and monitoring the variation of the electrical conductivity in the alluvial aquifer of Es-Sénia for the salt-affected soil.

Keywords: geostatistical modelling, landsat, brightness temperature, conductivity

Procedia PDF Downloads 435
2944 Dispersions of Carbon Black in Microemulsions

Authors: Mohamed Youssry, Dominique Guyomard, Bernard Lestriez

Abstract:

In order to enhance the energy and power densities of electrodes for energy storage systems, the formulation and processing of electrode slurries proved to be a critical issue in determining the electrode performance. In this study, we introduce novel approach to formulate carbon black slurries based on microemulsion and lyotropic liquid crystalline phases (namely, lamellar phase) composed of non-ionic surfactant (Triton X100), decanol and water. Simultaneous measurements of electrical properties of slurries under shear flow (rheology) have been conducted to elucidate the microstructure evolution with the surfactant concentration and decanol/water ratio at rest, as well as, the structural transition under steady-shear which has been confirmed by rheo-microscopy. Interestingly, the carbon black slurries at low decanol/water ratio are weak-gel (flowable) with higher electrical conductivity than those at higher ratio which behave strong-gel viscoelastic response. In addition, the slurries show recoverable electrical behaviour under shear flow in tandem with the viscosity trend. It is likely that oil-in-water microemulsion enhances slurries’ stability without affecting on the percolating network of carbon black. On the other hand, the oil-in-water analogous and bilayer structure of lamellar phase cause the slurries less conductive as a consequence of losing the network percolation. These findings are encouraging to formulate microemulsion-based electrodes for energy storage system (lithium-ion batteries).

Keywords: electrode slurries, microemulsion, microstructure transition, rheo-electrical properties

Procedia PDF Downloads 261
2943 Control Strategy for a Solar Vehicle Race

Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat

Abstract:

Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.

Keywords: electrical vehicle, endurance, optimization, shell eco-marathon

Procedia PDF Downloads 261
2942 Activity of Commonly Used Intravenous Nutrient and Bisolvon in Neonatal Intensive Care Units against Biofilm Cells and Their Synergetic Effect with Antibiotics

Authors: Marwa Fady Abozed, Hemat Abd El Latif, Fathy Serry, Lotfi El Sayed

Abstract:

The purpose of this study was to investigate the efficacy of intravenous nutrient(soluvit, vitalipid, aminoven infant, lipovenos) and bisolvon commonly used in neonatal intensive care units against biofilm cells of staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aerguinosa and klebseilla pneumonia as they are the most commonly isolated organisms and are biofilm producers. Also, the synergetic acticity of soluvit, heparin, bisolvon with antibiotics and its effect on minimum biofilm eradication concentration(MBEC) was tested. Intravenous nutrient and bromohexine are widely used in newborns. Numbers of viable cell count released from biofilm after treatment with intravenous nutrient and bromohexine were counted to compare the efficacy. The percentage of reduction in biofilm regrowth in case of using soluvit was 43-51% and 36-42 % for Gram positive and Gram negative respectively, on adding the vitalipid the percentage was 45-50 %and 37-41% for Gram positive and Gram negative respectively. While, in case of using bisolvon the percentage was 46-52% and 47-48% for Gram positive and Gram negative respectively. Adding lipovenos had a reduction percentage of 48-52% and 48-49% for Gram positive and Gram negative respectively. While, adding aminoven infant the percentage was 10-15% and 9-11% for Gram positive and Gram negative respectively. Adding soluvit, heparin and bisolvon to antibiotics had synergic effect. soluvit with ciprofloxacin has 8-16 times decrease than minimum biofilm eradication concentration (MBEC) for ciprofloxacin alone. While, by adding soluvit to vancomycin the MBEC reduced by 16 times than MBEC of vancomycin alone. In case of combination soluvit with cefotaxime, amikacin and gentamycin the reduction in MBEC was 16, 8 and 6-32 times respectively. The synergetic effect of adding heparin to ciprofloxacin, vancomycin, cefotaxime, amikacin and gentamicin was 2 times reduction with all except in case of gram negative the range of reduction was 0-2 with both gentamycin and ciprofloxacin. Bisolvon exihited synergetic effect with ciprofloxacin, vancomycin, cefotaxime, amikacin and gentamicin by 16, 32, 32, 8, 32-64 and 32 times decrease in MBEC respectively.

