Search results for: circular building materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10647

Search results for: circular building materials

10227 New Platform of Biobased Aromatic Building Blocks for Polymers

Authors: Sylvain Caillol, Maxence Fache, Bernard Boutevin

Abstract:

Recent years have witnessed an increasing demand on renewable resource-derived polymers owing to increasing environmental concern and restricted availability of petrochemical resources. Thus, a great deal of attention was paid to renewable resources-derived polymers and to thermosetting materials especially, since they are crosslinked polymers and thus cannot be recycled. Also, most of thermosetting materials contain aromatic monomers, able to confer high mechanical and thermal properties to the network. Therefore, the access to biobased, non-harmful, and available aromatic monomers is one of the main challenges of the years to come. Starting from phenols available in large volumes from renewable resources, our team designed platforms of chemicals usable for the synthesis of various polymers. One of these phenols, vanillin, which is readily available from lignin, was more specifically studied. Various aromatic building blocks bearing polymerizable functions were synthesized: epoxy, amine, acid, carbonate, alcohol etc. These vanillin-based monomers can potentially lead to numerous polymers. The example of epoxy thermosets was taken, as there is also the problematic of bisphenol A substitution for these polymers. Materials were prepared from the biobased epoxy monomers obtained from vanillin. Their thermo-mechanical properties were investigated and the effect of the monomer structure was discussed. The properties of the materials prepared were found to be comparable to the current industrial reference, indicating a potential replacement of petrosourced, bisphenol A-based epoxy thermosets by biosourced, vanillin-based ones. The tunability of the final properties was achieved through the choice of monomer and through a well-controlled oligomerization reaction of these monomers. This follows the same strategy than the one currently used in industry, which supports the potential of these vanillin-derived epoxy thermosets as substitutes of their petro-based counterparts.

Keywords: lignin, vanillin, epoxy, amine, carbonate

Procedia PDF Downloads 224
10226 Analyzing the Heat Transfer Mechanism in a Tube Bundle Air-PCM Heat Exchanger: An Empirical Study

Authors: Maria De Los Angeles Ortega, Denis Bruneau, Patrick Sebastian, Jean-Pierre Nadeau, Alain Sommier, Saed Raji

Abstract:

Phase change materials (PCM) present attractive features that made them a passive solution for thermal comfort assessment in buildings during summer time. They show a large storage capacity per volume unit in comparison with other structural materials like bricks or concrete. If their use is matched with the peak load periods, they can contribute to the reduction of the primary energy consumption related to cooling applications. Despite these promising characteristics, they present some drawbacks. Commercial PCMs, as paraffines, offer a low thermal conductivity affecting the overall performance of the system. In some cases, the material can be enhanced, adding other elements that improve the conductivity, but in general, a design of the unit that optimizes the thermal performance is sought. The material selection is the departing point during the designing stage, and it does not leave plenty of room for optimization. The PCM melting point depends highly on the atmospheric characteristics of the building location. The selection must relay within the maximum, and the minimum temperature reached during the day. The geometry of the PCM container and the geometrical distribution of these containers are designing parameters, as well. They significantly affect the heat transfer, and therefore its phenomena must be studied exhaustively. During its lifetime, an air-PCM unit in a building must cool down the place during daytime, while the melting of the PCM occurs. At night, the PCM must be regenerated to be ready for next uses. When the system is not in service, a minimal amount of thermal exchanges is desired. The aforementioned functions result in the presence of sensible and latent heat storage and release. Hence different types of mechanisms drive the heat transfer phenomena. An experimental test was designed to study the heat transfer phenomena occurring in a circular tube bundle air-PCM exchanger. An in-line arrangement was selected as the geometrical distribution of the containers. With the aim of visual identification, the containers material and a section of the test bench were transparent. Some instruments were placed on the bench for measuring temperature and velocity. The PCM properties were also available through differential scanning calorimeter (DSC) tests. An evolution of the temperature during both cycles, melting and solidification were obtained. The results showed some phenomena at a local level (tubes) and on an overall level (exchanger). Conduction and convection appeared as the main heat transfer mechanisms. From these results, two approaches to analyze the heat transfer were followed. The first approach described the phenomena in a single tube as a series of thermal resistances, where a pure conduction controlled heat transfer was assumed in the PCM. For the second approach, the temperature measurements were used to find some significant dimensionless numbers and parameters as Stefan, Fourier and Rayleigh numbers, and the melting fraction. These approaches allowed us to identify the heat transfer phenomena during both cycles. The presence of natural convection during melting might have been stated from the influence of the Rayleigh number on the correlations obtained.

