Search results for: Markov Chains
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 677

Search results for: Markov Chains

257 Evaluation of Green Logistics Performance: An Application of Analytic Hierarchy Process Method for Ranking Environmental Indicators

Authors: Eduarda Dutra De Souza, Gabriela Hammes, Marina Bouzon, Carlos M. Taboada Rodriguez

Abstract:

The search for minimizing harmful impacts on the environment has become the focus of global society, affecting mainly how to manage organizations. Thus, companies have sought to transform their activities into environmentally friendly initiatives by applying green practices throughout their supply chains. In the logistics domain, the implementation of environmentally sound practices is still in its infancy in emerging countries such as Brazil. Given the need to reduce these environmental damages, this study aims to evaluate the performance of green logistics (GL) in the plastics industry sector in order to help to improve environmental performance within organizations and reduce the impact caused by their activities. The performance tool was based on theoretical research and the use of experts in the field. The Analytic Hierarchy Process (AHP) was used to prioritize green practices and assign weight to the indicators contained in the proposed tool. The tool also allows the co-production of a single indicator. The developed tool was applied in an industry of the plastic packaging sector. However, this tool may be applied in different industry sectors, and it is adaptable to different sizes of companies. Besides the contributions to the literature, this work also presents future paths of research in the field of green logistics.

Keywords: AHP, green logistics, green supply chain, performance evaluation

Procedia PDF Downloads 160
256 Interrogating the Theoretical Basis of the Freedom Charter in South Africa

Authors: Sibonginkosi Mazibuko

Abstract:

The “adoption” of the Freedom Charter in 1955 at Kliptown south of Johannesburg, South Africa represented a desire to create a society that is based on common citizenship, and democracy. The architects of the Charter had a vision of a society that lived in peace with itself. Today, the Charter is still promoted as the best thing that ever happened to a society ravaged by racism, dispossession, oppression and exploitation – a society divided in all aspects of its life. This paper moves from the understanding that land is fundamental to all life. It interrogates the Charter’s claim on land. At a time when the colonised world sought to free themselves from the chains of colonialism and Africans throughout the continent demanded Africa for the Africans, the Freedom Charter claimed South Africa for all who lived in it. To the extent that this paper problematizes the philosophical underpinnings of the Charter, it uses the methodology of dialectic materialism to understand the theoretical basis of the Freedom Charter. The paper argues that the understanding, desire and the vision of the Freedom Charter were, as they are today, irreconcilable. To that effect and in pursuit of narrow class interests, the Charter justified land dispossession and unsustainable living conditions for the dispossessed majority. The paper then concludes that, by misrepresenting the critically fundamental land question, the Charter tried to reconcile the dispossessed with their dispossession and thus reflected coloniality and whiteness long before colonialism and settler-colonialism came to an end in South Africa.

Keywords: colonialism, contradictions, freedom charter, South Africa

Procedia PDF Downloads 431
255 Effect of Cadmium and Zinc on Initial Insect Food Chain in Wheat Agroecosystem

Authors: Muhammad Xaaceph Khan, Abida Butt, Farah Kausar

Abstract:

Due to geogenic and anthropogenic factors, heavy metals concentrations increased throughout the world and deposit into soil. Thus available to different plants and travel in different food chains. The present study was designed to achieve bioaccumulation of Cd and Zn in the wheat-aphid-beetle food chain. For this purpose, wheat plants were grown in three different treatments: Cd, Zn, Cd+Zn. Data showed that Cd content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle and seed weight per panicle decreases with increase in Cd content in the soil. Zn content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle, and seed weight per panicle increase with an increase in Zn content in the soil. With the addition of Zn in Cd-treated soil, the uptake of Cd decreases in all parts of wheat plants. Bioaccumulation from wheat plant to aphids and then its predators were also studied. Cd concentration increases from low to high concentration in all arthropods. Same was observed in Zn concentrations, while in Cd+Zn, Cd accumulation decreases but Zn accumulates increases. Health risk index (HRI) also showed that in the presence of Zn, the HRI improves and can help to reduce health risks associated with Cd.

