Search results for: demonstration wildfire detection and action from space
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9576

Search results for: demonstration wildfire detection and action from space

9156 A Reduced Distributed Sate Space for Modular Petri Nets

Authors: Sawsen Khlifa, Chiheb AMeur Abid, Belhassan Zouari

Abstract:

Modular verification approaches have been widely attempted to cope with the well known state explosion problem. This paper deals with the modular verification of modular Petri nets. We propose a reduced version for the modular state space of a given modular Petri net. The new structure allows the creation of smaller modular graphs. Each one draws the behavior of the corresponding module and outlines some global information. Hence, this version helps to overcome the explosion problem and to use less memory space. In this condensed structure, the verification of some generic properties concerning one module is limited to the exploration of its associated graph.

Keywords: distributed systems, modular verification, petri nets, state space explosition

Procedia PDF Downloads 117
9155 Using Artificial Vision Techniques for Dust Detection on Photovoltaic Panels

Authors: Gustavo Funes, Eduardo Peters, Jose Delpiano

Abstract:

It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more, lowering the energy production and module lifespan. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an autonomous way. We performed several experiments photographing three different types of panels, 30W, 340W and 410W. Those panels were soiled artificially with uniform and non-uniform distributed dust. The algorithm proposed uses statistical tools to provide a simulation with a 100% soiled panel and then performs a comparison to get the percentage of dirt in the experimental data set. The simulation uses a seed that is obtained by taking a dust sample from the maximum amount of dust from the dataset. The final result is the dirt percentage and the possible distribution of dust over the panel. Dust deposition is a key factor for plant owners to determine cleaning cycles or identify nonuniform depositions that could lead to module failure and hot spots.

Keywords: dust detection, photovoltaic, artificial vision, soiling

Procedia PDF Downloads 50
9154 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy

Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed

Abstract:

The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.

Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy

Procedia PDF Downloads 540
9153 Modelling Residential Space Heating Energy for Romania

Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala

Abstract:

This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.

Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies

Procedia PDF Downloads 543
9152 Urban Spatial Experience Construction Strategies Under the Intervention of Online Media: A Case Study of Liziba Light Rail Station in Chongqing

Authors: Zhongde Wang, Fanwei Meng, Ling Yang

Abstract:

Today, social media deeply engages in urban spatial production in a ‘Disembedding’ form, allowing the public to ‘foresight’ physical spaces through online platforms and subsequently engage in corresponding ‘sight’ and visits, thus leading to the emergence of ‘Internet Celebrity Spots’. This paper delves into the laws of action of online media, focusing on experiences. From the perspectives of the public, space, and media, it thoroughly analyzes the experiential design strategies of Chongqing's Liziba Light Rail Station, including the construction of the experiential mainline capturing the matrix of public behavior, the creation of experiential sidelines leveraging spatial advantages, and the deepening of experiential touchpoints to promote media resonance. This analysis aims to provide insights and references for similar urban spaces to transition from ‘internet-famous’ to ‘real-famous’ attractions.

Keywords: online media, urban space, disembedding, internet celebrity spots, experience design

Procedia PDF Downloads 68
9151 Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece

Authors: K. Vallianou, T. Alexopoulos, V. Plaka, M. K. Seleventi, V. Skanavis, C. Skanavis

Abstract:

The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.

Keywords: community resilience, natural disasters, place attachment, wildfire

Procedia PDF Downloads 103
9150 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy

Authors: Isao Tomita

Abstract:

The detection of environmental gases, 12CO_2, 13CO_2, and CH_4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO_2 of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO_2 peaks. In addition, the detection of 12CO_2 peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.

