Search results for: classification technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8438

Search results for: classification technique

8018 The Impact on the Composition of Survey Refusals΄ Demographic Profile When Implementing Different Classifications

Authors: Eva Tsouparopoulou, Maria Symeonaki

Abstract:

The internationally documented declining survey response rates of the last two decades are mainly attributed to refusals. In fieldwork, a refusal may be obtained not only from the respondent himself/herself, but from other sources on the respondent’s behalf, such as other household members, apartment building residents or administrator(s), and neighborhood residents. In this paper, we investigate how the composition of the demographic profile of survey refusals changes when different classifications are implemented and the classification issues arising from that. The analysis is based on the 2002-2018 European Social Survey (ESS) datasets for Belgium, Germany, and United Kingdom. For these three countries, the size of selected sample units coded as a type of refusal for all nine under investigation rounds was large enough to meet the purposes of the analysis. The results indicate the existence of four different possible classifications that can be implemented and the significance of choosing the one that strengthens the contrasts of the different types of respondents' demographic profiles. Since the foundation of social quantitative research lies in the triptych of definition, classification, and measurement, this study aims to identify the multiplicity of the definition of survey refusals as a methodological tool for the continually growing research on non-response.

Keywords: non-response, refusals, European social survey, classification

Procedia PDF Downloads 85
8017 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 331
8016 Adsorbed Probe Molecules on Surface for Analyzing the Properties of Cu/SnO2 Supported Catalysts

Authors: Neha Thakur, Pravin S. More

Abstract:

The interaction of CO, H2 and LPG with Cu-dosed SnO2 catalysts was studied by means of Fourier transform infrared spectroscopy (FTIR). With increasing Cu loading, pronounced and progressive red shifts of the C–O stretching frequency associated with molecular CO adsorbed on the Cu/SnO2 component were observed. This decrease in n(CO) correlates with enhancement of CO dissociation at higher temperatures on Cu promoted SnO2 catalysts under conditions, where clean Cu is almost ineffective. In the conclusion, the capability of our technique is discussed, and a technique for enhancing the sensitivity in our technique is proposed.

Keywords: FTIR, spectroscopic, dissociation, n(CO)

Procedia PDF Downloads 305
8015 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 456
8014 Population Dynamics and Land Use/Land Cover Change on the Chilalo-Galama Mountain Range, Ethiopia

Authors: Yusuf Jundi Sado

Abstract:

Changes in land use are mostly credited to human actions that result in negative impacts on biodiversity and ecosystem functions. This study aims to analyze the dynamics of land use and land cover changes for sustainable natural resources planning and management. Chilalo-Galama Mountain Range, Ethiopia. This study used Thematic Mapper 05 (TM) for 1986, 2001 and Landsat 8 (OLI) data 2017. Additionally, data from the Central Statistics Agency on human population growth were analyzed. Semi-Automatic classification plugin (SCP) in QGIS 3.2.3 software was used for image classification. Global positioning system, field observations and focus group discussions were used for ground verification. Land Use Land Cover (LU/LC) change analysis was using maximum likelihood supervised classification and changes were calculated for the 1986–2001 and the 2001–2017 and 1986-2017 periods. The results show that agricultural land increased from 27.85% (1986) to 44.43% and 51.32% in 2001 and 2017, respectively with the overall accuracies of 92% (1986), 90.36% (2001), and 88% (2017). On the other hand, forests decreased from 8.51% (1986) to 7.64 (2001) and 4.46% (2017), and grassland decreased from 37.47% (1986) to 15.22%, and 15.01% in 2001 and 2017, respectively. It indicates for the years 1986–2017 the largest area cover gain of agricultural land was obtained from grassland. The matrix also shows that shrubland gained land from agricultural land, afro-alpine, and forest land. Population dynamics is found to be one of the major driving forces for the LU/LU changes in the study area.

Keywords: Landsat, LU/LC change, Semi-Automatic classification plugin, population dynamics, Ethiopia

Procedia PDF Downloads 85
8013 Pre-Industrial Local Architecture According to Natural Properties

Authors: Selin Küçük

Abstract:

Pre-industrial architecture is integration of natural and subsequent properties by intelligence and experience. Since various settlements relatively industrialized or non-industrialized at any time, ‘pre-industrial’ term does not refer to a definite time. Natural properties, which are existent conditions and materials in natural local environment, are climate, geomorphology and local materials. Subsequent properties, which are all anthropological comparatives, are culture of societies, requirements of people and construction techniques that people use. Yet, after industrialization, technology took technique’s place, cultural effects are manipulated, requirements are changed and local/natural properties are almost disappeared in architecture. Technology is universal, global and expands simply; conversely technique is time and experience dependent and should has a considerable cultural background. This research is about construction techniques according to natural properties of a region and classification of these techniques. Understanding local architecture is only possible by searching its background which is hard to reach. There are always changes in positive and negative in architectural techniques through the time. Archaeological layers of a region sometimes give more accurate information about transformation of architecture. However, natural properties of any region are the most helpful elements to perceive construction techniques. Many international sources from different cultures are interested in local architecture by mentioning natural properties separately. Unfortunately, there is no literature deals with this subject as far as systematically in the correct way. This research aims to improve a clear perspective of local architecture existence by categorizing archetypes according to natural properties. The ultimate goal of this research is generating a clear classification of local architecture independent from subsequent (anthropological) properties over the world such like a handbook. Since local architecture is the most sustainable architecture with refer to its economic, ecologic and sociological properties, there should be an excessive information about construction techniques to be learned from. Constructing the same buildings in all over the world is one of the main criticism of modern architectural system. While this critics going on, the same buildings without identity increase incrementally. In post-industrial term, technology widely took technique’s place, yet cultural effects are manipulated, requirements are changed and natural local properties are almost disappeared in architecture. These study does not offer architects to use local techniques, but it indicates the progress of pre-industrial architectural evolution which is healthier, cheaper and natural. Immigration from rural areas to developing/developed cities should be prohibited, thus culture and construction techniques can be preserved. Since big cities have psychological, sensational and sociological impact on people, rural settlers can be convinced to not to immigrate by providing new buildings designed according to natural properties and maintaining their settlements. Improving rural conditions would remove the economical and sociological gulf between cities and rural. What result desired to arrived in, is if there is no deformation (adaptation process of another traditional buildings because of immigration) or assimilation in a climatic region, there should be very similar solutions in the same climatic regions of the world even if there is no relationship (trade, communication etc.) among them.

Keywords: climate zones, geomorphology, local architecture, local materials

Procedia PDF Downloads 428
8012 Applying Dictogloss Technique to Improve Auditory Learners’ Writing Skills in Second Language Learning

Authors: Aji Budi Rinekso

Abstract:

There are some common problems that are often faced by students in writing. The problems are related to macro and micro skills of writing, such as incorrect spellings, inappropriate diction, grammatical errors, random ideas, and irrelevant supporting sentences. Therefore, it is needed a teaching technique that can solve those problems. Dictogloss technique is a teaching technique that involves listening practices. So, it is a suitable teaching technique for students with auditory learning style. Dictogloss technique comprises of four basic steps; (1) warm up, (2) dictation, (3) reconstruction and (4) analysis and correction. Warm up is when students find out about topics and do some preparatory vocabulary works. Then, dictation is when the students listen to texts read at normal speed by a teacher. The text is read by the teacher twice where at the first reading the students only listen to the teacher and at the second reading the students listen to the teacher again and take notes. Next, reconstruction is when the students discuss the information from the text read by the teacher and start to write a text. Lastly, analysis and correction are when the students check their writings and revise them. Dictogloss offers some advantages in relation to the efforts of improving writing skills. Through the use of dictogloss technique, students can solve their problems both on macro skills and micro skills. Easier to generate ideas and better writing mechanics are the benefits of dictogloss.

Keywords: auditory learners, writing skills, dictogloss technique, second language learning

Procedia PDF Downloads 143
8011 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning

Procedia PDF Downloads 230
8010 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets

Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou

Abstract:

Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.

Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification

Procedia PDF Downloads 405
8009 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 125
8008 Tea (Camellia sinensis (L.) O. Kuntze) Typology in Kenya: A Review

Authors: Joseph Kimutai Langat

Abstract:

Tea typology is the science of classifying tea. This study was carried out between November 2023 and July 2024, whose main objective was to investigate the typological classification nomenclature of processed tea in the world, narrowing down to Kenya. Centres of origin, historical background, tea growing region, scientific naming system, market, fermentation levels, processing/ oxidation levels and cultural reasons are used to classify tea at present. Of these, the most common typology is by oxidation, and more specifically, by the production methods within the oxidation categories. While the Asian tea producing countries categorises tea products based on the decreasing oxidation levels during the manufacturing process: black tea, green tea, oolong tea and instant tea, Kenya’s tea typology system is based on the degree of fermentation process, i.e. black tea, purple tea, green tea and white tea. Tea is also classified into five categories: black tea, green tea, white tea, oolong tea, and dark tea. Black tea is the main tea processed and exported in Kenya, manufactured mainly by withering, rolling, or by use of cutting-tearing-curling (CTC) method that ensures efficient conversion of leaf herbage to made tea, oxidizing, and drying before being sorted into different grades. It is from these varied typological methods that this review paper concludes that different regions of the world use different classification nomenclature. Therefore, since tea typology is not standardized, it is recommended that a global tea regulator dealing in tea classification be created to standardize tea typology, with domestic in-country regulatory bodies in tea growing countries accredited to implement the global-wide typological agreements and resolutions.