Keywords: aphid, beetle, bioaccumulation, cadmium, wheat, zinc

Procedia PDF Downloads 162
254 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 120
253 Carbon Footprint of Blowmoulded Plastic Parts-Case Study on Automotive Industry

Authors: Mădălina Elena Mavrodin, Gabriela Andreea Despescu, Gheorghe Lăzăroiu

Abstract:

Long term trend of global warming has brought a very deep interest in climate change, which is due most likely to increasing concentrations of anthropogenic greenhouse gases. 0f these, particular attention is paid to carbon dioxide, which has led in desire for obtaining carbon footprint products. Automotive industry is one of the world’s most important economic sectors with a great impact over the environment through all range of activities. Its impact over the environment has been studied, researcher trying as much as possible to reduce it and to offer environmental friendly solution for the using, but also manufacturing cars. In the global endeavour to meet the international commitments in order to reduce the greenhouse gas emissions, many companies integrate environmental issues into their management systems, with potential effects in their entire production chains. Several tools and calculators have been developed to measure the environmental impact of a product in the life cycle perspective of the whole product chain. There were a lot of ways to obtain the carbon footprint of driving a car, but the total carbon footprint of a car includes also the carbon footprint of all the components and accessories. In the automotive industry, one of the challenges is to calculate the carbon footprint of a car from ‘cradle to grave’; this meaning not only for driving the car, but also manufacturing it, so there can be an overview over the entire process of production.

Keywords: carbon footprint, global warming potential, greenhouse gases, manufacture, plastic air ducts

Procedia PDF Downloads 322
252 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data

Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates

Abstract:

Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.

Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.

Procedia PDF Downloads 98
251 The Effect of Artificial Intelligence on Finance, Banking and Insurance

Authors: Sherine Shahat Abdelnour Bastourous

Abstract:

Banking and monetary offerings are rapidly transitioning from being monolithic structures focusing simply on their personal economic services to becoming integrated gamers in a couple of customer journeys and delivery chains. Banks themselves are refocusing on being liquidity carriers and underwriters in those networks, whilst the overall idea of ‘embeddedness’ builds on the market conveniently available API (software Programming Interface) architectures to flexibly supply services to numerous requestors, i.e., online shops who want finance and insurance products to better serve their clients, respectively. With this flexibility come new necessities for more advantageous cybersecurity. API structures are greater decentralized and inherently vulnerable to trade. lamentably, this has now not been comprehensively addressed inside the literature. This paper attempts to fill this hole through looking at security tactics and technology relevant to API architectures found in embedded finance. After offering the research method implemented and introducing the essential bodies of understanding worried, the paper will speak six dominating era developments shaping excessive-degree monetary services architectures. Ultimately, embedded finance and the respective usage of API techniques might be described. building in this, safety concerns for APIs in monetary and insurance offerings will be elaborated on earlier than concluding with a few ideas for viable similar studies.

Keywords: finance, non-interest, sustainability, enlightenment health, out of pocket expenditure, universal healthcare

Procedia PDF Downloads 6
250 Polymer-Ceramic Composite Film Fabrication and Characterization for Harsh Environment Applications

Authors: Santiranjan Shannigrahi, Mohit Sharma, Ivan Tan Chee Kiang, Yong Anna Marie

Abstract:

Polymer-ceramics composites are gaining importance due to their high specific strength, corrosion resistance, and high mechanical properties, as well as low cost. As a result, polymer composites are suitable for various industrial applications, like automobiles, aerospace, and biomedical areas. The present work comprises the development of polymer-ceramic composite films and is tested for the harsh environment including weatherability and UV barrier property. The polymer composite films are kept in weather chamber for a fixed period of time followed by tested for their physical, mechanical and chemical properties. The composite films are fabricated using compounding followed by hot pressing. UV-visible spectroscopy results reveal that the pure polymer polyethylene (PE) films are transparent in the visible range and do not absorb UV. However, polymer ceramic composite films start absorbing UV completely even at very low filler loading amount of 5 wt.%. The changes in tensile properties of the various composite films before and after UV illuminations for 40 hrs at 60 degC are analyzed. The tensile strength of neat PE film has been observed 8% reduction, whereas the remarkable increase in tensile strength has been observed (18% improvement for 10 wt. % filled composites films). The UV exposure leads to strengthen the crosslinking among PE polymer chains in the filled composite films, which contributes towards the incremented tensile strength properties.