Keywords: biofilm, neonatal intensive care units, antibiofilm agents, intravenous nutrient

Procedia PDF Downloads 325
2941 Double Magnetic Phase Transition in the Intermetallic Compound Gd₂AgSi₃

Authors: Redrisse Djoumessi Fobasso, Baidyanath Sahu, Andre M. Strydom

Abstract:

The R₂TX₃ (R = rare-earth, T = transition, and X = s and p block element) series of compounds are interesting owing to their fascinating structural and magnetic properties. In this present work, we have studied the magnetic and physical properties of the new Gd₂AgSi₃ polycrystalline compound. The sample was synthesized by the arc-melting method and confirmed to crystallize in the tetragonal α-ThSi₂-type crystal structure with space group I4/amd. Dc– and ac–magnetic susceptibility, specific heat, electrical resistivity, and magnetoresistance measurements were performed on the new compound. The structure provides a unique position in the unit cell for the magnetic trivalent Gd ion. Two magnetic phase transitions were consistently found in dc- and ac-magnetic susceptibility, heat capacity, and electrical resistivity at temperatures Tₙ₁ = 11 K and Tₙ₂ = 20 K, which is an indication of the complex magnetic behavior in this compound. The compound is found to be metamagnetic over a range of temperatures below and above Tₙ₁. From field-dependent electrical resistivity, it is confirmed that the compound shows unusual negative magnetoresistance in the antiferromagnetically ordered region. These results contribute to a better understanding of this class of materials.

Keywords: complex magnetic behavior, metamagnetic, negative magnetoresistance, two magnetic phase transitions

Procedia PDF Downloads 117
2940 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber

Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan

Abstract:

Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution has been prepared and the amount of silver nitrate has been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), tensile tester, differential scanning calorimeter DSC (Q10) and SEM, respectively. Also, antimicrobial efficiency test (ASTM E2149-10) was done against Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.

Keywords: composite polyacrylonitrile nanofiber, electrical conductivity, electrospinning, mechanical properties, thermal properties, silver nanoparticles

Procedia PDF Downloads 415
2939 Effect of Nutrition and Rehabilitation Programs in Treating High Blood Cholesterol For Ages (30-40) Years

Authors: Luma Hameed Abd, Ammar Hamza Hadi, Amjed Abid Ali Mahdi

Abstract:

Context: The study focused on treating high blood cholesterol in individuals aged 30-40 years using rehabilitation and nutrition programs compared to medical drugs. Research aim: To compare the effectiveness of exercise rehabilitation and nutrition programs with medical drugs in reducing high blood cholesterol levels. Methodology: An experimental method with equal groups was utilized, involving 160 patients from Najaf Hospital. SPSS was used for data analysis. Findings: The study showed that both the exercise and nutrition program, as well as medical drugs, contributed to lowering cholesterol levels, with the first group showing better results. Theoretical importance: The research highlights the significance of a holistic approach combining exercise, nutrition, and medical treatment in managing high cholesterol. Data collection: Blood cholesterol tests were conducted before and after the programs to assess improvements. Analysis procedures: Statistical methods such as arithmetic mean, standard deviation, Torsion coefficient, and T-test for correlated samples were employed to analyze the results. Questions addressed: The study addressed the effectiveness of rehabilitation and nutrition programs compared to medical drugs in treating high blood cholesterol. Conclusion: The research concluded that the combination of exercise rehabilitation and nutrition programs was more effective in reducing blood cholesterol levels compared to medical drugs.