Keywords: phase change materials, air-PCM exchangers, convection, conduction

Procedia PDF Downloads 165
10225 Recommendation of Semi Permanent Buildings for Tsunami Prone Areas

Authors: Fitri Nugraheni, Adwitya Bhaskara, N. Faried Hanafi

Abstract:

Coastal is one area that can be a place to live. Various buildings can be built in the area around the beach. Many Indonesians use beaches as housing and work, but we know that coastal areas are identical to tsunami and wind. Costs incurred due to permanent damage caused by tsunamis and wind disasters in Indonesia can be minimized by replacing permanent buildings into semi-permanent buildings. Semi-permanent buildings can be realized by using cold-formed steel as a building. Thus, the purpose of this research is to provide efficient semi-permanent building recommendations for residents around the coast. The research is done by first designing the building model by using sketch-up software, then the validation phase is done in consultation with the expert consultant of cold form steel structure. Based on the results of the interview there are several revisions on several sides of the building by adding some bracing rods on the roof, walls and floor frame. The result of this research is recommendation of semi-permanent building model, where the nature of the building; easy to disassemble and install (knockdown), tsunami-friendly (continue the tsunami load), cost and time efficient (using cold-formed-steel and prefabricated GRC), zero waste, does not require many workers (less labor). The recommended building design concept also keeps the architecture side in mind thus it remains a comfortable occupancy for the residents.

Keywords: construction method, cold-formed steel, efficiency, semi-permanent building, tsunami

Procedia PDF Downloads 276
10224 Methodology to Assess the Circularity of Industrial Processes

Authors: Bruna F. Oliveira, Teresa I. Gonçalves, Marcelo M. Sousa, Sandra M. Pimenta, Octávio F. Ramalho, José B. Cruz, Flávia V. Barbosa

Abstract:

The EU Circular Economy action plan, launched in 2020, is one of the major initiatives to promote the transition into a more sustainable industry. The circular economy is a popular concept used by many companies nowadays. Some industries are better forwarded to this reality than others, and the tannery industry is a sector that needs more attention due to its strong environmental impact caused by its dimension, intensive resources consumption, lack of recyclability, and second use of its products, as well as the industrial effluents generated by the manufacturing processes. For these reasons, the zero-waste goal and the European objectives are further being achieved. In this context, a need arises to provide an effective methodology that allows to determine the level of circularity of tannery companies. Regarding the complexity of the circular economy concept, few factories have a specialist in sustainability to assess the company’s circularity or have the ability to implement circular strategies that could benefit the manufacturing processes. Although there are several methodologies to assess circularity in specific industrial sectors, there is not an easy go-to methodology applied in factories aiming for cleaner production. Therefore, a straightforward methodology to assess the level of circularity, in this case of a tannery industry, is presented and discussed in this work, allowing any company to measure the impact of its activities. The methodology developed consists in calculating the Overall Circular Index (OCI) by evaluating the circularity of four key areas -energy, material, economy and social- in a specific factory. The index is a value between 0 and 1, where 0 means a linear economy, and 1 is a complete circular economy. Each key area has a sub-index, obtained through key performance indicators (KPIs) regarding each theme, and the OCI reflects the average of the four sub-indexes. Some fieldwork in the appointed company was required in order to obtain all the necessary data. By having separate sub-indexes, one can observe which areas are more linear than others. Thus, it is possible to work on the most critical areas by implementing strategies to increase the OCI. After these strategies are implemented, the OCI is recalculated to check the improvements made and any other changes in the remaining sub-indexes. As such, the methodology in discussion works through continuous improvement, constantly reevaluating and improving the circularity of the factory. The methodology is also flexible enough to be implemented in any industrial sector by adapting the KPIs. This methodology was implemented in a selected Portuguese small and medium-sized enterprises (SME) tannery industry and proved to be a relevant tool to measure the circularity level of the factory. It was witnessed that it is easier for non-specialists to evaluate circularity and identify possible solutions to increase its value, as well as learn how one action can impact their environment. In the end, energetic and environmental inefficiencies were identified and corrected, increasing the sustainability and circularity of the company. Through this work, important contributions were provided, helping the Portuguese SMEs to achieve the European and UN 2030 sustainable goals.

Keywords: circular economy, circularity index, sustainability, tannery industry, zero-waste

Procedia PDF Downloads 59
10223 Use of Industrial Wastes for Production of Low-Cost Building Material

Authors: Frank Aneke, Elizabeth Theron

Abstract:

Demand for building materials in the last decade due to growing population, has caused scarcity of low-cost housing in South Africa. The investigation thoroughly examined dolomitic waste (DW), silica fume (SF) and River sand (RS) effects on the geotechnical behaviour of fly ash bricks. Bricks samples were prepared at different ratios as follows: I. FA1 contained FA70% + RS30%, II. FA2 contained FA60% + DW10%+RS30%, III. FA3 has a mix proportion of FA50% + DW20%+RS30%, IV. FA4 has a mix ratio FA40% + DW30%+RS30%, V. FA5 contained FA20% + DW40% + SF10%+RS30% by mass percentage of the FA material. However, utilization of this wastes in production of bricks, does not only produce a valuable commercial product that is cost effective, but also reduces a major waste disposal problem from the surrounding environment.

Keywords: bricks, dolomite, fly ash, industrial wastes

Procedia PDF Downloads 213
10222 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle

Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine

Abstract:

Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.

Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty

Procedia PDF Downloads 122
10221 Automatic Registration of Rail Profile Based Local Maximum Curvature Entropy

Authors: Hao Wang, Shengchun Wang, Weidong Wang

Abstract:

On the influence of train vibration and environmental noise on the measurement of track wear, we proposed a method for automatic extraction of circular arc on the inner or outer side of the rail waist and achieved the high-precision registration of rail profile. Firstly, a polynomial fitting method based on truncated residual histogram was proposed to find the optimal fitting curve of the profile and reduce the influence of noise on profile curve fitting. Then, based on the curvature distribution characteristics of the fitting curve, the interval search algorithm based on dynamic window’s maximum curvature entropy was proposed to realize the automatic segmentation of small circular arc. At last, we fit two circle centers as matching reference points based on small circular arcs on both sides and realized the alignment from the measured profile to the standard designed profile. The static experimental results show that the mean and standard deviation of the method are controlled within 0.01mm with small measurement errors and high repeatability. The dynamic test also verified the repeatability of the method in the train-running environment, and the dynamic measurement deviation of rail wear is within 0.2mm with high repeatability.

Keywords: curvature entropy, profile registration, rail wear, structured light, train-running

Procedia PDF Downloads 248
10220 Simulation of the Flow in a Circular Vertical Spillway Using a Numerical Model

Authors: Mohammad Zamani, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. A circular vertical spillway with various inlet forms is very effective when there is not enough space for the other spillway. Hydraulic flow in a vertical circular spillway is divided into three groups: free, orifice, and under pressure (submerged). In this research, the hydraulic flow characteristics of a Circular Vertical Spillway are investigated with the CFD model. Two-dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k-ε and k-ω, were chosen to model Reynolds shear stress term. The power law scheme was used for the discretization of momentum, k, ε, and ω equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. In this study, three types of computational grids (coarse, intermediate, and fine) were used to discriminate the simulation environment. In order to simulate the flow, the k-ε (Standard, RNG, Realizable) and k-ω (standard and SST) models were used. Also, in order to find the best wall function, two types, standard wall, and non-equilibrium wall function, were investigated. The laminar model did not produce satisfactory flow depth and velocity along the Morning-Glory spillway. The results of the most commonly used two-equation turbulence models (k-ε and k-ω) were identical. Furthermore, the standard wall function produced better results compared to the non-equilibrium wall function. Thus, for other simulations, the standard k-ε with the standard wall function was preferred. The comparison criterion in this study is also the trajectory profile of jet water. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k-ε (Standard) has the most consistent results with experimental results. When the jet gets closer to the end of the basin, the computational results increase with the numerical results of their differences. The mesh with 10602 nodes, turbulent model k-ε standard and the standard wall function, provide the best results for modeling the flow in a vertical circular Spillway. There was a good agreement between numerical and experimental results in the upper and lower nappe profiles. In the study of water level over crest and discharge, in low water levels, the results of numerical modeling are good agreement with the experimental, but with the increasing water level, the difference between the numerical and experimental discharge is more. In the study of the flow coefficient, by decreasing in P/R ratio, the difference between the numerical and experimental result increases.

Keywords: circular vertical, spillway, numerical model, boundary conditions

Procedia PDF Downloads 70
10219 Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development

Authors: Nadiah Yola Putri, Nesia Putri Sharfina, Traviata Prakarti

Abstract:

This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with Nutrient Film Technique (NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future.

Keywords: green building, urban area, sky farming, vertical landscape

Procedia PDF Downloads 347
10218 A Study on The Relationship between Building Façade and Solar Energy Utilization Potential in Urban Residential Area in West China

Authors: T. Wen, Y. Liu, J. Wang, W. Zheng, T. Shao

Abstract:

Along with the increasing density of urban population, solar energy potential of building facade in high-density residential areas become a question that needs to be addressed. This paper studies how the solar energy utilization potential of building facades in different locations of a residential areas changes with different building layouts and orientations in Xining, a typical city in west China which possesses large solar radiation resource. Solar energy potential of three typical building layouts of residential areas, which are parallel determinant, gable misalignment, transverse misalignment, are discussed in detail. First of all, through the data collection and statistics of Xining new residential area, the most representative building parameters are extracted, including building layout, building height, building layers, and building shape. Secondly, according to the results of building parameters extraction, a general model is established and analyzed with rhinoceros 6.0 and its own plug-in grasshopper. Finally, results of the various simulations and data analyses are presented in a visualized way. The results show that there are great differences in the solar energy potential of building facades in different locations of residential areas under three typical building layouts. Generally speaking, the solar energy potential of the west peripheral location is the largest, followed by the East peripheral location, and the middle location is the smallest. When the deflection angle is the same, the solar energy potential shows the result that the West deflection is greater than the East deflection. In addition, the optimal building azimuth range under these three typical building layouts is obtained. Within this range, the solar energy potential of the residential area can always maintain a high level. Beyond this range, the solar energy potential drops sharply. Finally, it is found that when the solar energy potential is maximum, the deflection angle is not positive south, but 5 °or 15°south by west. The results of this study can provide decision analysis basis for residential design of Xining city to improve solar energy utilization potential and provide a reference for solar energy utilization design of urban residential buildings in other similar areas.