Keywords: polymer ceramic composite, processing, harsh environment, mechanical properties

Procedia PDF Downloads 385
249 Ab Initio Study of Electronic Structure and Transport of Graphyne and Graphdiyne

Authors: Zeljko Crljen, Predrag Lazic

Abstract:

Graphene has attracted a tremendous interest in the field of nanoelectronics and spintronics due to its exceptional electronic properties. However, pristine graphene has no band gap, a feature needed in building some of the electronic elements. Recently, a growing attention has been given to a class of carbon allotropes of graphene with honeycomb structures, in particular to graphyne and graphdiyne. They are characterized with a single and double acetylene bonding chains respectively, connecting the nearest-neighbor hexagonal rings. With an electron density comparable to that of graphene and a prominent gap in electronic band structures they appear as promising materials for nanoelectronic components. We studied the electronic structure and transport of infinite sheets of graphyne and graphdiyne and compared them with graphene. The method based on the non-equilibrium Green functions and density functional theory has been used in order to obtain a full ab initio self-consistent description of the transport current with different electrochemical bias potentials. The current/voltage (I/V) characteristics show a semi-conducting behavior with prominent nonlinearities at higher voltages. The calculated band gaps are 0.52V and 0.59V, respectively, and the effective masses are considerably smaller compared to typical semiconductors. We analyzed the results in terms of transmission eigenchannels and showed that the difference in conductance is directly related to the difference of the internal structure of the allotropes.

Keywords: electronic transport, graphene-like structures, nanoelectronics, two-dimensional materials

Procedia PDF Downloads 191
248 Cyber Supply Chain Resilient: Enhancing Security through Leadership to Protect National Security

Authors: Katie Wood

Abstract:

Cyber criminals are constantly on the lookout for new opportunities to exploit organisation and cause destruction. This could lead to significant cause of economic loss for organisations in the form of destruction in finances, reputation and even the overall survival of the organization. Additionally, this leads to serious consequences on national security. The threat of possible cyber attacks places further pressure on organisations to ensure they are secure, at a time where international scale cyber attacks have occurred in a range of sectors. Stakeholders are wanting confidence that their data is protected. This is only achievable if a business fosters a resilient supply chain strategy which is implemented throughout its supply chain by having a strong cyber leadership culture. This paper will discuss the essential role and need for organisations to adopt a cyber leadership culture and direction to learn about own internal processes to ensure mitigating systemic vulnerability of its supply chains. This paper outlines that to protect national security there is an urgent need for cyber awareness culture change. This is required in all organisations, regardless of their sector or size, to implementation throughout the whole supplier chain to support and protect economic prosperity to make the UK more resilient to cyber-attacks. Through businesses understanding the supply chain and risk management cycle of their own operates has to be the starting point to ensure effective cyber migration strategies.

Keywords: cyber leadership, cyber migration strategies, resilient supply chain strategy, cybersecurity

Procedia PDF Downloads 242
247 The Role of Robotization in Reshoring: An Overview of the Implications on International Trade

Authors: Thinh Huu Nguyen, Shahab Sharfaei, Jindřich Soukup

Abstract:

In the pursuit of reducing production costs, offshoring has been a major trend throughout global value chains for many decades. However, with the rise of advanced technologies, new opportunities to automate their production are changing the motivation of multinational firms to go offshore. Instead, many firms are working to relocate their offshored activities from developing economies back to their home countries. This phenomenon, known as reshoring, has recently garnered much attention as it becomes clear that automation in advanced countries might have major implications not only on their own economies but also through international trade on the economy of low-income countries, including their labor market outcomes and their comparative advantages. Thus, while using robots to substitute human labor may lower the relative costs of producing at home, it has the potential to decrease employment and demand for exports from developing economies through reshoring. In this paper, we investigate the recent literature to provide a further understanding of the relationships between robotization and the reshoring of production. Moreover, we analyze the impact of robot adoption on international trade in both developed and emerging markets. Finally, we identify the research gaps and provide avenues for future research in international economics. This study is a part of the project funded by the Internal Grant Agency (IGA) of the Faculty of Business Administration, Prague University of Economics and Business.