Keywords: nutrition, rehabilitation, programs, high blood cholesterol

Procedia PDF Downloads 3
2938 Numerical Study of Wettability on the Triangular Micro-pillared Surfaces Using Lattice Boltzmann Method

Authors: Ganesh Meshram, Gloria Biswal

Abstract:

In this study, we present the numerical investigation of surface wettability on triangular micropillar surfaces by using a two-dimensional (2D) pseudo-potential multiphase lattice Boltzmann method with a D2Q9 model for various interaction parameters of the range varies from -1.40 to -2.50. Initially, simulation of the equilibrium state of a water droplet on a flat surface is considered for various interaction parameters to examine the accuracy of the present numerical model. We then imposed the microscale pillars on the bottom wall of the surface with different heights of the pillars to form the hydrophobic and superhydrophobic surfaces which enable the higher contact angle. The wettability of surfaces is simulated with water droplets of radius 100 lattice units in the domain of 800x800 lattice units. The present study shows that increasing the interaction parameter of the pillared hydrophobic surfaces dramatically reduces the contact area between water droplets and solid walls due to the momentum redirection phenomenon. Contact angles for different values of interaction strength have been validated qualitatively with the analytical results.

Keywords: contact angle, lattice boltzmann method, d2q9 model, pseudo-potential multiphase method, hydrophobic surfaces, wenzel state, cassie-baxter state, wettability

Procedia PDF Downloads 64
2937 Promoted Thermoelectric Properties of Polymers through Controlled Tie-Chain Incorporation

Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus

Abstract:

We have demonstrated a model system for the controlled incorporation of tie-chains into semicrystalline conjugated polymers using blends of different molecular weights that leads to a significant increase in electrical conductivity. Through careful assessment of the microstructural evolution upon tie chain incorporation we have demonstrated that no major changes in phase morphology or structural order in the crystalline domains occur and that the observed enhancement in electrical conductivity can only be explained consistently by tie chains facilitating the transport across grain boundaries between the crystalline domains. Here we studied the thermoelectric properties of aligned, ion exchange-doped ribbon phase PBTTT with blends of different molecular weight components. We demonstrate that in blended films higher electrical conductivities (up to 4810.1 S/cm), Seebeck coefficients and thermoelectric power factors of up to 172.6 μW m-1 K-2 can be achieved than in films with single component molecular weights. We investigate the underpinning thermoelectric transport physics, including structural and spectroscopic characterization, to better understand how controlled tie chain incorporation can be used to enhance the thermoelectric performance of aligned conjugated polymers.

Keywords: organic electronics, thermoelectrics, conjugated polymers, tie chain

Procedia PDF Downloads 54
2936 Plant Supporting Units (Ekobox) Application Project for Increasing Planting Success in Arid and Semi-Arid Areas

Authors: Gürcan D. Baysal, Ali Tanış

Abstract:

In this study, samples of plant types including rose hip (Rosa canina L.), jujube (Ziziphus jujube), sea buckthorn (Hippophae rhamnoides), elderberry (Sambucus nigra), apricot (Prunus armeniaca), scots pine (Pinus sylvestris), and cedar of Lebanon (Cedrus libani) were grown using plant supporting units called Ekobox and drip irrigation systems in the Karapınar, Konya region of Turkey to reveal the efficiency of Ekobox and drip irrigation compared against a control with no irrigation. The plant diameter, height, and survival rates were determined, compared with each other, and statistically analyzed. According to the statistical analysis of the results, Ekobox applications resulted in the highest values for survival rate, diameter, and height measurements whereas the lowest values were determined in the control groups. These results indicate that the cultivation of plants with Ekobox may help protect against the loss of fertile soils as an effective mechanism for combating erosion and desertification. These advantages may also lead to a lasting economic effect on the cultivation of plants by locals of the Karapınar, Konya province who suffer from an ever-decreasing underground water level as a result of agricultural consumption.