Keywords: building facade, solar energy potential, solar radiation, urban residential area, visualization, Xining city

Procedia PDF Downloads 167
10217 Analysis on the Building Energy Performance of a Retrofitted Residential Building with RETScreen Expert Software

Authors: Abdulhameed Babatunde Owolabi, Benyoh Emmanuel Kigha Nsafon, Jeung-Soo Huh

Abstract:

Energy efficiency measures for residential buildings in South Korea is a national issue because most of the apartments built in the last decades were constructed without proper energy efficiency measures making the energy performance of old buildings to be very poor when compared with new buildings. However, the adoption of advanced building technologies and regulatory building codes are effective energy efficiency strategies for new construction. There is a need to retrofits the existing building using energy conservation measures (ECMs) equipment’s in order to conserve energy and reduce GHGs emissions. To achieve this, the Institute for Global Climate Change and Energy (IGCCE), Kyungpook National University (KNU), Daegu, South Korea employed RETScreen Expert software to carry out measurement and verification (M&V) analysis on an existing building in Korea by using six years gas consumption data collected from Daesung Energy Co., Ltd in order to determine the building energy performance after the introduction of ECM. Through the M&V, energy efficiency is attained, and the resident doubt was reduced. From the analysis, a total of 657 Giga Joules (GJ) of liquefied natural gas (LNG) was consumed at the rate of 0.34 GJ/day having a peak in the year 2015, which cost the occupant the sum of $10,821.

Keywords: energy efficiency, measurement and verification, performance analysis, RETScreen experts

Procedia PDF Downloads 122
10216 Low-Level Forced and Ambient Vibration Tests on URM Building Strengthened by Dampers

Authors: Rafik Taleb, Farid Bouriche, Mehdi Boukri, Fouad Kehila

Abstract:

The aim of the paper is to investigate the dynamic behavior of an unreinforced masonry (URM) building strengthened by DC-90 dampers by ambient and low-level forced vibration tests. Ambient and forced vibration techniques are usually applied to reinforced concrete or steel buildings to understand and identify their dynamic behavior, however, less is known about their applicability for masonry buildings. Ambient vibrations were measured before and after strengthening of the URM building by DC-90 dampers system. For forced vibration test, a series of low amplitude steady state harmonic forced vibration tests were conducted after strengthening using eccentric mass shaker. The resonant frequency curves, mode shapes and damping coefficients as well as stress distribution in the steel braces of the DC-90 dampers have been investigated and could be defined. It was shown that the dynamic behavior of the masonry building, even if not regular and with deformable floors, can be effectively represented. It can be concluded that the strengthening of the building does not change the dynamic properties of the building due to the fact of low amplitude excitation which do not activate the dampers.

Keywords: ambient vibrations, masonry buildings, forced vibrations, structural dynamic identification

Procedia PDF Downloads 399
10215 Virtual Reality and Other Real-Time Visualization Technologies for Architecture Energy Certifications

Authors: Román Rodríguez Echegoyen, Fernando Carlos López Hernández, José Manuel López Ujaque

Abstract:

Interactive management of energy certification ratings has remained on the sidelines of the evolution of virtual reality (VR) despite related advances in architecture in other areas such as BIM and real-time working programs. This research studies to what extent VR software can help the stakeholders to better understand energy efficiency parameters in order to obtain reliable ratings assigned to the parts of the building. To evaluate this hypothesis, the methodology has included the construction of a software prototype. Current energy certification systems do not follow an intuitive data entry system; neither do they provide a simple or visual verification of the technical values included in the certification by manufacturers or other users. This software, by means of real-time visualization and a graphical user interface, proposes different improvements to the current energy certification systems that ease the understanding of how the certification parameters work in a building. Furthermore, the difficulty of using current interfaces, which are not friendly or intuitive for the user, means that untrained users usually get a poor idea of the grounds for certification and how the program works. In addition, the proposed software allows users to add further information, such as financial and CO₂ savings, energy efficiency, and an explanatory analysis of results for the least efficient areas of the building through a new visual mode. The software also helps the user to evaluate whether or not an investment to improve the materials of an installation is worth the cost of the different energy certification parameters. The evaluated prototype (named VEE-IS) shows promising results when it comes to representing in a more intuitive and simple manner the energy rating of the different elements of the building. Users can also personalize all the inputs necessary to create a correct certification, such as floor materials, walls, installations, or other important parameters. Working in real-time through VR allows for efficiently comparing, analyzing, and improving the rated elements, as well as the parameters that we must enter to calculate the final certification. The prototype also allows for visualizing the building in efficiency mode, which lets us move over the building to analyze thermal bridges or other energy efficiency data. This research also finds that the visual representation of energy efficiency certifications makes it easy for the stakeholders to examine improvements progressively, which adds value to the different phases of design and sale.

