Search results for: capacity building programs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9783

Search results for: capacity building programs

9363 Barclays Bank Zambia: Considerations for Raft Foundation Design on Dolomite Land

Authors: Yashved Serhun, Kim A. Timm

Abstract:

Barclays Bank has identified the need for a head office building in Lusaka, Zambia, and construction of a 7200 m2 three-storey reinforced concrete office building with a structural steel roof is currently underway. A unique characteristic of the development is that the building footprint is positioned on dolomitic land. Dolomite rock has the tendency to react with and breakdown in the presence of slightly acidic water, including rainwater. This leads to a potential for subsidence and sinkhole formation. Subsidence and the formation of sinkholes beneath a building can be detrimental during both the construction and operational phases. This paper outlines engineering principles which were considered during the structural design of the raft foundation for the Barclays head office building. In addition, this paper includes multidisciplinary considerations and the impact of these on the structural engineering design of the raft foundation. By ensuring that the design of raft foundations on dolomitic land incorporates the requirements of all disciplines and relevant design codes during the design process, the risk associated with subsidence and sinkhole formation can be effectively mitigated during the operational phase of the building.

Keywords: dolomite, dolomitic land, raft foundation, structural engineering design

Procedia PDF Downloads 109
9362 Recycled Use of Solid Wastes in Building Material: A Review

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: recycling, solid wastes, construction, building materials

Procedia PDF Downloads 375
9361 A Prediction of Electrical Cost for High-Rise Building Construction

Authors: Picha Sriprachan

Abstract:

The increase in electricity prices affects the cost of high-rise building construction. The objectives of this research are to study the electrical cost, trend of electrical cost and to forecast electrical cost of high-rise building construction. The methods of this research are: 1) to study electrical payment formats, cost data collection methods, and the factors affecting electrical cost of high-rise building construction, 2) to study the quantity and trend of cumulative percentage of the electrical cost, and 3) to forecast the electrical cost for different types of high-rise buildings. The results of this research show that the average proportion between electrical cost and the value of the construction project is 0.87 percent. The proportion of electrical cost for residential, office and commercial, and hotel buildings are closely proportional. If construction project value increases, the proportion of electrical cost and the value of the construction project will decrease. However, there is a relationship between the amount of electrical cost and the value of the construction project. During the structural construction phase, the amount of electrical cost will increase and during structural and architectural construction phase, electrical cost will be maximum. The cumulative percentage of the electrical cost is related to the cumulative percentage of the high-rise building construction cost in the same direction. The amount of service space of the building, number of floors and the duration of the construction affect the electrical cost of construction. The electrical cost of construction forecasted by using linear regression equation is close to the electrical cost forecasted by using the proportion of electrical cost and value of the project.

Keywords: high-rise building construction, electrical cost, construction phase, architectural phase

Procedia PDF Downloads 374
9360 Application of Electrochromic Glazing for Reducing Peak Cooling Loads

Authors: Ranojoy Dutta

Abstract:

HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.

Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load

Procedia PDF Downloads 117
9359 Influence of Humidity on Environmental Sustainability, Air Quality and Occupant Health

Authors: E. Cintura, M. I. Gomes

Abstract:

Nowadays, sustainable development issues have a key role in the planning of the man-made environment. Ensuring this development means limiting the impact of human activity on nature. It is essential to secure healthy places and good living conditions. For these reasons, indoor air quality and building materials play a fundamental role in sustainable architectural projects. These factors significantly affect human health: they can radically change the quality of the internal environment and energy consumption. The use of natural materials such as earth has many beneficial aspects in comfort and indoor air quality. As well as advantages in the environmental impact of the construction, they ensure a low energy consumption. Since they are already present in nature, their production and use do not require a high-energy consumption. Furthermore, they have a high thermo-hygrometric capacity, being able to absorb moisture, contributing positively to indoor conditions. Indoor air quality is closely related to relative humidity. For these reasons, it can be affirmed that the use of earth materials guarantees a sustainable development and at the same time improves the health of the building users. This paper summarizes several researches that demonstrate the importance of indoor air quality for human health and how it strictly depends on the building materials used. Eco-efficient plasters are also considered: earth and ash mortar. The bibliography consulted has the objective of supporting future experimental and laboratory analyzes. It is necessary to carry on with research by the use of simulations and testing to confirm the hygrothermal properties of eco-efficient plasters and therefore their ability to improve indoor air quality.