Keywords: automation, robotization, reshoring, international trade

Procedia PDF Downloads 111
246 The Diffusion of Membrane Nanodomains with Specific Ganglioside Composition

Authors: Barbora Chmelova, Radek Sachl

Abstract:

Gangliosides are amphipathic membrane lipids. Due to the composition of bulky oligosaccharide chains containing one or more sialic acids linked to the hydrophobic ceramide base, gangliosides are classified among glycosphingolipids. This unique structure induces a high self-aggregating tendency of gangliosides and, therefore, the formation of nanoscopic clusters called nanodomains. Gangliosides are preferentially present in an extracellular membrane leaflet of all human tissues and thus have an impact on a huge number of biological processes, such as intercellular communication, cell signalling, membrane trafficking, and regulation of receptor activity. Defects in their metabolism, impairment of proper ganglioside function, or changes in their organization lead to serious health conditions such as Alzheimer´s and Parkinson´s diseases, autoimmune diseases, tumour growth, etc. This work mainly focuses on ganglioside organization into nanodomains and their dynamics within the plasma membrane. Current research investigates static ganglioside nanodomains characterization; nevertheless, the information about their diffusion is missing. In our study, fluorescence correlation spectroscopy is implemented together with stimulated emission depletion (STED-FCS), which combines the diffraction-unlimited spatial resolution with high temporal resolution. By comparison of the experiments performed on model vesicles containing 4 % of either GM1, GM2, or GM3 and Monte Carlo simulations of diffusion on the plasma membrane, the description of ganglioside clustering, diffusion of nanodomains, and even diffusion of ganglioside molecules inside investigated nanodomains are described.

Keywords: gangliosides, nanodomains, STED-FCS, flourescence microscopy, membrane diffusion

Procedia PDF Downloads 81
245 Intergenerational Class Mobility in Greece: A Cross-Cohort Analysis with Evidence from European Union-Statistics on Income and Living Conditions

Authors: G. Stamatopoulou, M. Symeonaki, C. Michalopoulou

Abstract:

In this work, we study the intergenerational social mobility in Greece, in order to provide up-to-date evidence on the changes in the mobility patterns throughout the years. An analysis for both men and women aged between 25-64 years old is carried out. Three main research objectives are addressed. First, we aim to examine the relationship between the socio-economic status of parents and their children. Secondly, we investigate the evolution of the mobility patterns between different birth cohorts. Finally, the role of education is explored in shaping the mobility patterns. For the analysis, we draw data on both parental and individuals' social outcomes from different national databases. The social class of origins and destination is measured according to the European Socio-Economic Classification (ESeC), while the respondents' educational attainment is coded into categories based on the International Standard Classification of Education (ISCED). Applying the Markov transition probability theory, and a range of measures and models, this work focuses on the magnitude and the direction of the movements that take place in the Greek labour market, as well as the level of social fluidity. Three-way mobility tables are presented, where the transition probabilities between the classes of destination and origins are calculated for different cohorts. Additionally, a range of absolute and relative mobility rates, as well as distance measures, are presented. The study covers a large time span beginning in 1940 until 1995, shedding light on the effects of the national institutional processes on the social movements of individuals. Given the evidence on the mobility patterns of the most recent birth cohorts, we also investigate the possible effects of the 2008 economic crisis.

Keywords: cohort analysis, education, Greece, intergenerational mobility, social class

Procedia PDF Downloads 130
244 Optimizing a Hybrid Inventory System with Random Demand and Lead Time

Authors: Benga Ebouele, Thomas Tengen

Abstract:

Implementing either periodic or continuous inventory review model within most manufacturing-companies-supply chains as a management tool may incur higher costs. These high costs affect the system flexibility which in turn affects the level of service required to satisfy customers. However, these effects are not clearly understood because the parameters of both inventory review policies (protection demand interval, order quantity, etc.) are not designed to be fully utilized under different and uncertain conditions such as poor manufacturing, supplies and delivery performance. Coming up with a hybrid model which may combine in some sense the feature of both continuous and a periodic inventory review models should be useful. Therefore, there is a need to build and evaluate such hybrid model on the annual total cost, stock out probability and system’s flexibility in order to search for the most cost effective inventory review model. This work also seeks to find the optimal sets of parameters of inventory management under stochastic condition so as to optimise each policy independently. The results reveal that a continuous inventory system always incurs lesser cost than a periodic (R, S) inventory system, but this difference tends to decrease as time goes by. Although the hybrid inventory is the only one that can yield lesser cost over time, it is not always desirable but also natural to use it in order to help the system to meet high performance specification.

