Search results for: atmospheric dispersion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1284

Search results for: atmospheric dispersion

864 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium

Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing

Abstract:

Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.

Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture

Procedia PDF Downloads 235
863 Assessment of OTA Contamination in Rice from Fungal Growth Alterations in a Scenario of Climate Changes

Authors: Carolina S. Monteiro, Eugénia Pinto, Miguel A. Faria, Sara C. Cunha

Abstract:

Rice (Oryza sativa) production plays a vital role in reducing hunger and poverty and assumes particular importance in low-income and developing countries. Rice is a sensitive plant, and production occurs strictly where suitable temperature and water conditions are found. Climatic changes are likely to affect worldwide, and some models have predicted increased temperatures, variations in atmospheric CO₂ concentrations and modification in precipitation patterns. Therefore, the ongoing climatic changes threaten rice production by increasing biotic and abiotic stress factors, and crops will grow in different environmental conditions in the following years. Around the world, the effects will be regional and can be detrimental or advantageous depending on the region. Mediterranean zones have been identified as possible hot spots, where dramatic temperature changes, modifications of CO₂ levels, and rainfall patterns are predicted. The actual estimated atmospheric CO₂ concentration is around 400 ppm, and it is predicted that it can reach up to 1000–1200 ppm, which can lead to a temperature increase of 2–4 °C. Alongside, rainfall patterns are also expected to change, with more extreme wet/dry episodes taking place. As a result, it could increase the migration of pathogens, and a shift in the occurrence of mycotoxins, concerning their types and concentrations, is expected. Mycotoxigenic spoilage fungi can colonize the crops and be present in all rice food chain supplies, especially Penicillium species, mainly resulting in ochratoxin A (OTA) contamination. In this scenario, the objectives of the present study are evaluating the effect of temperature (20 vs. 25 °C), CO₂ (400 vs. 1000 ppm), and water stress (0.93 vs 0.95 water activity) on growth and OTA production by a Penicillium nordicum strain in vitro on rice-based media and when colonizing layers of raw rice. Results demonstrate the effect of temperature, CO₂ and drought on the OTA production in a rice-based environment, thus contributing to the development of mycotoxins predictive models in climate change scenarios. As a result, improving mycotoxins' surveillance and monitoring systems, whose occurrence can be more frequent due to climatic changes, seems relevant and necessary. The development of prediction models for hazard contaminants presents in foods highly sensitive to climatic changes, such as mycotoxins, in the highly probable new agricultural scenarios is of paramount importance.

Keywords: climate changes, ochratoxin A, penicillium, rice

Procedia PDF Downloads 65
862 Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity

Authors: Muna Alghabshi, Edmana Krishnan

Abstract:

A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method.

Keywords: Jacobi elliptic function, mapping methods, nonlinear Schrodinger Equation, tanh method

Procedia PDF Downloads 310
861 Effect of Water Absorption on the Fatigue Behavior of Glass/Polyester Composite

Authors: Djamel Djeghader, Bachir Redjel

Abstract:

The composite materials of glass fibers can be used as a repair material for damage elements under repeated stresses, and in various environments. A cyclic bending characterization of a glass/polyester composite material was carried out with consideration of the period of immersion in water. These tests describe the behavior of materials and identify the mechanical fatigue characteristics using the Wohler Curve for different immersion time: 0, 90, 180 and 270 days in water. These curves are characterized by a dispersion in the lifetimes were modeled by straight whose intercepts are very similar and comparable to the static strength. This material deteriorates fatigue at a constant rate, which increases with increasing immersion time in water at a constant speed. The endurance limit seems to be independent of the immersion time in the water.