Keywords: environmental gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy, gas pressure

Procedia PDF Downloads 423
9149 Space Tourism Pricing Model Revolution from Time Independent Model to Time-Space Model

Authors: Kang Lin Peng

Abstract:

Space tourism emerged in 2001 and became famous in 2021, following the development of space technology. The space market is twisted because of the excess demand. Space tourism is currently rare and extremely expensive, with biased luxury product pricing, which is the seller’s market that consumers can not bargain with. Spaceship companies such as Virgin Galactic, Blue Origin, and Space X have been charged space tourism prices from 200 thousand to 55 million depending on various heights in space. There should be a reasonable price based on a fair basis. This study aims to derive a spacetime pricing model, which is different from the general pricing model on the earth’s surface. We apply general relativity theory to deduct the mathematical formula for the space tourism pricing model, which covers the traditional time-independent model. In the future, the price of space travel will be different from current flight travel when space travel is measured in lightyear units. The pricing of general commodities mainly considers the general equilibrium of supply and demand. The pricing model considers risks and returns with the dependent time variable as acceptable when commodities are on the earth’s surface, called flat spacetime. Current economic theories based on the independent time scale in the flat spacetime do not consider the curvature of spacetime. Current flight services flying the height of 6, 12, and 19 kilometers are charging with a pricing model that measures time coordinate independently. However, the emergence of space tourism is flying heights above 100 to 550 kilometers that have enlarged the spacetime curvature, which means tourists will escape from a zero curvature on the earth’s surface to the large curvature of space. Different spacetime spans should be considered in the pricing model of space travel to echo general relativity theory. Intuitively, this spacetime commodity needs to consider changing the spacetime curvature from the earth to space. We can assume the value of each spacetime curvature unit corresponding to the gradient change of each Ricci or energy-momentum tensor. Then we know how much to spend by integrating the spacetime from the earth to space. The concept is adding a price p component corresponding to the general relativity theory. The space travel pricing model degenerates into a time-independent model, which becomes a model of traditional commodity pricing. The contribution is that the deriving of the space tourism pricing model will be a breakthrough in philosophical and practical issues for space travel. The results of the space tourism pricing model extend the traditional time-independent flat spacetime mode. The pricing model embedded spacetime as the general relativity theory can better reflect the rationality and accuracy of space travel on the universal scale. The universal scale from independent-time scale to spacetime scale will bring a brand-new pricing concept for space traveling commodities. Fair and efficient spacetime economics will also bring to humans’ travel when we can travel in lightyear units in the future.

Keywords: space tourism, spacetime pricing model, general relativity theory, spacetime curvature

Procedia PDF Downloads 129
9148 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection

Authors: Tim Farrelly

Abstract:

In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.

Keywords: deep learning, object detection, machine vision applications, sport, network design

Procedia PDF Downloads 149
9147 Anomaly Detection of Log Analysis using Data Visualization Techniques for Digital Forensics Audit and Investigation

Authors: Mohamed Fadzlee Sulaiman, Zainurrasyid Abdullah, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin

Abstract:

In common digital forensics cases, investigation may rely on the analysis conducted on specific and relevant exhibits involved. Usually the investigation officer may define and advise digital forensic analyst about the goals and objectives to be achieved in reconstructing the trail of evidence while maintaining the specific scope of investigation. With the technology growth, people are starting to realize the importance of cyber security to their organization and this new perspective creates awareness that digital forensics auditing must come in place in order to measure possible threat or attack to their cyber-infrastructure. Instead of performing investigation on incident basis, auditing may broaden the scope of investigation to the level of anomaly detection in daily operation of organization’s cyber space. While handling a huge amount of data such as log files, performing digital forensics audit for large organization proven to be onerous task for the analyst either to analyze the huge files or to translate the findings in a way where the stakeholder can clearly understand. Data visualization can be emphasized in conducting digital forensic audit and investigation to resolve both needs. This study will identify the important factors that should be considered to perform data visualization techniques in order to detect anomaly that meet the digital forensic audit and investigation objectives.

Keywords: digital forensic, data visualization, anomaly detection , log analysis, forensic audit, visualization techniques

Procedia PDF Downloads 287
9146 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier

Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat

Abstract:

Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.