Keywords: hygroscopicity, hygrothermal comfort, mortar, plaster

Procedia PDF Downloads 130
9358 Decent Work Agenda in the Philippines: A Capacity Assessment

Authors: Dianne Lyneth Alavado

Abstract:

At the turn of the millennium, development paradigms in the international scene revolved around one goal: elimination of global poverty without comprising human rights. One measure which achieved high endorsement and visibility in the world of work is the Decent Work Agenda (DWA) championed by the United Nation’s (UN) specialized agency for work, the International Labour Organization (ILO). The DWA has been thoroughly promoted and recommended as an ingredient of development planning and a poverty reduction strategy, particularly in developing countries such as the Philippines. The global imperative of economic growth is measurable not only in the numbers raked in by countries in terms of expanding economy but also by the development and realization of the full capacities of their people. Decent work (DW), as an outcome and not just a development approach, promises poverty eradication by means of providing both quantity and quality work that is accompanied by rights, representation, and protection. As a party to these international pacts, the Philippines is expected to heed the call towards a world free from poverty through well-endorsed measures such as the DWA with the aid of multilateral and donor organizations such as the ILO. This study aims to assess the capacity and readiness of the Philippines to achieve the goals of the DWA. This is a qualitative research using the sociological and juridical lens in the desk analysis of existing Philippine laws, policies, and programs vis-à-vis decent work indicators set forth by the ILO. Interview with experts on the Philippine labor situation is conducted for further validation. The paper identifies gaps within the Philippine legal system and its collection of laws, acts, presidential decrees, department orders and other policy instruments aimed towards achieving the goals of the DWA. Among the major findings of this paper are: the predisposition of Philippine labor laws towards the formal sector; the need for alternative solutions for the informal sector veering away from the usual dole-outs and livelihood projects; the needs for evaluation of policies and programs that are usually self-evaluated; the minimal reach of the labour inspectorate which ensures decent work; and the lack of substantial penalty for non-compliance with labor laws. The paper concludes with policy implications and recommendations towards addressing the potholes on the road to Decent Work.

Keywords: decent work agenda, labor laws, millennium development goals, poverty eradication, sustainable development goal

Procedia PDF Downloads 264
9357 Organizational Mortality of Insurance Organizations under the Conditions of Environmental Changes

Authors: Erdem Kirkbesoglu, A. Bugra Soylu, E. Deniz Kahraman

Abstract:

The aim of this study is to examine the effects of some variables on organizational mortality of the Turkish insurance industry and calculate the carrying capacities of Turkish insurance industry according to cities and regions. In the study, organizational mortality was tested with the level of reaching the population's carrying capacity. The findings of this study show that the insurance sales potentials can be calculated according to the provinces and regions of Turkey. It has also been proven that the organizations that feed on the same source will have a carrying capacity in the evolutionary process.

Keywords: insurance, carrying capacity, organizational mortality, organization

Procedia PDF Downloads 264
9356 Building Semantic-Relatedness Thai Word Ontology for Semantic Analysis

Authors: Gridaphat Sriharee

Abstract:

Building semantic-relatedness Thai word ontology can be implemented by considering word forms and word meaning. This research proposed the methodology for building the ontology, which can be used for semantic analysis. There are four categories of words: similar form and the same meaning, similar form and similar meaning, different form and opposite/same meaning, and different form and similar meaning, which will be used as initial words for building the proposed ontology. Extension of the ontology can be augmented by considering the messages that give the meaning of the word from the dictionaries. Exploiting WordNet to construct the proposed ontology was investigated and discussed. The proposed ontology was evaluated for its quality. With the proposed methodology, it is promising that the constructed ontology is a well-defined ontology.

Keywords: Thai, NLP, semantics, ontology

Procedia PDF Downloads 80
9355 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 529
9354 A Virtual Reality Simulation Tool for Reducing the Risk of Building Content during Earthquakes

Authors: Ali Asgary, Haopeng Zhou, Ghassem Tofighi

Abstract:

Use of virtual (VR), augmented reality (AR), and extended reality technologies for training and education has increased in recent years as more hardware and software tools have become available and accessible to larger groups of users. Similarly, the applications of these technologies in earthquake related training and education are on the rise. Several studies have reported promising results for the use of VR and AR for evacuation behaviour and training under earthquake situations. They simulate the impacts that earthquake has on buildings, buildings’ contents, and how building occupants and users can find safe spots or open paths to outside. Considering that considerable number of earthquake injuries and fatalities are linked to the behaviour, our goal is to use these technologies to reduce the impacts of building contents on people. Building on our artificial intelligence (AI) based indoor earthquake risk assessment application that enables users to use their mobile device to assess the risks associated with building contents during earthquakes, we develop a virtual reality application to demonstrate the behavior of different building contents during earthquakes, their associate moving, spreading, falling, and collapsing risks, and their risk mitigation methods. We integrate realistic seismic models, building contents behavior with and without risk mitigation measures in virtual reality environment. The application can be used for training of architects, interior design experts, and building users to enhance indoor safety of the buildings that can sustain earthquakes. This paper describes and demonstrates the application development background, structure, components, and usage.

Keywords: virtual reality, earthquake damage, building content, indoor risks, earthquake risk mitigation, interior design, unity game engine, oculus

Procedia PDF Downloads 86
9353 Determination of the Bearing Capacity of Granular Pumice Soils by Laboratory Tests

Authors: Mustafa Yildiz, Ali Sinan Soganci

Abstract:

Pumice soils are countered in many projects such as transportation roads, channels and residential units throughout the World. The pumice deposits are characterized by the vesicular nature of their particles. When the pumice soils are evaluated considering the geotechnical viewpoint, they differ from silica sands in terms of physical and engineering characteristics. These differences are low grain strength, high friction angle, void ratio and compressibility. At stresses greater than a few hundred kPa, the stress-strain-strength behaviour of these soils is determined by particle crushing. Particle crushing leads to changes in the density and reduction in the components of shear stress due to expansion. In this study, the bearing capacity and behaviour of granular pumice soils compared to sand-gravels were investigated by laboratory model tests. Firstly the geotechnical properties of granular pumice soils were determined; then, the behaviour of pumice soils with an equivalent diameter of sand and gravel soils were investigated by model rectangular and circular foundation types and were compared with each other. For this purpose, basic types of model footing (15*15 cm, 20*20 cm, Φ=15 cm and Φ=20 cm) have been selected. When the experimental results of model bearing capacity are analyzed, the values of sand and gravel bearing capacity tests were found to be 1.0-1.5 times higher than the bearing capacity of pumice the same size. This fact has shown that sand and gravel have a higher bearing capacity than pumice of the similar particle sizes.

Keywords: pumice soils, laboratory model tests, bearing capacity, laboratory model tests, Nevşehir

Procedia PDF Downloads 200
9352 Resilience Building, the Case of Dire Dawa Community, Ethiopia

Authors: Getachew Demesa Bexa

Abstract:

Building resilience to withstand extreme weather events through reduction and mitigation measures towards predicted disasters with appropriate contingency plans complemented by timely and effective emergency response demands committed and integrated/coordinated efforts. The 2006 flood disaster that claimed more than 200 people in Dire Dawa town shifted the paradigm from reactive to proactive engagement among government, NGOs and communities to contain future disasters through resilience building. Dire Dawa CMDRR Association is a model community organization that demonstrated the basic minimum and turning adversity into opportunity by mobilizing vulnerable community members. Meanwhile the birth of African Centre for Disaster Risk Management is a milestone in changing the image of the country and beyond in resilience building while linking relief and development.

Keywords: Dire Dawa, disaster, resilience, risk management

Procedia PDF Downloads 370
9351 Dynamic Modeling of the Green Building Movement in the U.S.: Strategies to Reduce Carbon Footprint of Residential Building Stock

Authors: Nuri Onat, Omer Tatari, Gokhan Egilmez

Abstract:

The U.S. buildings consume significant amount of energy and natural resources and they are responsible for approximately 40 % of the greenhouse gases emitted in the United States. Awareness of these environmental impacts paved the way for the adoption of green building movement. The green building movement is a rapidly increasing trend. Green Construction market has generated $173 billion dollars in GDP, supported over 2.4 million jobs, and provided $123 billion dollars in labor earnings. The number of LEED certified buildings is projected to be almost half of the all new, nonresidential buildings by 2015. National Science and Technology Council (NSTC) aims to increase number of net-zero energy buildings (NZB). The ultimate goal is to have all commercial NZB by 2050 in the US (NSTC 2008). Green Building Initiative (GBI) became the first green building organization that is accredited by American National Standards Institute (ANSI), which will also boost number of green buildings certified by Green Globes. However, there is much less focus on greening the residential buildings, although the environmental impacts of existing residential buildings are more than that of commercial buildings. In this regard, current research aims to model the residential green building movement with a dynamic model approach and assess the possible strategies to stabilize the carbon footprint of the U.S. residential building stock. Three aspects of sustainable development are considered in policy making, namely: high performance green building (HPGB) construction, NZB construction and building retrofitting. 19 different policy options are proposed and analyzed. Results of this study explored that increasing the construction rate of HPGBs or NZBs is not a sufficient policy to stabilize the carbon footprint of the residential buildings. Energy efficient building retrofitting options are found to be more effective strategies then increasing HPGBs and NZBs construction. Also, significance of shifting to renewable energy sources for electricity generation is stressed.