Keywords: fatigue, composite, glass, polyester, immersion, wohler

Procedia PDF Downloads 310
860 In-Plume H₂O, CO₂, H₂S and SO₂ in the Fumarolic Field of La Fossa Cone (Vulcano Island, Aeolian Archipelago)

Authors: Cinzia Federico, Gaetano Giudice, Salvatore Inguaggiato, Marco Liuzzo, Maria Pedone, Fabio Vita, Christoph Kern, Leonardo La Pica, Giovannella Pecoraino, Lorenzo Calderone, Vincenzo Francofonte

Abstract:

The periods of increased fumarolic activity at La Fossa volcano have been characterized, since early 80's, by changes in the gas chemistry and in the output rate of fumaroles. Excepting the direct measurements of the steam output from fumaroles performed from 1983 to 1995, the mass output of the single gas species has been recently measured, with various methods, only sporadically or for short periods. Since 2008, a scanning DOAS system is operating in the Palizzi area for the remote measurement of the in-plume SO₂ flux. On these grounds, the need of a cross-comparison of different methods for the in situ measurement of the output rate of different gas species is envisaged. In 2015, two field campaigns have been carried out, aimed at: 1. The mapping of the concentration of CO₂, H₂S and SO₂ in the fumarolic plume at 1 m from the surface, by using specific open-path diode tunable lasers (GasFinder Boreal Europe Ltd.) and an Active DOAS for SO₂, respectively; these measurements, coupled to simultaneous ultrasonic wind speed and meteorological data, have been elaborated to obtain the dispersion map and the output rate of single species in the overall fumarolic field; 2. The mapping of the concentrations of CO₂, H₂S, SO₂, H₂O in the fumarolic plume at 0.5 m from the soil, by using an integrated system, including IR spectrometers and specific electrochemical sensors; this has provided the concentration ratios of the analysed gas species and their distribution in the fumarolic field; 3. The in-fumarole sampling of vapour and measurement of the steam output, to validate the remote measurements. The dispersion map of CO₂, obtained from the tunable laser measurements, shows a maximum CO₂ concentration at 1m from the soil of 1000 ppmv along the rim, and 1800 ppmv in the inner slopes. As observed, the largest contribution derives from a wide fumarole of the inner-slope, despite its present outlet temperature of 230°C, almost 200°C lower than those measured at the rim fumaroles. Actually, fumaroles in the inner slopes are among those emitting the largest amount of magmatic vapour and, during the 1989-1991 crisis, reached the temperature of 690°C. The estimated CO₂ and H₂S fluxes are 400 t/d and 4.4 t/d, respectively. The coeval SO₂ flux, measured by the scanning DOAS system, is 9±1 t/d. The steam output, recomputed from CO₂ flux measurements, is about 2000 t/d. The various direct and remote methods (as described at points 1-3) have produced coherent results, which encourage to the use of daily and automatic DOAS SO₂ data, coupled with periodic in-plume measurements of different acidic gases, to obtain the total mass rates.

Keywords: DOAS, fumaroles, plume, tunable laser

Procedia PDF Downloads 395
859 Satellite Multispectral Remote Sensing of Ozone Pollution

Authors: Juan Cuesta

Abstract:

Satellite observation is a fundamental component of air pollution monitoring systems, such as the large-scale Copernicus Programme. Next-generation satellite sensors, in orbit or programmed in the future, offer great potential to observe major air pollutants, such as tropospheric ozone, with unprecedented spatial and temporal coverage. However, satellite approaches developed for remote sensing of tropospheric ozone are based solely on measurements from a single instrument in a specific spectral range, either thermal infrared or ultraviolet. These methods offer sensitivity to tropospheric ozone located at the lowest at 3 or 4 km altitude above the surface, thus limiting their applications for ozone pollution analysis. Indeed, no current observation of a single spectral domain provides enough information to accurately measure ozone in the atmospheric boundary layer. To overcome this limitation, we have developed a multispectral synergism approach, called "IASI+GOME2", at the Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) laboratory. This method is based on the synergy of thermal infrared and ultraviolet observations of respectively the Infrared Atmospheric Sounding Interferometer (IASI) and the Global Ozone Monitoring Experiment-2 (GOME-2) sensors embedded in MetOp satellites that have been in orbit since 2007. IASI+GOME2 allowed the first satellite observation of ozone plumes located between the surface and 3 km of altitude (what we call the lowermost troposphere), as it offers significant sensitivity in this layer. This represents a major advance for the observation of ozone in the lowermost troposphere and its application to air quality analysis. The ozone abundance derived by IASI+GOME2 shows a good agreement with respect to independent observations of ozone based on ozone sondes (a low mean bias, a linear correlation larger than 0.8 and a mean precision of about 16 %) around the world during all seasons. Using IASI+GOME2, lowermost tropospheric ozone pollution plumes are quantified both in terms of concentrations and also in the amounts of ozone photo-chemically produced along transport and also enabling the characterization of the ozone pollution, such as what occurred during the lockdowns linked to the COVID-19 pandemic. The current paper will show the IASI+GOME2 multispectral approach to observe the lowermost tropospheric ozone from space and an overview of several applications on different continents and at a global scale.