Keywords: demand and lead time randomness, hybrid Inventory model, optimization, supply chain

Procedia PDF Downloads 314
243 AHP and TOPSIS Methods for Supplier Selection Problem in Medical Devices Company

Authors: Sevde D. Karayel, Ediz Atmaca

Abstract:

Supplier selection subject is vital because of development competitiveness and performance of firms which have right, rapid and with low cost procurement. Considering the fact that competition between firms is no longer on their supply chains, hence it is very clear that performance of the firms’ not only depend on their own success but also success of all departments in supply chain. For this purpose, firms want to work with suppliers which are cost effective, flexible in terms of demand and high quality level for customer satisfaction. However, diversification and redundancy of their expectations from suppliers, supplier selection problems need to be solved as a hard problem. In this study, supplier selection problem is discussed for critical piece, which is using almost all production of products in and has troubles with lead time from supplier, in a firm that produces medical devices. Analyzing policy in the current situation of the firm in the supplier selection indicates that supplier selection is made based on the purchasing department experience and other authorized persons’ general judgments. Because selection do not make based on the analytical methods, it is caused disruptions in production, lateness and extra cost. To solve the problem, AHP and TOPSIS which are multi-criteria decision making techniques, which are effective, easy to implement and can analyze many criteria simultaneously, are used to make a selection among alternative suppliers.

Keywords: AHP-TOPSIS methods, multi-criteria decision making, supplier selection problem, supply chain management

Procedia PDF Downloads 264
242 Pulsed Laser Single Event Transients in 0.18 μM Partially-Depleted Silicon-On-Insulator Device

Authors: MeiBo, ZhaoXing, LuoLei, YuQingkui, TangMin, HanZhengsheng

Abstract:

The Single Event Transients (SETs) were investigated on 0.18μm PDSOI transistors and 100 series CMOS inverter chain using pulse laser. The effect of different laser energy and device bias for waveform on SET was characterized experimentally, as well as the generation and propagation of SET in inverter chain. In this paper, the effects of struck transistors type and struck locations on SETs were investigated. The results showed that when irradiate NMOSFETs from 100th to 2nd stages, the SET pulse width measured at the output terminal increased from 287.4 ps to 472.9 ps; and when irradiate PMOSFETs from 99th to 1st stages, the SET pulse width increased from 287.4 ps to 472.9 ps. When struck locations were close to the output of the chain, the SET pulse was narrow; however, when struck nodes were close to the input, the SET pulse was broadening. SET pulses were progressively broadened up when propagating along inverter chains. The SET pulse broadening is independent of the type of struck transistors. Through analysis, history effect induced threshold voltage hysteresis in PDSOI is the reason of pulse broadening. The positive pulse observed by oscilloscope, contrary to the expected results, is because of charging and discharging of capacitor.

Keywords: single event transients, pulse laser, partially-depleted silicon-on-insulator, propagation-induced pulse broadening effect

Procedia PDF Downloads 413
241 Identification of Functional T Cell Receptors Reactive to Tumor Antigens from the T Cell Repertoire of Healthy Donors

Authors: Isaac Quiros-Fernandez, Angel Cid-Arregui

Abstract:

Tumor-reactive T cell receptors (TCRs) are being subject of intense investigation since they offer great potential in adoptive cell therapies against cancer. However, the identification of tumor-specific TCRs has proven challenging, for instance, due to the limited expansion capacity of tumor-infiltrating T cells (TILs) and the extremely low frequencies of tumor-reactive T cells in the repertoire of patients and healthy donors. We have developed an approach for rapid identification and characterization of neoepitope-reactive TCRs from the T cell repertoire of healthy donors. CD8 T cells isolated from multiple donors are subjected to a first sorting step after staining with HLA multimers carrying the peptide of interest. The isolated cells are expanded for two weeks, after which a second sorting is performed using the same peptide-HLA multimers. The cells isolated in this way are then processed for single-cell sequencing of their TCR alpha and beta chains. Newly identified TCRs are cloned in appropriate expression vectors for functional analysis on Jurkat, NK92, and primary CD8 T cells and tumor cells expressing the appropriate antigen. We have identified TCRs specifically binding HLA-A2 presenting epitopes of tumor antigens, which are capable of inducing TCR-mediated cell activation and cytotoxicity in target cancer cell lines. This method allows the identification of tumor-reactive TCRs in about two to three weeks, starting from peripheral blood samples of readily available healthy donors.