Keywords: green building movement, residential buildings, carbon footprint, system dynamics

Procedia PDF Downloads 409
9350 Contribution of Family Planning Effort to Demographic and Macroeconomic Outcomes in High Fertility Countries: A Longitudinal Study

Authors: Jane N. O'Sullivan

Abstract:

In most studies relating change in fertility to potentially causal factors (such as girls’ educational attainment, infant mortality or urbanization), the presence or nature of family planning efforts are not examined, potentially misattributing their contributions. Modest impacts of voluntary family planning programs on fertility change have been claimed, citing the near-term effects of historical quasi-experimental projects – notably in Bangladesh and in Ghana – where recipients and non-recipients could be contrasted. By their nature, such experiments lacked the wider cultural impacts of national programs. Concurrently, analyses relating population growth with economic advancement have been equivocal, discrediting previous widespread concern which prevailed before the 1980s. This neutral view has been revised more recently with demographic dividend theory crediting higher working-age proportion with some economic stimulus if supported by sufficient institutional and human capacity. In this study of country-level data, cross-country comparisons spanning six decades relate fertility decline with family planning effort, GDP per capita and female education, finding that the timing of rapid fertility decline aligns with commencement of voluntary family planning programs, while economic betterment came after substantial fertility fall. The relationship between fertility and primary education completion was inconsistent, with potential channels of causation operating in both directions. GDP per capita was unrelated to rate of fertility decline, but total fertility rates above three children per woman strongly impeded enrichment. By synchronizing countries with respect to their fertility transition, strong relationships are revealed which suggest lower fertility enables economic betterment, rather than the other way around. These results argue in favour of elevating voluntary family planning as a development priority.

Keywords: economic advance, family planning effort, fertility decline, population growth rate

Procedia PDF Downloads 128
9349 Rethinking International Relations Theory through the Lens of Outside-in Logic of State-Building

Authors: Nana Kwasi Amoateng

Abstract:

The paper uses secondary information to investigate some longstanding limitations in International Relations (IR) theory. Specifically, the analysis highlights IR theory through the lens of J. C. Sharman’s brilliant concept of outside-in state-building logic in which some states, particularly those in Africa, have relied mainly on foreign resources to address local threats. The key findings are that IR theory has been largely understood from the perspective of an inside-out state-building logic, whereby Western and other advanced states have heavily relied on local resources to address foreign threats. In this vein, IR theorists, including Critical Theorists, have not been able to fully grasp African states and states elsewhere that have generally relied on an outside-in logic of state-building. The paper helps to fill a major gap in IR theory, which has mainly addressed criticisms of being Euro- or Western-centric or failing to include the unique experiences of states and other actors in the Global South by developing critical theories such as post-colonial theory and neo-colonialism. Although this has helped to understand some experiences of actors in the Global South, the fundamental difference between state-building in the West and the Global South, particularly Africa, has not been adequately explored to fully comprehend why, despite the works of Critical Theorists, IR theory still fails to capture many political and socioeconomic realities in Africa and elsewhere.

Keywords: international relations theory, outside-in state-building logic, inside-out state-building logic, Africa

Procedia PDF Downloads 76
9348 Effect of Different Plan Shapes on the Load Carrying Capacity of a Steel Frame under Extreme Loading

Authors: Omid Khandel, Azadeh Parvin

Abstract:

An increase in accidental explosions in recent years has increased the interest on investigating the response and behavior of structures in more details. The present work focused on finite element analysis of multistory steel frame structures with different plan shapes subjected to blast loadings. In order to study the effect of the geometry of the building, three different shapes for the plan of the building were modeled and studied; Rectangular, Square and L shape plans. The nonlinear dynamic analysis was considered in this study. The relocation technique was also used to improve the behavior of structure. The accuracy of the multistory frame model was confirmed with those of the existing study in the literature and they were in good agreement. The effect of span length of the buildings was also considered. Finite element analysis of various scenarios for relocating the plastic hinges and improving the response of the structure was performed. The base shear versus displacement curves were compared to reveal the best possible scenarios to provide recommendations to designers and practitioners.