Keywords: ozone pollution, multispectral synergism, satellite, air quality

Procedia PDF Downloads 77
858 Development of a Framework for Assessing Public Health Risk Due to Pluvial Flooding: A Case Study of Sukhumvit, Bangkok

Authors: Pratima Pokharel

Abstract:

When sewer overflow due to rainfall in urban areas, this leads to public health risks when an individual is exposed to that contaminated floodwater. Nevertheless, it is still unclear the extent to which the infections pose a risk to public health. This study analyzed reported diarrheal cases by month and age in Bangkok, Thailand. The results showed that the cases are reported higher in the wet season than in the dry season. It was also found that in Bangkok, the probability of infection with diarrheal diseases in the wet season is higher for the age group between 15 to 44. However, the probability of infection is highest for kids under 5 years, but they are not influenced by wet weather. Further, this study introduced a vulnerability that leads to health risks from urban flooding. This study has found some vulnerability variables that contribute to health risks from flooding. Thus, for vulnerability analysis, the study has chosen two variables, economic status, and age, that contribute to health risk. Assuming that the people's economic status depends on the types of houses they are living in, the study shows the spatial distribution of economic status in the vulnerability maps. The vulnerability map result shows that people living in Sukhumvit have low vulnerability to health risks with respect to the types of houses they are living in. In addition, from age the probability of infection of diarrhea was analyzed. Moreover, a field survey was carried out to validate the vulnerability of people. It showed that health vulnerability depends on economic status, income level, and education. The result depicts that people with low income and poor living conditions are more vulnerable to health risks. Further, the study also carried out 1D Hydrodynamic Advection-Dispersion modelling with 2-year rainfall events to simulate the dispersion of fecal coliform concentration in the drainage network as well as 1D/2D Hydrodynamic model to simulate the overland flow. The 1D result represents higher concentrations for dry weather flows and a large dilution of concentration on the commencement of a rainfall event, resulting in a drop of the concentration due to runoff generated after rainfall, whereas the model produced flood depth, flood duration, and fecal coliform concentration maps, which were transferred to ArcGIS to produce hazard and risk maps. In addition, the study also simulates the 5-year and 10-year rainfall simulations to show the variation in health hazards and risks. It was found that even though the hazard coverage is very high with a 10-year rainfall events among three rainfall events, the risk was observed to be the same with a 5-year and 10-year rainfall events.

Keywords: urban flooding, risk, hazard, vulnerability, health risk, framework

Procedia PDF Downloads 70
857 Investigation of Knitted Fabric Properties Effect on Evaporation Rate

Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah

Abstract:

Evaporation kinetics of water from porous knitted fabrics are studied: An experimental study of determining evaporated water mass (g) versus time (s) from different knitted fabrics was gravimetrically investigated in various atmospheric conditions. Then evaporation rates are calculated. The goal is to determine the effect of fabric composition, knit structure and yarns properties on evaporation rate. The results show that fabrics geometrical properties, such as porosity and thickness, have a significant influence on evaporated water quantities.