Keywords: energetic certification, virtual reality, augmented reality, sustainability

Procedia PDF Downloads 176
10214 Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media

Authors: O. D. Arbeláez-Echeverri, E. Restrepo-Parra, J. C. Riano-Rojas

Abstract:

A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model.

Keywords: nanostructures, Monte Carlo, pattern media, magnetic properties

Procedia PDF Downloads 489
10213 Attitudes to Thinking and Learning in Sustainability Education: Case Basics of Natural Stone Industry in Circular Economy

Authors: Anne-Marie Tuomala

Abstract:

Education for sustainable development (ESD) aims to provide students with the attitudes, values, and behaviors necessary for the contribution to sustainability. The research was implemented as a part of the Horizons Europe research project, where each partner organization had at least one pilot project locally. The pilot in question was an online course about the basics of the natural stone industry in Finland and its sustainability and circular economy aspects. The course was open to all students of applied universities in Finland, and it was implemented twice during the research. The Stone from Finland association participated in the course design, and it was also an expert in the local context and real-life provider. The multiple case-study method was chosen, as it enables purposeful sampling of cases that are tailored to the specific study. It was also assumed that it predicts quite comparable results of two different course implementations of the course with the same topic and content. The Curtin University of Technology’s Attitudes Towards Thinking and Learning Survey was adapted. The results show the importance of the trans-disciplinary nature of sustainability education. In addition, the new industry areas with the general - but also industry-specific sustainability issues - must be introduced to students and encourage them to do critically reflective learning. Surveys that guide them to analyze their own attitudes to thinking and learning may expose students to their weaknesses but also result in forms of more active sustainability interaction.

Keywords: education for sustainable development, learning attitudes, learning of circular economy, virtual learning

Procedia PDF Downloads 23
10212 A Multi-Criteria Decision Making (MCDM) Approach for Assessing the Sustainability Index of Building Façades

Authors: Golshid Gilani, Albert De La Fuente, Ana Blanco

Abstract:

Sustainability assessment of new and existing buildings has generated a growing interest due to the evident environmental, social and economic impacts during their construction and service life. Façades, as one of the most important exterior elements of a building, may contribute to the building sustainability by reducing the amount of energy consumption and providing thermal comfort for the inhabitants, thus minimizing the environmental impact on both the building and on the environment. Various methods have been used for the sustainability assessment of buildings due to the importance of this issue. However, most of the existing methods mainly concentrate on environmental and economic aspects, disregarding the third pillar of sustainability, which is the social aspect. Besides, there is a little focus on comprehensive sustainability assessment of facades, as an important element of a building. This confirms the need of developing methods for assessing the sustainable performance of building façades as an important step in achieving building sustainability. In this respect, this paper aims at presenting a model for assessing the global sustainability of façade systems. for that purpose, the Integrated Value Model for Sustainable Assessment (MIVES), a Multi-Criteria Decision Making model that integrates the main sustainability requirements (economic, environmental and social) and includes the concept of value functions, used as an assessment tool.

Keywords: façade, MCDM, MIVES, sustainability

Procedia PDF Downloads 328
10211 Building Information Modelling in Eastern Province Municipality of KSA

Authors: Banan Aljumaiah

Abstract:

In recent years, the construction industry has leveraged the information revolution, which makes it possible to view the entire construction process of new buildings before they are built with the advent of Building Information Modelling (BIM). Although BIM is an integration of the building model with the data and documents about the building, however, its implementation is limited to individual buildings missing the large picture of the city infrastructure. This limitation of BIM led to the birth of City Information Modelling. Three years ago, Eastern Province Municipality (EPM) in Saudi Arabia mandated that all major projects be delivered with collaborative 3D BIM. After three years of implementation, EPM started to implement City Information Modelling (CIM) as a part of the Smart City Plan to link infrastructure and public services and modelling how people move around and interact with the city. This paper demonstrates a local case study of BIM implementation in EPM and its future as a part of project management automation; the paper also highlights the ambitious plan of EPM to transform CIM towards building smart cities.

Keywords: BIM, BIM to CIM

Procedia PDF Downloads 126
10210 Valorization of the Algerian Plaster and Dune Sand in the Building Sector

Authors: S. Dorbani, F. Kharchi, F. Salem, K. Arroudj, N. Chioukh

Abstract:

The need for thermal comfort of buildings, with the aim of saving energy, has always generated a big interest during the development of methods, to improve the mode of construction. In the present paper, which is concerned by the valorization of locally abundant materials, mixtures of plaster and dune sand have been studied. To point out the thermal performances of these mixtures, a comparative study has been established between this product and the two materials most commonly used in construction, the concrete and hollow brick. The results showed that optimal mixture is made with 1/3 plaster and 2/3 dune sand. This mortar achieved significant increases in the mechanical strengths, which allow it to be used as a carrier element for buildings, of up to two levels. The element obtained offers an acceptable thermal insulation, with a decrease the outer-wall construction thickness.