Keywords: nonlinear dynamic analysis, plastic hinge relocation, Retrofit, SAP2000

Procedia PDF Downloads 272
9347 Risk and Coping: Understanding Community Responses to Calls for Disaster Evacuation in Central Philippines

Authors: Soledad Natalia M. Dalisay, Mylene De Guzman

Abstract:

In archipelagic countries like the Philippines, many communities thrive along coastal areas. The sea is the community members’ main source of livelihood and the site of many cultural activities. For these communities, the sea is their life and livelihood. Nevertheless, the sea also poses a hazard during the rainy season when typhoons frequent their communities. Coastal communities often encounter threats from storm surges and flooding that are common when there are typhoons. During such periods, disaster evacuation programs are implemented. However, in many instances, evacuation has been the bane of local government officials implementing such programs in their communities as resistance from community members is often encountered. Such resistance is often viewed by program implementers as due to the fact that people were hard headed and ignorant of the potential impacts of living in hazard prone areas. This paper argues that it is not for these reasons that people refused to evacuate. Drawing from data collected from fieldwork done in three sites in Central Philippines affected by super typhoon Haiyan, this study aimed to provide a contextualized understanding of peoples’ refusal to heed disaster evacuation warnings. This study utilized the multi-sited ethnography approach with in-depth episodic interviews, focus group discussions, participatory risk mapping and key informant interviews in gathering data on peoples’ experiences and insights specifically on evacuation during typhoon Haiyan. This study showed that people have priorities and considerations vital in their social lives that they are protecting in their refusal to leave their homes for pre-emptive evacuation. It is not that they are not aware of the risks when the face the hazard. It is more that they had faith in the local knowledge and strategies that they have developed since the time of their ancestors as a result of living and engaging with hazards in their areas for as long as they could remember. The study also revealed that risk in encounters with hazards was gendered. Furthermore, previous engagement with local government officials and the manner in which the pre-emptive evacuation programs were implemented had cast doubt on the value of such programs in saving their lives. Life in the designated evacuation areas can be as dangerous if not more compared with living in their coastal homes. There seems to be the impression that in the evacuation program of the government, people were being moved from hazard zones to death zones. Thus, this paper ends with several recommendations that may contribute to building more responsive evacuation programs that aim to build people’s resilience while taking into consideration the local moral world in communities in identified hazard zones.

Keywords: coastal communities, disaster evacuation, disaster risk perception, social and cultural responses to hazards

Procedia PDF Downloads 330
9346 Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation

Authors: Meysam Abedinpour

Abstract:

Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province.

Keywords: deficit irrigation, water use efficiency, yield, soybean

Procedia PDF Downloads 453
9345 Conceptual Modeling of the Relationship between Project Management Practices and Knowledge Absorptive Capacity Using Interpretive Structural Modeling Method

Authors: Seyed Abdolreza Mosavi, Alireza Babakhan, Elham Sadat Hoseinifard

Abstract:

Knowledge-based firms need to design mechanisms for continuous absorptive and creation of knowledge in order to ensure their survival in the competitive arena and to follow the path of development. Considering the project-oriented nature of product development activities in knowledge-based firms on the one hand and the importance of analyzing the factors affecting knowledge absorptive capacity in these firms on the other, the purpose of this study is to identify and classify the factors affecting project management practices on absorptive knowledge capacity. For this purpose, we have studied and reviewed the theoretical literature in the field of project management and absorptive knowledge capacity so as to clarify its dimensions and indexes. Then, using the ISM method, the relationship between them has been studied. To collect data, 21 questionnaires were distributed in project-oriented knowledge-based companies. The results of the ISM method analysis provide a model for the relationship between project management activities and knowledge absorptive capacity, which includes knowledge acquisition capacity, scope management, time management, cost management, quality management, human resource management, communications management, procurement management, risk management, stakeholders management and integration management. Having conducted the MICMAC analysis, we divided the variables into three groups of independent, relational and dependent variables and came up with no variables to be included in the group of autonomous variables.