Keywords: drip irrigation, ekobox, plant diameter, plant height, plant survival rate

Procedia PDF Downloads 119
2935 Energy Consumption in China’s Urban Water Supply System

Authors: Kate Smith, Shuming Liu, Yi Liu, Dragan Savic, Gustaf Olsson, Tian Chang, Xue Wu

Abstract:

In a water supply system, a great deal of care goes into sourcing, treating and delivering water to consumers, but less thought is given to the energy consumed during these processes. This study uses 2011 data to quantify energy use for urban water supply in China and investigates population density as a possible influencing factor. The objective is to provide information that can be used to develop energy-conscious water infrastructure policy, calculate the energy co-benefits of water conservation and compare energy use between China and other countries. The average electrical energy intensity and per capita electrical energy consumption for urban water supply in China in 2011 were 0.29 kWh/m3 and 33.2 kWh/cap•yr, respectively. Comparison between provinces revealed a direct correlation between energy intensity of urban water supply and population served per unit length of pipe. This could imply energy intensity is lower when more densely populated areas are supplied by relatively dense networks of pipes. This study also found that whereas the percentage of energy used for urban water supply tends to increase with the percentage of population served this increase is slower where water supply is more energy efficient and where a larger percentage of population is already supplied.

Keywords: china, electrical energy use, water-energy nexus, water supply

Procedia PDF Downloads 491
2934 Mg Doped CuCrO₂ Thin Oxides Films for Thermoelectric Properties

Authors: I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé

Abstract:

The thermoelectricity is a promising technique to overcome the issues in recovering waste heat to electricity without using moving parts. In fact, the thermoelectric (TE) effect defines as the conversion of a temperature gradient directly into electricity and vice versa. To optimize TE materials, the power factor (PF = σS² where σ is electrical conductivity and S is Seebeck coefficient) must be increased by adjusting the carrier concentration, and/or the lattice thermal conductivity Kₜₕ must be reduced by introducing scattering centers with point defects, interfaces, and nanostructuration. The PF does not show the advantages of the thin film because it does not take into account the thermal conductivity. In general, the thermal conductivity of the thin film is lower than the bulk material due to their microstructure and increasing scattering effects with decreasing thickness. Delafossite type oxides CuᴵMᴵᴵᴵO₂ received main attention for their optoelectronic properties as a p-type semiconductor they exhibit also interesting thermoelectric (TE) properties due to their high electrical conductivity and their stability in room atmosphere. As there are few proper studies on the TE properties of Mg-doped CuCrO₂ thin films, we have investigated, the influence of the annealing temperature on the electrical conductivity and the Seebeck coefficient of Mg-doped CuCrO₂ thin films and calculated the PF in the temperature range from 40 °C to 220 °C. For it, we have deposited Mg-doped CuCrO₂ thin films on fused silica substrates by RF magnetron sputtering. This study was carried out on 300 nm thin films. The as-deposited Mg doped CuCrO₂ thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum. Electrical conductivity and Seebeck coefficient of the thin films have been measured from 40 to 220 °C. The highest electrical conductivity of 0.60 S.cm⁻¹ with a Seebeck coefficient of +329 µV.K⁻¹ at 40 °C have been obtained for the sample annealed at 550 °C. The calculated power factor of optimized CuCrO₂:Mg thin film was 6 µW.m⁻¹K⁻² at 40 °C. Due to the constant Seebeck coefficient and the increasing electrical conductivity with temperature it reached 38 µW.m⁻¹K⁻² at 220 °C that was a quite good result for an oxide thin film. Moreover, the degenerate behavior and the hopping mechanism of CuCrO₂:Mg thin film were elucidated. Their high and constant Seebeck coefficient in temperature and their stability in room atmosphere could be a great advantage for an application of this material in a high accuracy temperature measurement devices.