Keywords: local materials, mortar, plaster, dune sand, compaction, mechanical performance, thermal performance

Procedia PDF Downloads 472
10209 Post Occupancy Evaluation of the Green Office Building with Different Air-Conditioning Systems

Authors: Ziwei Huang, Jian Ge, Jie Shen, Jiantao Weng

Abstract:

Retrofitting of existing buildings plays a critical role to achieve sustainable development. This is being considered as one of the approaches to achieving sustainability in the built environment. In order to evaluate the different air-conditioning systems effectiveness and user satisfaction of the existing building which had transformed into green building effectively and accurately. This article takes the green office building in Zhejiang province, China as an example, analyzing the energy consumption, occupant satisfaction and indoor environment quality (IEQ) from the perspective of the thermal environment. This building is special because it combines ground source heat pump system and Variable Refrigerant Flow (VRF) air-conditioning system. Results showed that the ground source heat pump system(EUIa≈25.6) consumes more energy than VRF(EUIb≈23.8). In terms of a satisfaction survey, the use of the VRF air-conditioning was more satisfactory in temperature. However, the ground source heat pump is more satisfied in air quality.

Keywords: post-occupancy evaluation, green office building, air-conditioning systems, ground source heat pump system

Procedia PDF Downloads 187
10208 Paenibacillus illinoisensis CX11: A Cellulase- and Xylanase-Producing Bacteria for Saccharification of Lignocellulosic Materials

Authors: Abeer A. Q. Ahmed, Tracey McKay

Abstract:

Biomass can provide a sustainable source for the production of high valued chemicals. Under the uncertain availability of fossil resources biomass could be the only available source for chemicals in future. Cellulose and hemicellulose can be hydrolyzed into their building blocks (hexsoses and pentoses) which can be converted later to the desired high valued chemicals. A cellulase- and xylanase- producing bacterial strain identified as Paenibacillus illinoisensis CX11 by 16S rRNA gene sequencing and phylogenetic analysis was found to have the ability to saccharify different lignocellulosic materials. Cellulase and xylanase activities were evaluated by 3,5-dinitro-salicylic acid (DNS) method using CMC and xylan as substrates. Results showed that P. illinoisensis CX11 have cellulase (2.63± 0.09 mg/ml) and xylanase (3.25 ± 0.2 mg/ml) activities. The ability of P. illinoisensis CX11 to saccharify lignocellulosic materials was tested using wheat straw (WS), wheat bran (WB), saw dust (SD), and corn stover (CS). DNS method was used to determine the amount of reducing sugars that were released from lignocellulosic materials. P. illinoisensis CX11 showed to have the ability to saccharify lignocellulosic materials and producing total reducing sugars as 2.34 ± 0.12, 2.51 ± 0.37, 1.86 ± 0.16, and 3.29 ± 0.20 mg/l from WS, WB, SD, and CS respectively. According to the author's knowledge, current findings are the first to report P. illinoisensis CX11 as a cellulase and xylanase producing species and that it has the ability to saccharify different lignocellulosic materials. This study presents P. illinoisensis CX11 that can be good source for cellulase and xylanase enzymes which could be introduced into lignocellulose bioconversion processes to produce high valued chemicals.

Keywords: cellulase, high valued chemicals, lignocellulosic materials, Paenibacillus illinoisensis CX11, Xylanase

Procedia PDF Downloads 230
10207 Optimization of Reinforced Concrete Buildings According to the Algerian Seismic Code

Authors: Nesreddine Djafar Henni, Nassim Djedoui, Rachid Chebili

Abstract:

Recent decades have witnessed significant efforts being made to optimize different types of structures and components. The concept of cost optimization in reinforced concrete structures, which aims at minimizing financial resources while ensuring maximum building safety, comprises multiple materials, and the objective function for their optimal design is derived from the construction cost of the steel as well as concrete that significantly contribute to the overall weight of reinforced concrete (RC) structures. To achieve this objective, this work has been devoted to optimizing the structural design of 3D RC frame buildings which integrates, for the first time, the Algerian regulations. Three different test examples were investigated to assess the efficiency of our work in optimizing RC frame buildings. The hybrid GWOPSO algorithm is used, and 30000 generations are made. The cost of the building is reduced by iteration each time. Concrete and reinforcement bars are used in the building cost. As a result, the cost of a reinforced concrete structure is reduced by 30% compared with the initial design. This result means that the 3D cost-design optimization of the framed structure is successfully achieved.