Keywords: arrhythmic beat detection, ECG, HRV, kNN classifier

Procedia PDF Downloads 352
9145 Einstein’s General Equation of the Gravitational Field

Authors: A. Benzian

Abstract:

The generalization of relativistic theory of gravity based essentially on the principle of equivalence stipulates that for all bodies, the grave mass is equal to the inert mass which leads us to believe that gravitation is not a property of the bodies themselves, but of space, and the conclusion that the gravitational field must curved space-time what allows the abandonment of Minkowski space (because Minkowski space-time being nonetheless null curvature) to adopt Riemannian geometry as a mathematical framework in order to determine the curvature. Therefore the work presented in this paper begins with the evolution of the concept of gravity then tensor field which manifests by Riemannian geometry to formulate the general equation of the gravitational field.

Keywords: inertia, principle of equivalence, tensors, Riemannian geometry

Procedia PDF Downloads 152
9144 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 193
9143 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 109
9142 Health Benefit and Mechanism from Green Open Space: A Pathway to Connect Health to Design and Planning

Authors: Ming Ma, Rui Li

Abstract:

In the highly urbanized district, green open space is playing an important role in human’s health and wellbeing as a physical, aesthetic and natural environment resources. The aim of this paper is to close this gap through providing a comprehensive, qualitative meta-analysis of existing studies related to this issue. A systematic scoping of current quantitative research is conducted which mostly focused on cross-sectional survey and experimental studies. Health benefits from contact with green open space could be categorized into physical health, psychological health and social wellbeing. Mechanism for the health related to green open space could be clearly identified with the regard to natural restoration, physical activities and social capital. These results indicate a multiple pathways framework between the health benefits and mechanism. In order to support design and planning, the most evident relationship was picked up that people could psychologically benefit from green open space through outdoors physical activities. Additionally, three design and planning strategies are put forward. Various and multi-level contacts with green open space would be considered as an explanation of the pathway results and tie to bridge the health to design and planning. There is a need to carry out long-term research emphasizing on causal relationship between health and green open space through excluding cofounding factors such as self-selection.

Keywords: urban green open space, planning and design, health benefit, mechanism, pathway framework

Procedia PDF Downloads 322
9141 Intrusion Detection System Based on Peer to Peer

Authors: Alireza Pour Ebrahimi, Vahid Abasi

Abstract:

Recently by the extension of internet usage, Research on the intrusion detection system takes a significant importance. Many of improvement systems prevent internal and external network attacks by providing security through firewalls and antivirus. In recently years, intrusion detection systems gradually turn from host-based systems and depend on O.S to the distributed systems which are running on multiple O.S. In this work, by considering the diversity of computer networks whit respect to structure, architecture, resource, services, users and also security goals requirement a fully distributed collaborative intrusion detection system based on peer to peer architecture is suggested. in this platform each partner device (matched device) considered as a peer-to-peer network. All transmitted information to network are visible only for device that use security scanning of a source. Experimental results show that the distributed architecture is significantly upgradeable in respect to centralized approach.

Keywords: network, intrusion detection system, peer to peer, internal and external network

Procedia PDF Downloads 551
9140 Engaging Students in Learning through Visual Demonstration Models in Engineering Education

Authors: Afsha Shaikh, Mohammed Azizur Rahman, Ibrahim Hassan, Mayur Pal

Abstract:

Student engagement in learning is instantly affected by the sources of learning methods available for them, such as videos showing the applications of the concept or showing a practical demonstration. Specific to the engineering discipline, there exist enormous challenging concepts that can be simplified when they are connected to real-world scenarios. For this study, the concept of heat exchangers was used as it is a part of multidisciplinary engineering fields. To make the learning experience enjoyable and impactful, 3-D printed heat exchanger models were created for students to use while working on in-class activities and assignments. Students were encouraged to use the 3-D printed heat exchanger models to enhance their understanding of theoretical concepts associated with its applications. To assess the effectiveness of the method, feedback was received by students pursuing undergraduate engineering via an anonymous electronic survey. To make the feedback more realistic, unbiased, and genuine, students spent nearly two to three weeks using the models in their in-class assignments. The impact of these tools on their learning was assessed through their performance in their ungraded assignments as well as their interactive discussions with peers. ‘Having to apply the theory learned in class whilst discussing with peers on a class assignment creates a relaxed and stress-free learning environment in classrooms’; this feedback was received by more than half the students who took the survey and found 3-D models of heat exchanger very easy to use. Amongst many ways to enhance learning and make students more engaged through interactive models, this study sheds light on the importance of physical tools that help create a lasting mental representation in the minds of students. Moreover, in this technologically enhanced era, the concept of augmented reality was considered in this research. E-drawings application was recommended to enhance the vision of engineering students so they can see multiple views of the detailed 3-D models and cut through its different sides and angles to visualize it properly. E-drawings could be the next tool to implement in classrooms to enhance students’ understanding of engineering concepts.