Keywords: evaporation rate, experimental study, geometrical properties, porous knitted fabrics

Procedia PDF Downloads 502
856 Highly Sensitive, Low-Cost Oxygen Gas Sensor Based on ZnO Nanoparticles

Authors: Xin Chang, Daping Chu

Abstract:

Oxygen gas sensing technology has progressed since the last century and it has been extensively used in a wide range of applications such as controlling the combustion process by sensing the oxygen level in the exhaust gas of automobiles to ensure the catalytic converter is in a good working condition. Similar sensors are also used in industrial boilers to make the combustion process economic and environmentally friendly. Different gas sensing mechanisms have been developed: ceramic-based potentiometric equilibrium sensors and semiconductor-based sensors by oxygen absorption. In this work, we present a highly sensitive and low-cost oxygen gas sensor based on Zinc Oxide nanoparticles (average particle size of 35nm) dispersion in ethanol. The sensor is able to measure the pressure range from 103 mBar to 10-5 mBar with a sensitivity of more than 102 mA/Bar. The sensor is also erasable with heat.

Keywords: nanoparticles, oxygen, sensor, ZnO

Procedia PDF Downloads 134
855 The Behavior of O3 and Its Nitrogen and Sulfur Precursors in Sea Breeze Scenarios on the Coast of Gabès (Tunisia)

Authors: Allagui Mohamed

Abstract:

The study of the concentrations of atmospheric pollutants is analyzed during two days of sea breeze (April 26, 2010, and January 11, 2008) on the Mediterranean coasts, just in front of Gabès (33 ° 53 'N, 10 ° 07' E), Tunisia. During these two cases, we found that Gabès was contaminated by a coastal sea breeze. On April 26, 2010, the terrestrial synoptic wind admitted a maximum speed of about 6 m / s and was approximately perpendicular to the coast and making the breeze easier. On January 11, 2008, the terrestrial wind was local. Under these conditions, O3 and, therefore, the concentrations were multiplied by the factors 0.1 and 2, respectively. The episodes of ozone concentrations faithfully follow the sea breeze circulation. These sea breeze events can be responsible for high concentrations of NO, NO2, and SO2 as air pollutants in this area.

Keywords: sea breeze, O3, cost town, air quality

Procedia PDF Downloads 103
854 The Gasification of Acetone via Partial Oxidation in Supercritical Water

Authors: Shyh-Ming Chern, Kai-Ting Hsieh

Abstract:

Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of Spent Organic Solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.

Keywords: acetone, gasification, SCW, supercritical water

Procedia PDF Downloads 382
853 Influence of CO₂ on the Curing of Permeable Concrete

Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez

Abstract:

Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.

Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy

Procedia PDF Downloads 61
852 Supply Chain Fit and Firm Performance: The Role of the Environment

Authors: David Gligor

Abstract:

The purpose of this study was to build on Fisher's (1997) seminal article. First, it sought to determine how companies can achieve supply chain fit (i.e., match between the products' characteristics and the underlying supply chain design). Second, it attempted to develop a better understanding of how environmental conditions impact the relationship between supply chain fit and performance. The findings indicate that firm supply chain agility allows organizations to quickly adjust the structure of their supply chains and therefore, achieve supply chain fit. In addition, archival and survey data were used to explore the moderating effects of six environmental uncertainty dimensions: munificence, market dynamism, technological dynamism, technical complexity, product diversity, and geographic dispersion. All environmental variables, except technological dynamism, were found to impact the relationship between supply chain fit and firm performance.

Keywords: supply chain fit, environmental uncertainty, supply chain agility, management engineering

Procedia PDF Downloads 594
851 Comprehensive Microstructural and Thermal Analysis of Nano Intumescent Fire Retardant Coating for Structural Applications

Authors: Hammad Aziz

Abstract:

Intumescent fire retardant coating (IFRC) is applied on the surface of material requiring fire protection. In this research work, IFRC’s were developed using ammonium polyphosphate, expandable graphite, melamine, boric acid, zinc borate, mica, magnesium oxide, and bisphenol A BE-188 with polyamide polyamine H-4014 as curing agent. Formulations were prepared using nano size MgO and compared with control formulation i.e. without nano size MgO. Small scale hydrocarbon fire test was conducted to scrutinize the thermal performance of the coating. Char and coating were further characterized by using FESEM, FTIR, EDS, TGA and DTGA. Thus, Intumescent coatings reinforced with 2 wt. % of nano-MgO (rod shaped particles) provide superior thermal performance and uniform microstructure of char due to well dispersion of nano particles.