Keywords: classification, fermentation, oxidation, tea, typology

Procedia PDF Downloads 40
8007 Classification of Crisp Petri Nets

Authors: Riddhi Jangid, Gajendra Pratap Singh

Abstract:

Petri nets, a formalized modeling language that was introduced back around 50-60 years, have been widely used for modeling discrete event dynamic systems and simulating their behavior. Reachability analysis of Petri nets gives many insights into a modeled system. This idea leads us to study the reachability technique and use it in the reachability problem in the state space of reachable markings. With the same concept, Crisp Boolean Petri nets were defined in which the marking vectors that are boolean are distinct in the reachability analysis of the nets. We generalize the concept and define ‘Crisp’ Petri nets that generate the marking vectors exactly once in their reachability-based analysis, not necessarily Boolean.

Keywords: marking vector, n-vector, Petri nets, reachability

Procedia PDF Downloads 82
8006 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 367
8005 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: mung bean, near infrared, germinatability, hard seed

Procedia PDF Downloads 305
8004 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 351
8003 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 410
8002 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 134
8001 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
8000 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 332
7999 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information

Authors: Babar Khan, Wang Zhijie

Abstract:

Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.

Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel

Procedia PDF Downloads 485
7998 A New Scheme for Chain Code Normalization in Arabic and Farsi Scripts

Authors: Reza Shakoori

Abstract:

This paper presents a structural correction of Arabic and Persian strokes using manipulation of their chain codes in order to improve the rate and performance of Persian and Arabic handwritten word recognition systems. It collects pure and effective features to represent a character with one consolidated feature vector and reduces variations in order to decrease the number of training samples and increase the chance of successful classification. Our results also show that how the proposed approaches can simplify classification and consequently recognition by reducing variations and possible noises on the chain code by keeping orientation of characters and their backbone structures.

Keywords: Arabic, chain code normalization, OCR systems, image processing

Procedia PDF Downloads 404
7997 Buzan Mind Mapping: An Efficient Technique for Note-Taking

Authors: T. K. Tee, M. N. A. Azman, S. Mohamed, M. Muhammad, M. M. Mohamad, J. Md Yunos, M. H. Yee, W. Othman

Abstract:

Buzan mind mapping is an efficient system of note-taking that makes revision a fun thing to do for students. Tony Buzan has been teaching children all over the world for the past thirty years and has proved that mind maps are the magic formula in the classroom for everyone. The purpose of this paper is to discuss the importance of Buzan mind mapping as a note-taking technique for the secondary school students. This paper also examines the mind mapping technique, advantages and disadvantages of hand-drawn mind maps. Samples of students’ mind maps were presented and discussed.

Keywords: Buzan mind mapping, note-taking technique, hand-drawn, mind maps

Procedia PDF Downloads 538
7996 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection

Authors: Hamidullah Binol, Abdullah Bal

Abstract:

Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.

Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods

Procedia PDF Downloads 431
7995 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking

Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine

Abstract:

In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.

Keywords: lifting wavelet transform (LWT), sub-space vectorial decomposition, secure, image watermarking, watermark

Procedia PDF Downloads 276
7994 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
7993 Reservoir Fluids: Occurrence, Classification, and Modeling

Authors: Ahmed El-Banbi

Abstract:

Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.

Keywords: PVT models, fluid types, PVT properties, fluids classification

Procedia PDF Downloads 72
7992 Short Text Classification for Saudi Tweets

Authors: Asma A. Alsufyani, Maram A. Alharthi, Maha J. Althobaiti, Manal S. Alharthi, Huda Rizq

Abstract:

Twitter is one of the most popular microblogging sites that allows users to publish short text messages called 'tweets'. Increasing the number of accounts to follow (followings) increases the number of tweets that will be displayed from different topics in an unclassified manner in the timeline of the user. Therefore, it can be a vital solution for many Twitter users to have their tweets in a timeline classified into general categories to save the user’s time and to provide easy and quick access to tweets based on topics. In this paper, we developed a classifier for timeline tweets trained on a dataset consisting of 3600 tweets in total, which were collected from Saudi Twitter and annotated manually. We experimented with the well-known Bag-of-Words approach to text classification, and we used support vector machines (SVM) in the training process. The trained classifier performed well on a test dataset, with an average F1-measure equal to 92.3%. The classifier has been integrated into an application, which practically proved the classifier’s ability to classify timeline tweets of the user.

Keywords: corpus creation, feature extraction, machine learning, short text classification, social media, support vector machine, Twitter

Procedia PDF Downloads 155
7991 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation

Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga

Abstract:

Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.

Keywords: classification, coastline, color, sea-land segmentation

Procedia PDF Downloads 247
7990 The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer

Authors: Rehan Siddiqui, Brendan Quine

Abstract:

The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes.

Keywords: radiance enhancement, radiative transfer, shortwave upwelling radiative flux, cloud reflectivity, greenhouse gases

Procedia PDF Downloads 336
7989 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 326