Keywords: student engagement, life-long-learning, visual demonstration, 3-D printed models, engineering education

Procedia PDF Downloads 116
9139 Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols

Authors: V. Verma, Syed Riyaz-ul-Hassan

Abstract:

Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk.

Keywords: food Pathogens, PCR technology, rapid and specific detection, staphylococcus aureus

Procedia PDF Downloads 513
9138 The Effect of Physical and Functional Structure on Citizens` Social Behavior: Case Study of Valiasr Crossroads, Tehran, Iran

Authors: Seyedeh Samaneh Hosseini Yousefi

Abstract:

Space does not play role just in mentioning the place or locations. It also takes part in people attendance and social structures. Urban space is of substantial aspects of city which is a public sphere for free and unlimited appearance of citizens. Along with such appearances and regarding physical, environmental and functional conditions, different personal and social behaviors can be seen and analyzed toward people. The main principle of an urban space is including social relations and communications. In this survey, urban space has been referred to one in which physical, environmental and functional attractions cause pause and staying of people. Surveys have shown that urban designers have discussed about place more than architects or planners. With attention to mutual relations between urban space, society and civilization, proper policy making and planning are essential due to achieving an ideal urban space. The survey has been decided to analyze the effect of functional and physical structure of urban spaces on citizens' social behaviors. Hence, Valiasr crossroads, Tehran identified public space, has been selected in which analytic-descriptive method utilized. To test the accuracy of assumptions, statistical test has been accomplished by SPSS. Findings have shown that functional structure affects social behaviors, relations, integration and participation more than physical structure does.

Keywords: citizens' social behavior, functional structure, physical structure, urban space

Procedia PDF Downloads 503
9137 The Research of Reliability of MEMS Device under Thermal Shock Test in Space Mission

Authors: Liu Ziyu, Gao Yongfeng, Li Muhua, Zhao Jiahao, Meng Song

Abstract:

The effect of thermal shock on the operation of micro electromechanical systems (MEMS) were examined. All MEMS device were tested before and after three different conditions of thermal shock (from -55℃ to 85℃, from -65℃ to 125℃, from -65℃ to 200℃). The micro lens showed no changes after thermal shock, which shows that the design of the micro lens can be well adapted to the application environment in the space. The design of the micro mirror can be well adapted to the space application environment. The micro-magnetometer, RF MEMS switch and the micro accelerometer exhibited degradation and parameter drift after thermal shock, potential mechanical was proposed.

Keywords: MEMS, thermal shock test, reliability, space environment

Procedia PDF Downloads 590
9136 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen

Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi

Abstract:

In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.

Keywords: chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization

Procedia PDF Downloads 341
9135 Learning Vocabulary with SkELL: Developing a Methodology with University Students in Japan Using Action Research

Authors: Henry R. Troy

Abstract:

Corpora are becoming more prevalent in the language classroom, especially in the development of dictionaries and course materials. Nevertheless, corpora are still perceived by many educators as difficult to use directly in the classroom, a process which is also known as “data-driven learning” (DDL). Action research has been identified as a method by which DDL’s efficiency can be increased, but it is also an approach few studies on DDL have employed. Studies into the effectiveness of DDL in language education in Japan are also rare, and investigations focused more on student and teacher reactions rather than pre and post-test scores are rarer still. This study investigates the student and teacher reactions to the use of SkELL, a free online corpus designed to be user-friendly, for vocabulary learning at a university in Japan. Action research is utilized to refine the teaching methodology, with changes to the method based on student and teacher feedback received via surveys submitted after each of the four implementations of DDL. After some training, the students used tablets to study the target vocabulary autonomously in pairs and groups, with the teacher acting as facilitator. The results show that the students enjoyed using SkELL and felt it was effective for vocabulary learning, while the teaching methodology grew in efficiency throughout the course. These findings suggest that action research can be a successful method for increasing the efficacy of DDL in the language classroom, especially with teachers and students who are new to the practice.