Keywords: optimization, automation, API, Malab, RC structures

Procedia PDF Downloads 34
10206 Growing Architecture, Technical Product Harvesting of Near Net Shape Building Components

Authors: Franziska Moser, Martin Trautz, Anna-Lena Beger, Manuel Löwer, Jörg Feldhusen, Jürgen Prell, Alexandra Wormit, Björn Usadel, Christoph Kämpfer, Thomas-Benjamin Seiler, Henner Hollert

Abstract:

The demand for bio-based materials and components in architecture has increased in recent years due to society’s heightened environmental awareness. Nowadays, most components are being developed via a substitution approach, which aims at replacing conventional components with natural alternatives who are then being processed, shaped and manufactured to fit the desired application. This contribution introduces a novel approach to the development of bio-based products that decreases resource consumption and increases recyclability. In this approach, natural organisms like plants or trees are not being used in a processed form, but grow into a near net shape before then being harvested and utilized as building components. By minimizing the conventional production steps, the amount of resources used in manufacturing decreases whereas the recyclability increases. This paper presents the approach of technical product harvesting, explains the theoretical basis as well as the matching process of product requirements and biological properties, and shows first results of the growth manipulation studies.

Keywords: design with nature, eco manufacturing, sustainable construction materials, technical product harvesting

Procedia PDF Downloads 489
10205 An Implementation of Incentive Systems within Property Life Cycles Will Reward Investors, Planners and Users

Authors: Nadine Wills

Abstract:

The whole life thinking of buildings (independent if these are commercial properties or residential properties) will raise if incentive systems are provided to investors, planners and users. The Use of Building Information Modelling (BIM)-Systems offers planners the possibility to plan and re-plan buildings for decades after a period of utilization without spending many capacities. The strategy-incentive should be to plan the building in a way that makes rescheduling possible by changing just parameters in the system and not re-planning the whole building. If users receive the chance to patient incentive systems, the building stock will have a long life period. Business models of tenant electricity or self-controlled operating costs are incentive systems for building –users to let fixed running costs decline without producing damages due to wrong purposes. BIM is the controlling body to ensure that users do not abuse the incentive solution and take negative influence on the building stock. The investor benefits from the planner’s and user’s incentives: the fact that the building becomes useful for the whole life without making unnecessary investments provides possibilities to make investments in different assets. Moreover, the investor gains the facility to achieve higher rents by merchandise the property with low operating costs. To execute BIM offers whole property life cycles.

Keywords: BIM, incentives, life cycle, sustainability

Procedia PDF Downloads 287
10204 Thermal Simulation for Urban Planning in Early Design Phases

Authors: Diego A. Romero Espinosa

Abstract:

Thermal simulations are used to evaluate comfort and energy consumption of buildings. However, the performance of different urban forms cannot be assessed precisely if an environmental control system and user schedules are considered. The outcome of such analysis would lead to conclusions that combine the building use, operation, services, envelope, orientation and density of the urban fabric. The influence of these factors varies during the life cycle of a building. The orientation, as well as the surroundings, can be considered a constant during the lifetime of a building. The structure impacts the thermal inertia and has the largest lifespan of all the building components. On the other hand, the building envelope is the most frequent renovated component of a building since it has a great impact on energy performance and comfort. Building services have a shorter lifespan and are replaced regularly. With the purpose of addressing the performance, an urban form, a specific orientation, and density, a thermal simulation method were developed. The solar irradiation is taken into consideration depending on the outdoor temperature. Incoming irradiation at low temperatures has a positive impact increasing the indoor temperature. Consequently, overheating would be the combination of high outdoor temperature and high irradiation at the façade. On this basis, the indoor temperature is simulated for a specific orientation of the evaluated urban form. Thermal inertia and building envelope performance are considered additionally as the materiality of the building. The results of different thermal zones are summarized using the 'Degree day method' for cooling and heating. During the early phase of a design process for a project, such as Masterplan, conclusions regarding urban form, density and materiality can be drawn by means of this analysis.

Keywords: building envelope, density, masterplanning, urban form

Procedia PDF Downloads 135
10203 Nanotechnology as a Futuristic Approach to Architecture with Special Reference to Chandigarh

Authors: Chaudhary Archana, Dhingra Poshika

Abstract:

The architecture of the world is at a crossroads with the advent of new technology. The issues of energy efficiency and global warming are getting important with the coming times. New technologies are making their mark. For the architecture profession, nanotechnology will greatly impact construction materials and their properties. Nanotechnology, the understanding and control of matter at a scale of one to one hundred billions of a meter, is bringing incredible changes to the materials and processes of buildings. Materials will behave in many different ways as we are able to more precisely control their properties at the nanoscale. It is precisely called the next industrial revolution. We live in an age where scientific progress continues to transform human lifestyle. This is evermore true when it comes to the progress being made in the field of nanotechnology. This science stands to change and advance the practice of design in a multitude of ways – where architectural progress is being made at the molecular level. The nanotechnology has already been adopted in various buildings across the world. What an impact it shall have on the futuristic architecture in Chandigarh, India shall be discussed in the paper. But before we hurtle off toward a nano-utopia, we need to step back and ask ourselves whether this is a direction in which we really want to go.