Keywords: cancer, TCR, tumor antigens, immunotherapy

Procedia PDF Downloads 69
240 Substation Automation, Digitization, Cyber Risk and Chain Risk Management Reliability

Authors: Serzhan Ashirov, Dana Nour, Rafat Rob, Khaled Alotaibi

Abstract:

There has been a fast growth in the introduction and use of communications, information, monitoring, and sensing technologies. The new technologies are making their way to the Industrial Control Systems as embedded in products, software applications, IT services, or commissioned to enable integration and automation of increasingly global supply chains. As a result, the lines that separated the physical, digital, and cyber world have diminished due to the vast implementation of the new, disruptive digital technologies. The variety and increased use of these technologies introduce many cybersecurity risks affecting cyber-resilience of the supply chain, both in terms of the product or service delivered to a customer and members of the supply chain operation. US department of energy considers supply chain in the IR4 space to be the weakest link in cybersecurity. The IR4 identified the digitization of the field devices, followed by digitalization that eventually moved through the digital transformation space with little care for the new introduced cybersecurity risks. This paper will examine the best methodologies for securing the electrical substations from cybersecurity attacks due to supply chain risks, and due to digitization effort. SCADA systems are the most vulnerable part of the power system infrastructure due to digitization and due to the weakness and vulnerabilities in the supply chain security. The paper will discuss in details how create a secure supply chain methodology, secure substations, and mitigate the risks due to digitization

Keywords: cybersecurity, supply chain methodology, secure substation, digitization

Procedia PDF Downloads 65
239 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 150
238 The Importance of Downstream Supply Chain in Supply Chain Risk Management: Multi-Objective Optimization

Authors: Zohreh Khojasteh-Ghamari, Takashi Irohara

Abstract:

One of the efficient ways in supply chain risk management is avoiding the interruption in Supply Chain (SC) before it occurs. Although the majority of the organizations focus on their first-tier suppliers to avoid risk in the SC, studies show that in only 60 percent of the disruption cases the reason is first tier suppliers. In the 40 percent of the SC disruptions, the reason is downstream SC, which is the second tier and lower. Due to the increasing complexity and interrelation of modern supply chains, the SC elements have become difficult to trace. Moreover, studies show that there is a vital need to better understand the integration of risk and visibility, especially in the context of multiple objectives. In this study, we propose a multi-objective programming model to avoid disruption in SC. The objective of this study is evaluating the effect of downstream SCV on managing supply chain risk. We propose a multi-objective mathematical programming model with the objective functions of minimizing the total cost and maximizing the downstream supply chain visibility (SCV). The decision variable is supplier selection. We assume there are several manufacturers and several candidate suppliers. For each manufacturer, our model proposes the best suppliers with the lowest cost and maximum visibility in downstream supply chain. We examine the applicability of the model by numerical examples. We also define several scenarios for datasets and observe the tendency. The results show that minimum visibility in downstream SC is needed to have a safe SC network.

Keywords: downstream supply chain, optimization, supply chain risk, supply chain visibility

Procedia PDF Downloads 244
237 Optimisation of B2C Supply Chain Resource Allocation

Authors: Firdaous Zair, Zoubir Elfelsoufi, Mohammed Fourka

Abstract:

The allocation of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players, manufacturers and Click & Mortars that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. Our contribution is a decision support system and tool for improving the allocation of resources in logistics chains e-commerce B2C context. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. In addition, every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource allocation in customized online shopping service mode, which is different from the supply chain resource allocation under traditional manufacturing or service circumstances. Then we realized an optimization model and algorithm for the development based on the analysis of the allocation of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.

Keywords: e-commerce, supply chain, B2C, optimisation, resource allocation

Procedia PDF Downloads 274
236 Study the Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari

Abstract:

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5 wt% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, acid value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the cured films were observed by scanning electron microscopy. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

Keywords: alkyd resin, nano-coatings, dehydration, palm oil

Procedia PDF Downloads 310
235 Refinement of Thermal and Mechanical Properties of Poly (Lactic Acid)/Poly (Ethylene-Co-Glycidyle Methacrylate)/ Hexagonal Boron Nitride Blend-Composites through Electron-Beam Irradiation

Authors: Ashish Kumar, T. Venkatappa Rao, Subhendu Ray Chowdhury, S. V. S. Ramana Reddy

Abstract:

The main objective of this work is to determine the influence of electron beam irradiation on thermal and mechanical properties of Poly (lactic acid) (PLA)/Poly (ethylene-co-glycidyle methacrylate) (PEGM)/Hexagonal boron nitride (HBN) blend-composites. To reduce the brittleness and improve the toughness of PLA, the PLA/PEGM blend is prepared by using twin-screw Micro compounder. However, the heat deflection temperature (HDT) and other tensile properties were reduced. The HBN has been incorporated into the PLA/PEGM blend as part per hundred i.e. 5 phr and 10phr to improve the HDT. The prepared specimens of blend and blend-composites were irradiated to high energy (4.5 MeV) electron beam (E-beam) at different radiation doses to introduce the cross linking among the polymer chains and uniform dispersion of HBN particles in the PLA/PEGM/HBN blend-composites. The further improvement in the notched impact strength and HDT have been achieved in the case of PLA/PEGM/HBN blend-composites. The irradiated PLA/PEGM/HBN 5phr blend composite shows high notched impact strength and HDT as compared to other unirradiated and E-beam irradiated blend and blend-composites. The improvements in the yield strength and tensile modulus have also been noticed in the case of E-beam irradiated PLA/PEGM/HBN blend-composites as compared to unirradiated blend-composites.

Keywords: blend-composite, e-beam, HDT, PEGM, PLA

Procedia PDF Downloads 188
234 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 81
233 Segmental Dynamics of Poly(Alkyl Methacrylate) Chain in Ultra-Thin Spin-Cast Films

Authors: Hiroyuki Aoki

Abstract:

Polymeric materials are often used in a form of thin film such as food wrap and surface coating. In such the applications, polymer films thinner than 100 nm have been often used. The thickness of such the ultra-thin film is less than the unperturbed size of a polymer chain; therefore, the polymer chain in an ultra-thin film is strongly constrained. However, the details on the constrained dynamics of polymer molecules in ultra-thin films are still unclear. In the current study, the segmental dynamics of single polymer chain was directly investigated by fluorescence microscopy. The individual chains of poly(alkyl methacrylate) labeled by a perylenediimide dye molecule were observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was directly analyzed. The segmental motion in a thin film with a thickness of 10 nm was found to be suppressed compared to that in a bulk state. The detailed analysis of the molecular motion revealed that the diffusion rate of the in-plane rotation was similar to the thin film and the bulk; on the other hand, the out-of-plane motion was restricted in a thin film. This result indicates that the spatial restriction in an ultra-thin film thinner than the unperturbed chain dimension alters the dynamics of individual molecules in a polymer system.

Keywords: polymer materials, single molecule, molecular motion, fluorescence microscopy, super-resolution techniques

Procedia PDF Downloads 318
232 Increasing Toughness of Oriented Polyvinyl Alcohol (PVA)/Fe3O4 Nanocomposite

Authors: Mozhgan Chaichi, Farhad Sharif, Saeede Mazinani

Abstract:

Polymer nanocomposites are a new class of materials for fabricating future multifunctional and lightweight structures. To obtain good mechanical, thermal and electrical properties, it is essential to achieve uniform dispersion of nanoparticles in polymer matrix. Alignment of nanoparticles in matrix can enhance mechanical, thermal, electrical and barrier properties of nanocomposites in oriented direction. Fe3O4 nanoparticles have generated huge activity in many areas of science and engineering due to its magnetic properties. Magnetic nanoparticles have been investigated for a wide range of applications in sensors, magnetic energy storage, environmental remediation, heterogeneous catalysts and drug delivery. The magnetic response from the Fe3O4 nanoparticles can facilitate with the alignment of nanofillers in a polymer matrix under magnetic field, aiming at fabricating composites with directional properties and functions. Here we report oriented nanocomposites based on Fe3O4 nanoparticles and poly (vinyl alcohol) (PVA), which prepared via a facile aqueous solution by applying a low external magnetic field (750 G). A significant enhancement of mechanical properties, and especially toughness of nanofilms, of oriented PVA/ Fe3O4 nanocomposites is obtained at low nanoparticles loading. Orientation of nanoparticles can align polymer chains and enhance mechanical properties. For example, orientation of 0.1 wt. % Fe3O4 nanoparticles increase 31% toughness and 23% modulus of oriented nanocomposite in compare of pure films, which indicate good dispersion of nanoparticles and efficient load transfer between nanoparticles and matrix.