Keywords: thermoelectric, oxides, delafossite, thin film, power factor, degenerated semiconductor, hopping mode

Procedia PDF Downloads 193
2933 Passive Seismic in Hydrogeological Prospecting: The Case Study from Hard Rock and Alluvium Plain

Authors: Prarabdh Tiwari, M. Vidya Sagar, K. Bhima Raju, Joy Choudhury, Subash Chandra, E. Nagaiah, Shakeel Ahmed

Abstract:

Passive seismic, a wavefield interferometric imaging, low cost and rapid tool for subsurface investigation is used for various geotechnical purposes such as hydrocarbon exploration, seismic microzonation, etc. With the recent advancement, its application has also been extended to groundwater exploration by means of finding the bedrock depth. Council of Scientific & Industrial Research (CSIR)-National Geophysical Research Institute (NGRI) has experimented passive seismic studies along with electrical resistivity tomography for groundwater in hard rock (Choutuppal, Hyderabad). Passive Seismic with Electrical Resistivity (ERT) can give more clear 2-D subsurface image for Groundwater Exploration in Hard Rock area. Passive seismic data were collected using a Tromino, a three-component broadband seismometer, to measure background ambient noise and processed using GRILLA software. The passive seismic results are found corroborating with ERT (Electrical Resistivity Tomography) results. For data acquisition purpose, Tromino was kept over 30 locations consist recording of 20 minutes at each station. These location shows strong resonance frequency peak, suggesting good impedance contrast between different subsurface layers (ex. Mica rich Laminated layer, Weathered layer, granite, etc.) This paper presents signature of passive seismic for hard rock terrain. It has been found that passive seismic has potential application for formation characterization and can be used as an alternative tool for delineating litho-stratification in an urban condition where electrical and electromagnetic tools cannot be applied due to high cultural noise. In addition to its general application in combination with electrical and electromagnetic methods can improve the interpreted subsurface model.

Keywords: passive seismic, resonant frequency, Tromino, GRILLA

Procedia PDF Downloads 183
2932 Application of Electrical Resistivity, Induced Polarization and Statistical Methods in Chichak Iron Deposit Exploration

Authors: Shahrzad Maghsoodi, Hamid Reza Ranazi

Abstract:

This paper is devoted to exploration of Chichak (hematite) deposit, using electrical resistivity, chargeability and statistical methods. Chichak hematite deposit is located in Chichak area west Azarbaijan, northwest of Iran. There are some outcrops of hematite bodies in the area. The goal of this study was to identify the depth, thickness and shape of these bodies and to explore other probabile hematite bodies. Therefore nine profiles were considered to be surveyed by RS and IP method by utilizing an innovative electrode array so called CRSP (Combined Resistivity Sounding and Profiling). IP and RS sections were completed along each profile. In addition, the RS and IP data were analyzed and relation between these two variables was determined by statistical tools. Finally, hematite bodies were identified in each of the sections. The results showed that hematite bodies have a resistivity lower than 125 Ωm and very low chargeability, lower than 8 mV⁄V. After geophysical study some points were proposed for drilling, results obtained from drilling confirm the geophysical results.

Keywords: Hematite deposit, Iron exploration, Electrical resistivity, Chargeability, Iran, Chichak, Statistical, CRSP electrodes array

Procedia PDF Downloads 74
2931 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison

Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo

Abstract:

A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.

Keywords: affective computing, interface, brain, intelligent interaction

Procedia PDF Downloads 384
2930 Predictive Maintenance of Electrical Induction Motors Using Machine Learning

Authors: Muhammad Bilal, Adil Ahmed

Abstract:

This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.

Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures

Procedia PDF Downloads 109
2929 Geophysical Exploration of Aquifer Zones by (Ves) Method at Ayma-Kharagpur, District Paschim Midnapore, West Bengal

Authors: Mayank Sharma

Abstract:

Groundwater has been a matter of great concern in the past years due to the depletion in the water table. This has resulted from the over-exploitation of groundwater resources. Sub-surface exploration of groundwater is a great way to identify the groundwater potential of an area. Thus, in order to meet the water needs for irrigation in the study area, there was a need for a tube well to be installed. Therefore, a Geophysical investigation was carried out to find the most suitable point of drilling and sinking of tube well that encounters an aquifer. Hence, an electrical resistivity survey of geophysical exploration was used to know the aquifer zones of the area. The Vertical Electrical Sounding (VES) method was employed to know the subsurface geology of the area. Seven vertical electrical soundings using Schlumberger electrode array were carried out, having the maximum AB electrode separation of 700m at selected points in Ayma, Kharagpur-1 block of Paschim Midnapore district, West Bengal. The VES was done using an IGIS DDR3 Resistivity meter up to an approximate depth of 160-180m. The data was interpreted, processed and analyzed. Based on all the interpretations using the direct method, the geology of the area at the points of sounding was interpreted. It was established that two deeper clay-sand sections exist in the area at a depth of 50-70m (having resistivity range of 40-60ohm-m) and 70-160m (having resistivity range of 25-35ohm-m). These aquifers will provide a high yield of water which would be sufficient for the desired irrigation in the study area.