Keywords: intumescent coating, char, SEM, TGA

Procedia PDF Downloads 427
850 Experimental Study on Effects of Addition of Rice Husk on Coal Gasification

Authors: M. Bharath, Vasudevan Raghavan, B. V. S. S. S. Prasad, S. R. Chakravarthy

Abstract:

In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H2 remain almost unchanged and CO2 decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm3. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk.

Keywords: bubbling fluidized bed reactor, calorific value, coal gasification, rice husk

Procedia PDF Downloads 222
849 Additive Manufacturing with Ceramic Filler

Authors: Irsa Wolfram, Boruch Lorenz

Abstract:

Innovative solutions with additive manufacturing applying material extrusion for functional parts necessitate innovative filaments with persistent quality. Uniform homogeneity and a consistent dispersion of particles embedded in filaments generally require multiple cycles of extrusion or well-prepared primal matter by injection molding, kneader machines, or mixing equipment. These technologies commit to dedicated equipment that is rarely at the disposal in production laboratories unfamiliar with research in polymer materials. This stands in contrast to laboratories that investigate complex material topics and technology science to leverage the potential of 3-D printing. Consequently, scientific studies in labs are often constrained to compositions and concentrations of fillersofferedfrom the market. Therefore, we introduce a prototypal laboratory methodology scalable to tailoredprimal matter for extruding ceramic composite filaments with fused filament fabrication (FFF) technology. - A desktop single-screw extruder serves as a core device for the experiments. Custom-made filaments encapsulate the ceramic fillers and serve with polylactide (PLA), which is a thermoplastic polyester, as primal matter and is processed in the melting area of the extruder, preserving the defined concentration of the fillers. Validated results demonstrate that this approach enables continuously produced and uniform composite filaments with consistent homogeneity. Itis 3-D printable with controllable dimensions, which is a prerequisite for any scalable application. Additionally, digital microscopy confirms the steady dispersion of the ceramic particles in the composite filament. - This permits a 2D reconstruction of the planar distribution of the embedded ceramic particles in the PLA matrices. The innovation of the introduced method lies in the smart simplicity of preparing the composite primal matter. It circumvents the inconvenience of numerous extrusion operations and expensive laboratory equipment. Nevertheless, it deliversconsistent filaments of controlled, predictable, and reproducible filler concentration, which is the prerequisite for any industrial application. The introduced prototypal laboratory methodology seems capable for other polymer matrices and suitable to further utilitarian particle types beyond and above ceramic fillers. This inaugurates a roadmap for supplementary laboratory development of peculiar composite filaments, providing value for industries and societies. This low-threshold entry of sophisticated preparation of composite filaments - enabling businesses to create their own dedicated filaments - will support the mutual efforts for establishing 3D printing to new functional devices.

Keywords: additive manufacturing, ceramic composites, complex filament, industrial application

Procedia PDF Downloads 103
848 Rheological Evaluation of a Mucoadhesive Precursor of Based-Poloxamer 407 or Polyethylenimine Liquid Crystal System for Buccal Administration

Authors: Jéssica Bernegossi, Lívia Nordi Dovigo, Marlus Chorilli

Abstract:

Mucoadhesive liquid crystalline systems are emerging how delivery systems for oral cavity. These systems are interesting since they facilitate the targeting of medicines and change the release enabling a reduction in the number of applications made by the patient. The buccal mucosa is permeable besides present a great blood supply and absence of first pass metabolism, it is a good route of administration. It was developed two systems liquid crystals utilizing as surfactant the ethyl alcohol ethoxylated and propoxylated (30%) as oil phase the oleic acid (60%), and the aqueous phase (10%) dispersion of polymer polyethylenimine (0.5%) or dispersion of polymer poloxamer 407 (16%), with the intention of applying the buccal mucosa. Initially, was performed for characterization of systems the conference by polarized light microscopy and rheological analysis. For the preparation of the systems the components described was added above in glass vials and shaken. Then, 30 and 100% artificial saliva were added to each prepared formulation so as to simulate the environment of the oral cavity. For the verification of the system structure, aliquots of the formulations were observed in glass slide and covered with a coverslip, examined in polarized light microscope (PLM) Axioskop - Zeizz® in 40x magnifier. The formulations were also evaluated for their rheological profile Rheometer TA Instruments®, which were obtained rheograms the selected systems employing fluency mode (flow) in temperature of 37ºC (98.6ºF). In PLM, it was observed that in formulations containing polyethylenimine and poloxamer 407 without the addition of artificial saliva was observed dark-field being indicative of microemulsion, this was also observed with the formulation that was increased with 30% of the artificial saliva. In the formulation that was increased with 100% simulated saliva was shown to be a system structure since it presented anisotropy with the presence of striae being indicative of hexagonal liquid crystalline mesophase system. Upon observation of rheograms, both systems without the addition of artificial saliva showed a Newtonian profile, after addition of 30% artificial saliva have been given a non-Newtonian behavior of the pseudoplastic-thixotropic type and after adding 100% of the saliva artificial proved plastic-thixotropic. Furthermore, it is clearly seen that the formulations containing poloxamer 407 have significantly larger (15-800 Pa) shear stress compared to those containing polyethyleneimine (5-50 Pa), indicating a greater plasticity of these. Thus, it is possible to observe that the addition of saliva was of interest to the system structure, starting from a microemulsion for a liquid crystal system, thereby also changing thereby its rheological behavior. The systems have promising characteristics as controlled release systems to the oral cavity, as it features good fluidity during its possible application and greater structuring of the system when it comes into contact with environmental saliva.

Keywords: liquid crystal system, poloxamer 407, polyethylenimine, rheology

Procedia PDF Downloads 448
847 Impact of Popular Passive Physiological Diversity Drivers on Thermo-Physiology

Authors: Ilango Thiagalingam, Erwann Yvin, Gabriel Crehan, Roch El Khoury

Abstract:

An experimental investigation is carried out in order to evaluate the relevance of a customization approach of the passive thermal mannikin. The promise of this approach consists in the following assumption: physiological differences lead to distinct thermo-physiological responses that explain a part of the thermal appraisal differences between people. Categorizing people and developing an appropriate thermal mannikin for each group would help to reduce the actual dispersion on the subjective thermal comfort perception. The present investigation indicates that popular passive physiological diversity drivers such as sex, age and BMI are not the correct parameters to consider. Indeed, very little or no discriminated global thermo-physiological responses arise from the physiological classification of the population using these parameters.

Keywords: thermal comfort, thermo-physiology, customization, thermal mannikin

Procedia PDF Downloads 92
846 Effect of N2 Pretreatment on the Properties of Tungsten Based Catalysts in Metathesis of Ethylene and 2-Butene

Authors: Kriangkrai Aranyarat

Abstract:

The effect of N2 pretreatment on the catalytic activity of tungsten-based catalysts was investigated in the metathesis of ethylene and trans-2-butene at 450oC and atmospheric pressure. The presence of tungsten active species was confirmed by UV-Vis and Raman spectroscopy. Compared to the WO3-based catalysts treated in air, higher amount of WO42- tetrahedral species and lower amount of WO3 crystalline species were observed on the N2-treated ones. These contribute to the higher conversion of 2-butene and propylene selectivity during 10 h time-on-stream. Moreover, N2 treatment led to lower amount of coke formation as revealed by TPO of the spent catalysts.

Keywords: metathesis, pretreatment, propylene, tungsten

Procedia PDF Downloads 461
845 Polyacrylate Modified Copper Nanoparticles with Controlled Size

Authors: Robert Prucek, Aleš Panáček, Jan Filip, Libor Kvítek, Radek Zbořil

Abstract:

The preparation of Cu nanoparticles (NPs) through the reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate with a molecular weight of 1200 is reported. Cu NPs were synthesized at a concentration of copper salt equal to 2.5, 5, and 10 mM, and at a molar ratio of copper ions and monomeric unit of polyacrylate equal to 1:2. The as-prepared Cu NPs have diameters of about 2.5–3 nm for copper concentrations of 2.5 and 5 mM, and 6 nm for copper concentration of 10 mM. Depending on the copper salt concentration and concentration of additionally added polyacrylate to Cu particle dispersion, primarily formed NPs grow through the process of aggregation and/or coalescence into clusters and/or particles with a diameter between 20–100 nm. The amount of additionally added sodium polyacrylate influences the stability of Cu particles against air oxidation. The catalytic efficiency of the prepared Cu particles for the reduction of 4-nitrophenol is discussed.