Keywords: action research, corpus linguistics, data-driven learning, vocabulary learning

Procedia PDF Downloads 251
9134 Spatial Optimization of Riverfront Street Based on Inclusive Design

Authors: Lianxue Shi

Abstract:

Riverfront street has the dual characteristics of street space and waterfront space, which is not only a vital place for residents to travel and communicate but also a high-frequency space for people's leisure and entertainment. However, under the development of cities and towns pursuing efficiency, riverfront streets appear to have a variety of problems, such as a lack of multifunctionality, insufficient facilities, and loss of characteristics, which fail to meet the needs of various groups of people, and their inclusiveness is facing a great challenge. It is, therefore, evident that the optimization of riverfront street space from an inclusivity perspective is important to the establishment of a human-centered, high-quality urban space. Therefore, this article starts by exploring the interactive relationship between inclusive design and street space. Based on the analysis of the characteristics of the riverfront street space and people's needs, it proposes the four inclusive design orientations of natural inclusion, group inclusion, spatial inclusion, and social inclusion. It then constructs a design framework for the inclusive optimization of riverfront street space, aiming to create streets that are “safe and accessible, diverse and shared, distinctive and friendly, green and sustainable”. Riverfront streets in Wansheng District, Chongqing, are selected as a practice case, and specific strategies are put forward in four aspects: the creation of an accessible slow-traffic system, the provision of diversified functional services, the reshaping of emotional bonds and the integration of ecological spaces.

Keywords: inclusiveness design, riverfront street, spatial optimization, street spaces

Procedia PDF Downloads 36
9133 The Impact of Public Open Space System on Housing Price in Chicago

Authors: Si Chen, Le Zhang, Xian He

Abstract:

The research explored the influences of public open space system on housing price through hedonic models, in order to support better open space plans and economic policies. We have three initial hypotheses: 1) public open space system has an overall positive influence on surrounding housing prices. 2) Different public open space types have different levels of influence on motivating surrounding housing prices. 3) Walking and driving accessibilities from property to public open spaces have different statistical relation with housing prices. Cook County, Illinois, was chosen to be a study area since data availability, sufficient open space types, and long-term open space preservation strategies. We considered the housing attributes, driving and walking accessibility scores from houses to nearby public open spaces, and driving accessibility scores to hospitals as influential features and used real housing sales price in 2010 as a dependent variable in the built hedonic model. Through ordinary least squares (OLS) regression analysis, General Moran’s I analysis and geographically weighted regression analysis, we observed the statistical relations between public open spaces and housing sale prices in the three built hedonic models and confirmed all three hypotheses.

Keywords: hedonic model, public open space, housing sale price, regression analysis, accessibility score

Procedia PDF Downloads 134
9132 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: canny pruning, hand recognition, machine learning, skin tracking

Procedia PDF Downloads 185
9131 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection

Authors: Weihao Wang, Zhulin Zong

Abstract:

Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.

Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals

Procedia PDF Downloads 79
9130 Tool for Fast Detection of Java Code Snippets

Authors: Tomáš Bublík, Miroslav Virius

Abstract:

This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and sub graph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.

Keywords: AST, Java, tree matching, scripthon source code recognition

Procedia PDF Downloads 426
9129 Using Action Research to Digitize Theses and Journal Articles at the Main Library, Sultan Qaboos University, Oman

Authors: Nabhan H. N. Al-Harrasi

Abstract:

Action Research (AR) plays an important role in improving the problematical situation. It is a process that enhances thinking and practise and bridges the gap between abstract and concrete thinking. Nowadays, AR as a methodology is wildly used to implement projects based on understanding the needs of owners, considering the organizational culture, meeting the requirements, encouraging partnership, representing different viewpoints, and building the project. This research describes the whole processes of digitizing Post-graduate theses and all articles published in 6 Journals at Sultan Qaboos University. AR implemented to respond to the university needs to enhance accessibilities to its information resources and make them available through the national repository. In order to prepare the action plan, the library administration met to discuss several points related to the proposed project, the most important of which are: • Providing digitalization devices. • Locating a specific part of the Library as a Digitization Unit. • Choosing a team. • Defining tasks. • Implementing the proposed project and evaluating the whole processes.