Keywords: knowledge absorptive capacity, project management practices, knowledge-based firms, interpretive structural modeling

Procedia PDF Downloads 186
9344 Numerical Analysis of Bearing Capacity of Caissons Subjected to Inclined Loads

Authors: Hooman Dabirmanesh, Mahmoud Ghazavi, Kazem Barkhordari

Abstract:

A finite element modeling for determination of the bearing capacity of caissons subjected to inclined loads is presented in this paper. The model investigates the uplift capacity of the caisson with varying cross sectional area. To this aim, the behavior of the soil is assumed to be elasto-plastic, and its failure is controlled by Modified Cam-Clay failure criterion. The simulation takes into account the couple analysis. The approach is verified using available data from other research work especially centrifuge data. Parametric studies are subsequently performed to investigate the effect of contributing parameters such as aspect ratio of the caisson, the loading rate, the loading direction angle, and points where the external load is applied. In addition, the influence of the caisson geometry is taken into account. The results show the bearing capacity of the caisson increases with increasing the taper angle. Hence, the pullout capacity will increase using the same material. In addition, the bearing capacity of caissons strongly depends on the suction that is generated at tip and in sealed surface on top of caisson. Other results concerning the influencing factors will be presented.

Keywords: aspect ratio, finite element method, inclined load, modified Cam clay, taper angle, undrained condition

Procedia PDF Downloads 248
9343 Review on the Role of Sustainability Techniques in Development of Green Building

Authors: Ubaid Ur Rahman, Waqar Younas, Sooraj Kumar Chhabira

Abstract:

Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands.

Keywords: sustainable construction, green building, recycled waste material, environment

Procedia PDF Downloads 231
9342 A Structure-Based Approach for Adaptable Building System

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, importance of sustainability principles for building construction is obviously known and great significance must be attached to consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 563
9341 Embodied Carbon Footprint of Existing Malaysian Green Homes

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail

Abstract:

Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment.

Keywords: embodied carbon footprint, Malaysian green homes

Procedia PDF Downloads 329
9340 Adaptability of Steel-Framed Industrialized Building System

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, importance of sustainability principles for building construction is obviously known and great significance must be attached to consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 348
9339 ZnMn₂O₄ / Carbon Composite Recycled from Spent Zinc-Carbon Batteries for Zn-Air Battery Applications

Authors: Nivedha L. K., Dhinesh Kumar Murugaiah, Ganapathi Rao Kandregula, Raja Murugan, Kothandaraman R.

Abstract:

ZnMn₂O₄, a non-precious metal catalyst for oxygen reduction reaction (ORR), was recycled from the spent primary Zn-C battery and utilized in the zinc-air battery. Catalysts exhibiting facile ORR kinetics are a requirement for building efficient Zinc-air batteries. ZnMn₂O₄ demonstrated excellent catalytic activity towards ORR in an aqueous alkaline medium, with an onset potential of 0. 90 V vs. RHE. The recycled ZnMn₂O₄ manifested a similar performance (at ~ 1.0 V) as the chemically synthesized one with a specific capacity of 210 mAh gzn-¹ at a constant current discharge of 15 mA cm-². A single electrode potential study was done to comprehend the losses at the electrodes and to identify the limiting electrode. Interestingly, the cathode was improving during discharge, which is in contrast to the expectation due to the accumulation of peroxide around the catalytic layer. Although the anode has exhibited minimal polarization, beyond a capacity of 210 mAh g-¹, the supersaturation of electrolyte occurs with zincate ion causing precipitation of ZnO on the cell components, thereby leading to sudden polarization of the cell and hence zinc electrode act as a limiting electrode in this system.

Keywords: battery recycling, oxygen reduction reaction, single electrode measurement, Zn-air battery, ZnMn₂O₄ recovery

Procedia PDF Downloads 60
9338 Barriers to Social Sustainability in Afghan Residential Building Construction: An Exploratory Factor Analysis

Authors: Mohammad Qasim Mohammadi, Mohammad Arif Rohman

Abstract:

Although socially sustainable building is becoming increasingly popular worldwide, past studies indicate that when policymakers support sustainable building development, the social dimension is often given insufficient attention or entirely disregarded. There are not many studies that focus on the problems of socially sustainable buildings in Afghanistan. This research investigates the factors that may hinder social sustainability implementation in residential building construction. The study will gather data from construction professionals by purposive sampling and employ Exploratory Factor Analysis (EFA) and Varimax for analysis. The results will undergo rigorous examination and thorough discussion. The expected results in this research will analyze the underlying barrier structure (factors) that hinder social sustainability, and each of these factors will represent a set of observed variables. In addition, the factor loadings show which barriers pose the greatest challenges. The primary goal of this study is to provide valuable insights into the impediment factors of social sustainability within the residential building environment, aiming to inform decision-making in the industry and encourage the adoption of more socially sustainable construction practices.