Keywords: copper, nanoparticles, sodium polyacrylate, catalyst, 4-nitrophenol

Procedia PDF Downloads 274
844 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.

Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology

Procedia PDF Downloads 76
843 Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler

Authors: M. E. Ali Mohsin, Agus Arsad, Othman Y. Alothman

Abstract:

This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites. Transmission electron microscopy (TEM) images revealed that larger aggregates of CNTs were disappeared upon addition of these two components leading to the enhancement of thermo-mechanical properties for such composites.

Keywords: secondary filler, montmorillonite, carbon nanotube, nanocomposite

Procedia PDF Downloads 358
842 Static Light Scattering Method for the Analysis of Raw Cow's Milk

Authors: V. Villa-Cruz, H. Pérez-Ladron de Guevara, J. E. Diaz-Díaz

Abstract:

Static Light Scattering (SLS) was used as a method to analyse cow's milk raw, coming from the town of Lagos de Moreno, Jalisco, Mexico. This method is based on the analysis of the dispersion of light laser produced by a set of particles in solution. Based on the above, raw milk, which contains particles of fat globules, with a diameter of 2000 nm and particles of micelles of protein with 300 nm in diameter were analyzed. For this, dilutions of commercial milk were made (1.0%, 2.0% and 3.3%) to obtain a pattern of laser light scattering and also made measurements of raw cow's milk. Readings were taken in a sweep initial angle 10° to 170°, results were analyzed with the program OriginPro 7. The SLS method gives us an estimate of the percentage of fat content in milk samples. It can be concluded that the SLS method, is a quick method of analysis to detect adulteration in raw cow's milk.

Keywords: light scattering, milk analysis, adulteration in milk, micelles, OriginPro

Procedia PDF Downloads 372
841 Simulation Analysis of Wavelength/Time/Space Codes Using CSRZ and DPSK-RZ Formats for Fiber-Optic CDMA Systems

Authors: Jaswinder Singh

Abstract:

In this paper, comparative analysis is carried out to study the performance of wavelength/time/space optical CDMA codes using two well-known formats; those are CSRZ and DPSK-RZ using RSoft’s OptSIM. The analysis is carried out under the real-like scenario considering the presence of various non-linear effects such as XPM, SPM, SRS, SBS and FWM. Fiber dispersion and the multiple access interference are also considered. The codes used in this analysis are 3-D wavelength/time/space codes. These are converted into 2-D wavelength-time codes so that their requirement of space couplers and fiber ribbons is eliminated. Under the conditions simulated, this is found that CSRZ performs better than DPSK-RZ for fiber-optic CDMA applications.

Keywords: Optical CDMA, Multiple access interference (MAI), CSRZ, DPSK-RZ

Procedia PDF Downloads 643
840 Functionalization and Dispersion of Multiwall Carbon Nanotubes in Waterborne Polyurethane

Authors: Shahla Hajializadeh, Maryam Hamedanlou

Abstract:

Multiwall carbon nanotubes were chemically modified with amide groups for the purpose of enhancing their chemical affinity with waterborne polyurethane. In this study, a thermoplastic nanocomposite containing functionalized multiwall carbon nanotube/waterborne polyurethane (WBPU/MWNT) via in situ polymerization has been prepared. The impacts of MWNT addition on the morphology and electrical properties of nanocomposites were investigated. Micrographs of Scanning Electron Microscopy (SEM) prove that functionalized CNT can be effectively dispersed in WBPU matrix. The electrical conductivity of nanocomposites increased with the CNT contents in as such the nanocomposites containing 1 wt% of MWNT exhibited a conductivity nearly five orders of magnitude higher than the WBPU film.