Keywords: magnetic nanoparticles, nanocomposites, toughness, orientation

Procedia PDF Downloads 329
231 Supply Chain Technology Adoption in Textile and Apparel Industry

Authors: Zulkifli Mohamed Udin, Lee Khai-Loon, Mohamad Ghozali Hassan

Abstract:

In today’s dynamic business environment, the competition is no longer between firms, but between supply chains to gain competitive advantages. The global manufacturing sector, especially the textile and apparel industry are essentially known for its supply chain dependency. The delicate nature of its business leads to emphasis on the smooth movement of upstream and downstream supply chain. The nature of this industry, however, result in huge dynamic flow of physical, information, and financial. The dynamic management of these flows requires adoption of supply chain technologies. Even though technology is widely implemented and studied in many industries by researchers, adoption of supply chain technologies in Malaysian textile and apparel industry is limited. There is relatively a handful academic study conducted on recent developments in Malaysian textile and apparel industry and supply chain technology adoption indicate a major gap in supply chain performance studies. Considering the importance given to Third Industrial Master Plan by the government Malaysia, it is necessary to understand the power of supply chain technology adoptions. This study aims to investigate supply chain technology adoption by textile and apparel companies in Malaysia. The result highlighted the benefits perceived by textile and apparel companies from supply chain technologies. The indifference of small and medium enterprises to operation management acts as a major inhibitor to the adoption of supply chain technologies, since they have resource limitations. This study could be used as a precursor for further detailed studies on this issue.

Keywords: supply chain technology adoption, supply chain performance, textile, apparel industry

Procedia PDF Downloads 492
230 A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation

Authors: Nikolaos Papadimas, Joanna Bennett, Amir Sakhaei, Timothy Dodwell

Abstract:

Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling.

Keywords: data-driven , material consolidation, stochastic finite elements, surrogate models

Procedia PDF Downloads 146
229 Port Logistics Integration: Challenges and Approaches: Case ‎Study; Iranian Seaports

Authors: Ali Alavi, Hong-Oanh Nguyen, ‎Jiangang Fei, Jafar Sayareh

Abstract:

The recent competitive market in the port sector highly depend on logistics practices, functions ‎and activities and seaports play a key role in port logistics chains. Despite the well-articulated importance of ports and terminals in integrated logistics, the role of success factors in port logistics integration has been rarely mentioned‎. The objective of this paper is to ‎fill this gap in the literature and provide an insight into how seaports and terminals may improve their logistics integration. First, a literature review of studies on logistics integration in seaports and terminals is conducted. Second, a new conceptual framework for port logistics integration is proposed to incorporate the role of the new variables emerging from the recent developments in the global business environment. Third, the model tested in Iranian port and maritime sector using self-administered and online survey among logistics chain actors in Iranian seaports such shipping line operators, logistics service providers, port authorities, logistics companies and other related actors. The results have found the logistics process and operations, information integration, ‎value-added services, and logistics practices being influential to logistics integration. A proposed conceptual framework is developed to extend the existing ‎framework and incorporates the variables namely organizational activities, resource ‎sharing, and institutional support.‎ Further examination of the proposed model across multiple contexts is necessary for the validity of the findings. The framework could be more detailed on each factor and consider actors perspective.

Keywords: maritime logistics‎, port integration‎, logistics integration‎, supply chain integration

Procedia PDF Downloads 250
228 Blockchain Technology for Secure and Transparent Oil and Gas Supply Chain Management

Authors: Gaurav Kumar Sinha

Abstract:

The oil and gas industry, characterized by its complex and global supply chains, faces significant challenges in ensuring security, transparency, and efficiency. Blockchain technology, with its decentralized and immutable ledger, offers a transformative solution to these issues. This paper explores the application of blockchain technology in the oil and gas supply chain, highlighting its potential to enhance data security, improve transparency, and streamline operations. By leveraging smart contracts, blockchain can automate and secure transactions, reducing the risk of fraud and errors. Additionally, the integration of blockchain with IoT devices enables real-time tracking and monitoring of assets, ensuring data accuracy and integrity throughout the supply chain. Case studies and pilot projects within the industry demonstrate the practical benefits and challenges of implementing blockchain solutions. The findings suggest that blockchain technology can significantly improve trust and collaboration among supply chain participants, ultimately leading to more efficient and resilient operations. This study provides valuable insights for industry stakeholders considering the adoption of blockchain technology to address their supply chain management challenges.

Keywords: blockchain technology, oil and gas supply chain, data security, transparency, smart contracts, IoT integration, real-time tracking, asset monitoring, fraud reduction, supply chain efficiency, data integrity, case studies, industry implementation, trust, collaboration.

Procedia PDF Downloads 37