Keywords: action research, digitization, Theses, Journal articles, open access, Oman

Procedia PDF Downloads 181
9128 Analysis of Labor Behavior Effect on Occupational Health and Safety Management by Multiple Linear Regression

Authors: Yulinda Rizky Pratiwi, Fuji Anugrah Emily

Abstract:

Management of Occupational Safety and Health (OSH) are appropriately applied properly by all workers and pekarya in the company. K3 management application also has become very important to prevent accidents. Violation of the rules regarding the K3 has often occurred from time to time. By 2015 the number of occurrences of a violation of the K3 or so-called unsafe action tends to increase. Until finally in January 2016, the number increased drastically unsafe action. Trigger increase in the number of unsafe action is a decrease in the quality of management practices K3. While the application of K3 management performed by each individual thought to be influenced by the attitude and observation guide the actions of each of the individual. In addition to the decline in the quality of K3 management application may result in increased likelihood of accidents and losses for the company as well as the local co-workers. The big difference in the number of unsafe action is very significant in the month of January 2016, making the company Pertamina as the national oil company must do a lot of effort to keep track of how the implementation of K3 management on every worker and pekarya, one at PT Pertamina EP Cepu Field Asset IV. To consider the effort to control the implementation of K3 management can be seen from the attitude and observation guide the actions of the workers and pekarya. By using Multiple Linear Regression can be seen the influence of attitude and action observation guide workers and pekarya the K3 management application that has been done. The results showed that scores K3 management application of each worker and pekarya will increase by 0.764 if the score pekarya worker attitudes and increase one unit, whereas if the score Reassurance action guidelines and pekarya workers increased by one unit then the score management application K3 will increase by 0.754.

Keywords: occupational safety and health, management of occupational safety and health, unsafe action, multiple linear regression

Procedia PDF Downloads 230
9127 Understanding the Impact of Ambience, Acoustics, and Chroma on User Experience through Different Mediums and Study Scenarios

Authors: Mushty Srividya

Abstract:

Humans that inhabit a designed space consciously or unconsciously accept the spaces which have an impact on how they perceive, feel and act accordingly. Spaces that are more interactive and communicative with the human senses become more interesting. Interaction in architecture is the art of building relationships between the user and the spaces. Often spaces are form-based, function-based or aesthetically pleasing spaces but they are not interactive with the user which actually has a greater impact on how the user perceives the designed space and appreciate it. It is very necessary for a designer to understand and appreciate the human character and design accordingly, wherein the user gets the flexibility to explore and experience it for themselves rather than the designed space dictating the user how to perceive or feel in that space. In this interaction between designed spaces and the user, a designer needs to understand the spatial potential and user’s needs because the design language varies with varied situations in accordance with these factors. Designers often have the tendency to construct spaces with their perspectives, observations, and sense the space in their range of different angles rather than the users. It is, therefore, necessary to understand the potential of the space by understanding different factors and improve the quality of space with the help of creating better interactive spaces. For an interaction to occur between the user and space, there is a need for some medium. In this paper, light, color, and sound will be used as the mediums to understand and create interactions between the user and space, considering these to be the primary sources which would not require any physical touch in the space and would help in triggering the human senses. This paper involves in studying and understanding the impact of light, color and sound on different typologies of spaces on the user through different findings, articles, case studies and surveys and try to get links between these three mediums to create an interaction. This paper also deals with understanding in which medium takes an upper hand in a varied typology of spaces and identify different techniques which would create interactions between the user and space with the help of light, color, and sound.

Keywords: color, communicative spaces, human factors, interactive spaces, light, sound

Procedia PDF Downloads 213