Keywords: chemical functionalization, electrical properties, in situ polymerization, morphology, multiwall carbon nanotubes, waterborne polyurethane

Procedia PDF Downloads 260
839 Uneven Development: Structural Changes and Income Outcomes across States in Malaysia

Authors: Siti Aiysyah Tumin

Abstract:

This paper looks at the nature of structural changes—the transition of employment from agriculture, to manufacturing, then to different types of services—in different states in Malaysia and links it to income outcomes for households and workers. Specifically, this paper investigates the conditional association between the concentration of different economic activities and income outcomes (household incomes and employee wages) in almost four decades. Using publicly available state-level employment and income data, we found that significant wage premium was associated with “modern” services (finance, real estate, professional, information and communication), which are urban-based services sectors that employ a larger proportion of skilled and educated workers. However, employment in manufacturing and other services subsectors was significantly associated with a lower income dispersion and inequality, alluding to their importance in welfare improvements.

Keywords: employment, labor market, structural change, wage

Procedia PDF Downloads 164
838 Gas-Solid Nitrocarburizing of Steels: Kinetic Modelling and Experimental Validation

Authors: L. Torchane

Abstract:

This study is devoted to defining the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3-Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.

Keywords: gaseous nitrocarburizing, kinetic model, diffusion, layer growth kinetic

Procedia PDF Downloads 530
837 Insulation Properties of Rod-Plane Electrode Covered with ATH/SIR Nano-Composite in Dry-Air

Authors: Jae-Yong Sim, Jung-Hun Kwon, Ji-Sung Park, Kee-Joe Lim

Abstract:

One of the latest trends for insulation systems to improve the insulation performance is the use of eco-friendly hybrid insulation using compressed dry-air. Despite the excellent insulation performance of sulphurhexafluoride (SF6) gas, its use has been restricted due to the problems with significant global warming potential (GWP). Accordingly, lightning impulse performance of the hybrid insulation system covered with an aluminum trihydrate/silicone rubber (ATH/SIR) nanocomposite was examined in air at atmospheric pressure and in compressed air at pressures between 0.2 and 0.6 MPa. In the experiments, the most common breakdown path took place along the surface of the covered rod. The insulation reliability after several discharges should be guaranteed in hybrid insulation. On the other hand, the surface of the covered rod was carbonized after several discharges. Therefore, nanoscale ATH can be used as a reinforcement of covered dielectrics to inhibit carbonization on the surface of a covered rod. The results were analyzed in terms of the surface resistivity of the cover dielectrics.

Keywords: nanocomposite, hybrid insulation, ATH, dry-air

Procedia PDF Downloads 447
836 Optical Diagnostics of Corona Discharge by Laser Interferometry

Authors: N. Bendimerad, M. Lemerini, A. Guen

Abstract:

In this work, we propose to determine the density of neutral particles of an electric discharge peak - Plan types performed in air at atmospheric pressure by applying a technique based on laser interferometry. The experimental methods used so far as the shadowgraph or stereoscopy, give rather qualitative results with regard to the determination of the neutral density. The neutral rotational temperature has been subject of several studies but direct measurements of kinetic temperature are rare. The aim of our work is to determine quantitatively and experimentally depopulation with a Mach-Zehnder type interferometer. This purely optical appearance of the discharge is important when looking to know the refractive index of any gas for any physicochemical applications.

Keywords: laser source, Mach-Zehnder interferometer, refractive index, corona discharge

Procedia PDF Downloads 439
835 Multiphase Coexistence for Aqueous System with Hydrophilic Agent

Authors: G. B. Hong

Abstract:

Liquid-Liquid Equilibrium (LLE) data are measured for the ternary mixtures of water + 1-butanol + butyl acetate and quaternary mixtures of water + 1-butanol + butyl acetate + glycerol at atmospheric pressure at 313.15 K. In addition, isothermal Vapor–Liquid–Liquid Equilibrium (VLLE) data are determined experimentally at 333.15 K. The region of heterogeneity is found to increase as the hydrophilic agent (glycerol) is introduced into the aqueous mixtures. The experimental data are correlated with the NRTL model. The predicted results from the solution model with the model parameters determined from the constituent binaries are also compared with the experimental values.

Keywords: LLE, VLLE, hydrophilic agent, NRTL

Procedia PDF Downloads 240