Keywords: social sustainability, residential building, barriers, drivers, afghanistan, factor analysis

Procedia PDF Downloads 28
9337 Investigation of Learning Challenges in Building Measurement Unit

Authors: Argaw T. Gurmu, Muhammad N. Mahmood

Abstract:

The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.

Keywords: building measurement, construction management, learning challenges, evaluate survey

Procedia PDF Downloads 127
9336 Effect of Elastic Modulus Anisotropy on Foundation Behavior Reinforced with Geogrid in Sandy Soil

Authors: Reza Ziaie Moayed, Javad Shamsi Soosahab

Abstract:

The bearing capacity of shallow foundations is one of the interesting subjects in geotechnical engineering. Soil improvement by geosynthetic reinforcements is a modern method used in different projects to improve the bearing capacity of foundations. In this paper, numerical study is adopted to investigate the effect of geogrid soil reinforcement on shallow foundation behavior resting on anisotropic sand with using a finite element limit analysis software. The effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) investigates on bearing capacity of foundations. The results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of shallow foundations. Also, based on the results of this study, it was concluded that geogrid could be used as soil reinforcement elements to improve the bearing of sandy soils and reduce its settlement possible remarkably.

Keywords: shallow foundations, bearing capacity, numerical study, soil anisotropy, geogrid

Procedia PDF Downloads 138
9335 Pricing, Production and Inventory Policies Manufacturing under Stochastic Demand and Continuous Prices

Authors: Masoud Rabbani, Majede Smizadeh, Hamed Farrokhi-Asl

Abstract:

We study jointly determining prices and production in a multiple period horizon under a general non-stationary stochastic demand with continuous prices. In some periods we need to increase capacity of production to satisfy demand. This paper presents a model to aid multi-period production capacity planning by quantifying the trade-off between product quality and production cost. The product quality is estimated as the statistical variation from the target performances obtained from the output tolerances of the production machines that manufacture the components. We consider different tolerance for different machines that use to increase capacity. The production cost is estimated as the total cost of owning and operating a production facility during the planning horizon.so capacity planning has cost that impact on price. Pricing products often turns out to be difficult to measure them because customers have a reservation price to pay that impact on price and demand. We decide to determine prices and production for periods after enhance capacity and consider reservation price to determine price. First we use an algorithm base on fuzzy set of the optimal objective function values to determine capacity planning by determine maximize interval from upper bound in minimum objectives and define weight for objectives. Then we try to determine inventory and pricing policies. We can use a lemma to solve a problem in MATLAB and find exact answer.

Keywords: price policy, inventory policy, capacity planning, product quality, epsilon -constraint

Procedia PDF Downloads 558
9334 Structural Insulated Panels

Authors: R. Padmini, G. V. Manoj Kumar

Abstract:

Structural insulated panels (SIPs) are a high-performance building system for residential and light commercial construction. The panels consist of an insulating foam core sandwiched between two structural facings, typically oriented strand board (OSB). SIPs are manufactured under factory controlled conditions and can be fabricated to fit nearly any building design. The result is a building system that is extremely strong, energy efficient and cost effective. Building with SIPs will save you time, money and labor. Building with SIPs generally costs about the same as building with wood frame construction when you factor in the labor savings resulting from shorter construction time and less job-site waste. Other savings are realized because smaller heating and cooling systems are required with SIP construction. Structural insulated panels (SIPs) are one of the most airtight and well-insulated building systems available, making them an inherently green product. An airtight SIP building will use less energy to heat and cool, allow for better control over indoor environmental conditions, and reduce construction waste. Green buildings use less energy, reducing carbon dioxide emissions and playing an important role in combating global climate change. Buildings also use a tremendous amount of natural resources to construct and operate. Constructing green buildings that use these resources more efficiently, while minimizing pollution that can harm renewable natural resources, is crucial to a sustainable future.

Keywords: high performance, under factory controlled, wood frame, carbon dioxide emissions, natural resources

Procedia PDF Downloads 428