Keywords: VES method, Schlumberger method, electrical resistivity survey, geophysical exploration

Procedia PDF Downloads 189
2928 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nano Fiber and Nano Fiber/Nano Particle

Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon

Abstract:

Nanofibers are defined as fibers with diameters less than 100 nanometers. They can be produced by interfacial polymerization, electrospinning and electrostatic spinning. In this study, behaviours of activated carbon nano fiber (ACNF), carbon nano-fiber (CNF), Polyacrylonitrile/carbon nanotube (PAN/CNT), Polyvinyl alcohol/nano silver (PVA/Ag) in PEM fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. When the performances of these cells are compared to each other at 5x5 cm2 cell, it is found that the PVA/Ag exhibits the best performance among all. In this work, nano fiber and nano fiber/nano particles electrical conductivities have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag. The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.

Keywords: proton exchange membrane fuel cells, electrospinning, carbon nano fiber, activate carbon nano-fiber, PVA fiber, PAN fiber, carbon nanotube, nano particle nanocomposites

Procedia PDF Downloads 383
2927 Preparation of β-Polyvinylidene Fluoride Film for Self-Charging Lithium-Ion Battery

Authors: Nursultan Turdakyn, Alisher Medeubayev, Didar Meiramov, Zhibek Bekezhankyzy, Desmond Adair, Gulnur Kalimuldina

Abstract:

In recent years the development of sustainable energy sources is getting extensive research interest due to the ever-growing demand for energy. As an alternative energy source to power small electronic devices, ambient energy harvesting from vibration or human body motion is considered a potential candidate. Despite the enormous progress in the field of battery research in terms of safety, lifecycle and energy density in about three decades, it has not reached the level to conveniently power wearable electronic devices such as smartwatches, bands, hearing aids, etc. For this reason, the development of self-charging power units with excellent flexibility and integrated energy harvesting and storage is crucial. Self-powering is a key idea that makes it possible for the system to operate sustainably, which is now getting more acceptance in many fields in the area of sensor networks, the internet of things (IoT) and implantable in-vivo medical devices. For solving this energy harvesting issue, the self-powering nanogenerators (NGS) were proposed and proved their high effectiveness. Usually, sustainable power is delivered through energy harvesting and storage devices by connecting them to the power management circuit; as for energy storage, the Li-ion battery (LIB) is one of the most effective technologies. Through the movement of Li ions under the driving of an externally applied voltage source, the electrochemical reactions generate the anode and cathode, storing the electrical energy as the chemical energy. In this paper, we present a simultaneous process of converting the mechanical energy into chemical energy in a way that NG and LIB are combined as an all-in-one power system. The electrospinning method was used as an initial step for the development of such a system with a β-PVDF separator. The obtained film showed promising voltage output at different stress frequencies. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed a high percentage of β phase of PVDF polymer material. Moreover, it was found that the addition of 1 wt.% of BTO (Barium Titanate) results in higher quality fibers. When comparing pure PVDF solution with 20 wt.% content and the one with BTO added the latter was more viscous. Hence, the sample was electrospun uniformly without any beads. Lastly, to test the sensor application of such film, a particular testing device has been developed. With this device, the force of a finger tap can be applied at different frequencies so that electrical signal generation is validated.