Keywords: building materials, energy efficiency, nanotechnology, sustainability

Procedia PDF Downloads 448
10202 Uncertainty Assessment in Building Energy Performance

Authors: Fally Titikpina, Abderafi Charki, Antoine Caucheteux, David Bigaud

Abstract:

The building sector is one of the largest energy consumer with about 40% of the final energy consumption in the European Union. Ensuring building energy performance is of scientific, technological and sociological matter. To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared with the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of dynamic and static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the \textit{Guide to the Expression of Measurement Uncertainty (GUM)} as well as by Bayesian Statistical Theory (BST). Another choice is the use of numerical methods like Monte Carlo Simulation (MCS). In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST) is given. Therefore, an office building has been monitored and multiple sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 $m^2$. Temperature data, electrical and heating consumption, windows opening and occupancy rate are the features for our research work.

Keywords: building energy performance, uncertainty evaluation, GUM, bayesian approach, monte carlo method

Procedia PDF Downloads 444
10201 Evaluating of Design Codes for Circular High Strength Concrete-Filled Steel Tube Columns

Authors: Soner Guler, Eylem Guzel, Mustafa Gülen

Abstract:

Recently, concrete-filled steel tube columns are highly popular in high-rise buildings. The main aim of this study is to evaluate the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and American Concrete Institute (ACI) design codes. The axial load capacities of fifteen concrete-filled steel tubes stub columns were compared with design codes EU4 and ACI. The results showed that the EC4 overestimate the axial load capacity for all the specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Eurocode 4, ACI design codes

Procedia PDF Downloads 376
10200 Green Building Delivery: Exploring Lessons and the State of Practice in Nigeria

Authors: Ayodele E. Ikudayisi, Yomi M. D. Adedeji, Olumuyiwa B. Adegun

Abstract:

The level of adoption of green building (GB) schemes in Nigeria is low. The prevailing focus on economic development has overshadowed sustainability concerns. Despite these, few project cases exist in Nigeria in which sustainability goals have been achieved. This study aims to draw lessons from these in order to understand the project attributes, certification status, and the delivery process. Through an exploratory case study approach, fifteen project cases across five cities in Nigeria were examined. These represent the first-generation of green buildings in Nigeria, a verifiable reference for future initiatives in Sub-Saharan Africa. From the result, three categories of green buildings were identified, namely certified projects, demonstration projects, and potential projects with varying delivery attributes. Then, it is concluded by setting research and practice agenda towards aligning Nigeria’s building industry with the global trends in sustainable building delivery.

Keywords: LEED, green building, Nigeria, project attributes

Procedia PDF Downloads 152
10199 Research on the Calculation Method of Smartization Rate of Concrete Structure Building Construction

Authors: Hongyu Ye, Hong Zhang, Minjie Sun, Hongfang Xu

Abstract:

In the context of China's promotion of smart construction and building industrialization, there is a need for evaluation standards for the development of building industrialization based on assembly-type construction. However, the evaluation of smart construction remains a challenge in the industry's development process. This paper addresses this issue by proposing a calculation and evaluation method for the smartization rate of concrete structure building construction. The study focuses on examining the factors of smart equipment application and their impact on costs throughout the process of smart construction design, production, transfer, and construction. Based on this analysis, the paper presents an evaluation method for the smartization rate based on components. Furthermore, it introduces calculation methods for assessing the smartization rate of buildings. The paper also suggests a rapid calculation method for determining the smartization rate using Building Information Modeling (BIM) and information expression technology. The proposed research provides a foundation for the swift calculation of the smartization rate based on BIM and information technology. Ultimately, it aims to promote the development of smart construction and the construction of high-quality buildings in China.

Keywords: building industrialization, high quality building, smart construction, smartization rate, component

Procedia PDF Downloads 55
10198 Functional Profiling of a Circular RNA from the Huntingtin (HTT) Gene

Authors: Laura Gantley, Vanessa M. Conn, Stuart Webb, Kirsty Kirk, Marta Gabryelska, Duncan Holds, Brett W. Stringer, Simon J. Conn

Abstract:

Trinucleotide repeat disorders comprise ~20 severe, inherited human neuromuscular and neurodegenerative disorders, which are a result of an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington’s disease, results from the expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Non-coding RNAs have been implicated in the initiation and progression of many diseases; thus, we focus on one circular RNA (circRNA) molecule arising from non-canonical splicing (back splicing) of HTT pre-mRNA. This circRNA and its mouse orthologue were transgenically overexpressed in human cells (SHSY-5Y and HEK293T) and mouse cells (Mb1), respectively. High-content imaging and flow cytometry demonstrated the overexpression of this circRNA reduces cell proliferation, reduces nuclear size independent of cellular size, and alters cell cycle progression. Analysis of protein by western blot and immunofluorescence demonstrated no change to HTT protein levels but altered nuclear-cytoplasmic distribution without impacting the expansion of the HTT repeat region. As these phenotypic and genotypic changes are found in Huntington’s disease patients, these results may suggest that this circRNA may play a functional role in the progression of Huntington’s disease.

Keywords: cell biology, circular RNAs, Huntington’s disease, molecular biology, neurodegenerative disorders

Procedia PDF Downloads 87