Keywords: electrospinning, nanogenerators, piezoelectric PVDF, self-charging li-ion batteries

Procedia PDF Downloads 158
2926 The Analysis Fleet Operational Performance as an Indicator of Load and Haul Productivity

Authors: Linet Melisa Daubanes, Nhleko Monique Chiloane

Abstract:

The shovel-truck system is the most prevalent material handling system used in surface mining operations. Material handling entails the loading and hauling of material from production areas to dumping areas. The material handling process has operational delays that have a negative impact on the productivity of the load and haul fleet. Factors that may contribute to operational delays include shovel-truck mismatch, haul routes, machine breakdowns, extreme weather conditions, etc. The aim of this paper is to investigate factors that contribute to operational delays affecting the productivity of the load and haul fleet at the mine. Productivity is the measure of the effectiveness of producing products from a given quantity of units, the ratio of output to inputs. Productivity can be improved by producing more outputs with the same or fewer units and/or introducing better working methods etc. Several key performance indicators (KPI) for the evaluation of productivity will be discussed in this study. These KPIs include but are not limited to hauling conditions, bucket fill factor, cycle time, and utilization. The research methodology of this study is a combination of on-site time studies and observations. Productivity can be optimized by managing the factors that affect the operational performance of the haulage fleet.

Keywords: cycle time, fleet performance, load and haul, surface mining

Procedia PDF Downloads 188
2925 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India

Authors: A. Kumar, V. Devadas

Abstract:

Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.

Keywords: appliance, consumption, electricity, households

Procedia PDF Downloads 110
2924 Modification of Electrical and Switching Characteristics of a Non Punch-Through Insulated Gate Bipolar Transistor by Gamma Irradiation

Authors: Hani Baek, Gwang Min Sun, Chansun Shin, Sung Ho Ahn

Abstract:

Fast neutron irradiation using nuclear reactors is an effective method to improve switching loss and short circuit durability of power semiconductor (insulated gate bipolar transistors (IGBT) and insulated gate transistors (IGT), etc.). However, not only fast neutrons but also thermal neutrons, epithermal neutrons and gamma exist in the nuclear reactor. And the electrical properties of the IGBT may be deteriorated by the irradiation of gamma. Gamma irradiation damages are known to be caused by Total Ionizing Dose (TID) effect and Single Event Effect (SEE), Displacement Damage. Especially, the TID effect deteriorated the electrical properties such as leakage current and threshold voltage of a power semiconductor. This work can confirm the effect of the gamma irradiation on the electrical properties of 600 V NPT-IGBT. Irradiation of gamma forms lattice defects in the gate oxide and Si-SiO2 interface of the IGBT. It was confirmed that this lattice defect acts on the center of the trap and affects the threshold voltage, thereby negatively shifted the threshold voltage according to TID. In addition to the change in the carrier mobility, the conductivity modulation decreases in the n-drift region, indicating a negative influence that the forward voltage drop decreases. The turn-off delay time of the device before irradiation was 212 ns. Those of 2.5, 10, 30, 70 and 100 kRad(Si) were 225, 258, 311, 328, and 350 ns, respectively. The gamma irradiation increased the turn-off delay time of the IGBT by approximately 65%, and the switching characteristics deteriorated.

Keywords: NPT-IGBT, gamma irradiation, switching, turn-off delay time, recombination, trap center

Procedia PDF Downloads 153
2923 Performance Analysis of BPJLT with Different Gate and Spacer Materials

Authors: Porag Jyoti Ligira, Gargi Khanna

Abstract:

The paper presents a simulation study of the electrical characteristic of Bulk Planar Junctionless Transistor (BPJLT) using spacer. The BPJLT is a transistor without any PN junctions in the vertical direction. It is a gate controlled variable resistor. The characteristics of BPJLT are analyzed by varying the oxide material under the gate. It can be shown from the simulation that an ideal subthreshold slope of ~60 mV/decade can be achieved by using highk dielectric. The effects of variation of spacer length and material on the electrical characteristic of BPJLT are also investigated in the paper. The ION / IOFF ratio improvement is of the order of 107 and the OFF current reduction of 10-4 is obtained by using gate dielectric of HfO2 instead of SiO2.

Keywords: spacer, BPJLT, high-k, double gate

Procedia PDF Downloads 425
2922 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 112