Search results for: EEG signals
571 Speaker Recognition Using LIRA Neural Networks
Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul
Abstract:
This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition
Procedia PDF Downloads 177570 Study and Analysis of Optical Intersatellite Links
Authors: Boudene Maamar, Xu Mai
Abstract:
Optical Intersatellite Links (OISLs) are wireless communications using optical signals to interconnect satellites. It is expected to be the next generation wireless communication technology according to its inherent characteristics like: an increased bandwidth, a high data rate, a data transmission security, an immunity to interference, and an unregulated spectrum etc. Optical space links are the best choice for the classical communication schemes due to its distinctive properties; high frequency, small antenna diameter and lowest transmitted power, which are critical factors to define a space communication. This paper discusses the development of free space technology and analyses the parameters and factors to establish a reliable intersatellite links using an optical signal to exchange data between satellites.Keywords: optical intersatellite links, optical wireless communications, free space optical communications, next generation wireless communication
Procedia PDF Downloads 447569 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording
Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen
Abstract:
It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration
Procedia PDF Downloads 179568 Compact Low-Voltage Biomedical Instrumentation Amplifiers
Authors: Phanumas Khumsat, Chalermchai Janmane
Abstract:
Low-voltage instrumentation amplifier has been proposed for 3-lead electrocardiogram measurement system. The circuit’s interference rejection technique is based upon common-mode feed-forwarding where common-mode currents have cancelled each other at the output nodes. The common-mode current for cancellation is generated by means of common-mode sensing and emitter or source followers with resistors employing only one transistor. Simultaneously this particular transistor also provides common-mode feedback to the patient’s right/left leg to further reduce interference entering the amplifier. The proposed designs have been verified with simulations in 0.18-µm CMOS process operating under 1.0-V supply with CMRR greater than 80dB. Moreover ECG signals have experimentally recorded with the proposed instrumentation amplifiers implemented from discrete BJT (BC547, BC558) and MOSFET (ALD1106, ALD1107) transistors working with 1.5-V supply.Keywords: electrocardiogram, common-mode feedback, common-mode feedforward, communication engineering
Procedia PDF Downloads 384567 Relation of Electromyography, Strength and Fatigue During Ramp Isometric Contractions
Authors: Cesar Ferreira Amorim, Tamotsu Hirata, Runer Augusto Marson
Abstract:
The purpose of this study was to determine the effect of strength ramp isometric contraction on changes in surface electromyography (sEMG) signal characteristics of the hamstrings muscles. All measurements were obtained from 20 healthy well trained healthy adults (age 19.5 ± 0.8 yrs, body mass 63.4 ± 1.5 kg, height: 1.65 ± 0.05 m). Subjects had to perform isometric ramp contractions in knee flexion with the force gradually increasing from 0 to 40% of the maximal voluntary contraction (MVC) in a 20s period. The root mean square (RMS) amplitude of sEMG signals obtained from the biceps femoris (caput longum) were calculated at four different strength levels (10, 20, 30, and 40% MVC) from the ramp isometric contractions (5s during the 20s task %MVC). The main results were a more pronounced increase non-linear in sEMG-RMS amplitude for the muscles. The protocol described here may provide a useful index for measuring of strength neuromuscular fatigue.Keywords: biosignal, surface electromyography, ramp contractions, strength
Procedia PDF Downloads 483566 Implementation of Clinical Monitoring System of Physiological Parameters
Authors: Abdesselam Babouri, Ahcène Lemzadmi, M Rahmane, B. Belhadi, N. Abouchi
Abstract:
Medical monitoring aims at monitoring and remotely controlling the vital physiological parameters of the patient. The physiological sensors provide repetitive measurements of these parameters in the form of electrical signals that vary continuously over time. Various measures allow informing us about the health of the person's physiological data (weight, blood pressure, heart rate or specific to a disease), environmental conditions (temperature, humidity, light, noise level) and displacement and movements (physical efforts and the completion of major daily living activities). The collected data will allow monitoring the patient’s condition and alerting in case of modification. They are also used in the diagnosis and decision making on medical treatment and the health of the patient. This work presents the implementation of a monitoring system to be used for the control of physiological parameters.Keywords: clinical monitoring, physiological parameters, biomedical sensors, personal health
Procedia PDF Downloads 473565 Dynamic EEG Desynchronization in Response to Vicarious Pain
Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy
Abstract:
The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition
Procedia PDF Downloads 283564 ANFIS Approach for Locating Faults in Underground Cables
Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat
Abstract:
This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.Keywords: ANFIS, fault location, underground cable, wavelet transform
Procedia PDF Downloads 512563 Chaotic Control, Masking and Secure Communication Approach of Supply Chain Attractor
Authors: Unal Atakan Kahraman, Yilmaz Uyaroğlu
Abstract:
The chaotic signals generated by chaotic systems have some properties such as randomness, complexity and sensitive dependence on initial conditions, which make them particularly suitable for secure communications. Since the 1990s, the problem of secure communication, based on chaos synchronization, has been thoroughly investigated and many methods, for instance, robust and adaptive control approaches, have been proposed to realize the chaos synchronization. In this paper, an improved secure communication model is proposed based on control of supply chain management system. Control and masking communication simulation results are used to visualize the effectiveness of chaotic supply chain system also performed on the application of secure communication to the chaotic system. So, we discover the secure phenomenon of chaos-amplification in supply chain systemKeywords: chaotic analyze, control, secure communication, supply chain attractor
Procedia PDF Downloads 516562 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics
Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer
Abstract:
Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS
Procedia PDF Downloads 345561 Visual Odometry and Trajectory Reconstruction for UAVs
Authors: Sandro Bartolini, Alessandro Mecocci, Alessio Medaglini
Abstract:
The growing popularity of systems based on unmanned aerial vehicles (UAVs) is highlighting their vulnerability, particularly in relation to the positioning system used. Typically, UAV architectures use the civilian GPS, which is exposed to a number of different attacks, such as jamming or spoofing. This is why it is important to develop alternative methodologies to accurately estimate the actual UAV position without relying on GPS measurements only. In this paper, we propose a position estimate method for UAVs based on monocular visual odometry. We have developed a flight control system capable of keeping track of the entire trajectory travelled, with a reduced dependency on the availability of GPS signals. Moreover, the simplicity of the developed solution makes it applicable to a wide range of commercial drones. The final goal is to allow for safer flights in all conditions, even under cyber-attacks trying to deceive the drone.Keywords: visual odometry, autonomous uav, position measurement, autonomous outdoor flight
Procedia PDF Downloads 217560 Performance Comparison of Joint Diagonalization Structure (JDS) Method and Wideband MUSIC Method
Authors: Sandeep Santosh, O. P. Sahu
Abstract:
We simulate an efficient multiple wideband and nonstationary source localization algorithm by exploiting both the non-stationarity of the signals and the array geometric information.This algorithm is based on joint diagonalization structure (JDS) of a set of short time power spectrum matrices at different time instants of each frequency bin. JDS can be used for quick and accurate multiple non-stationary source localization. The JDS algorithm is a one stage process i.e it directly searches the Direction of arrivals (DOAs) over the continuous location parameter space. The JDS method requires that the number of sensors is not less than the number of sources. By observing the simulation results, one can conclude that the JDS method can localize two sources when their difference is not less than 7 degree but the Wideband MUSIC is able to localize two sources for difference of 18 degree.Keywords: joint diagonalization structure (JDS), wideband direction of arrival (DOA), wideband MUSIC
Procedia PDF Downloads 468559 Aliasing Free and Additive Error in Spectra for Alpha Stable Signals
Authors: R. Sabre
Abstract:
This work focuses on the symmetric alpha stable process with continuous time frequently used in modeling the signal with indefinitely growing variance, often observed with an unknown additive error. The objective of this paper is to estimate this error from discrete observations of the signal. For that, we propose a method based on the smoothing of the observations via Jackson polynomial kernel and taking into account the width of the interval where the spectral density is non-zero. This technique allows avoiding the “Aliasing phenomenon” encountered when the estimation is made from the discrete observations of a process with continuous time. We have studied the convergence rate of the estimator and have shown that the convergence rate improves in the case where the spectral density is zero at the origin. Thus, we set up an estimator of the additive error that can be subtracted for approaching the original signal without error.Keywords: spectral density, stable processes, aliasing, non parametric
Procedia PDF Downloads 129558 Musical Tesla Coil Controlled by an Audio Signal Processed in Matlab
Authors: Sandra Cuenca, Danilo Santana, Anderson Reyes
Abstract:
The following project is based on the manipulation of audio signals through the Matlab software, which has an audio signal that is modified, and its resultant obtained through the auxiliary port of the computer is passed through a signal amplifier whose amplified signal is connected to a tesla coil which has a behavior like a vumeter, the flashes at the output of the tesla coil increase and decrease its intensity depending on the audio signal in the computer and also the voltage source from which it is sent. The amplified signal then passes to the tesla coil being shown in the plasma sphere with the respective flashes; this activation is given through the specified parameters that we want to give in the MATLAB algorithm that contains the digital filters for the manipulation of our audio signal sent to the tesla coil to be displayed in a plasma sphere with flashes of the combination of colors commonly pink and purple that varies according to the tone of the song.Keywords: auxiliary port, tesla coil, vumeter, plasma sphere
Procedia PDF Downloads 90557 Wavelength Conversion of Dispersion Managed Solitons at 100 Gbps through Semiconductor Optical Amplifier
Authors: Kadam Bhambri, Neena Gupta
Abstract:
All optical wavelength conversion is essential in present day optical networks for transparent interoperability, contention resolution, and wavelength routing. The incorporation of all optical wavelength convertors leads to better utilization of the network resources and hence improves the efficiency of optical networks. Wavelength convertors that can work with Dispersion Managed (DM) solitons are attractive due to their superior transmission capabilities. In this paper, wavelength conversion for dispersion managed soliton signals was demonstrated at 100 Gbps through semiconductor optical amplifier and an optical filter. The wavelength conversion was achieved for a 1550 nm input signal to1555nm output signal. The output signal was measured in terms of BER, Q factor and system margin.Keywords: all optical wavelength conversion, dispersion managed solitons, semiconductor optical amplifier, cross gain modultation
Procedia PDF Downloads 453556 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems
Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov
Abstract:
This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller
Procedia PDF Downloads 495555 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization
Authors: Mohamed Othmani, Yassine Khlifi
Abstract:
This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.Keywords: 3d object, optimization, parametrization, polywog wavelets, reconstruction, wavelet networks
Procedia PDF Downloads 284554 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 126553 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine
Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif
Abstract:
The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)
Procedia PDF Downloads 370552 The Role of Context in Interpreting Emotional Body Language in Robots
Authors: Jekaterina Novikova, Leon Watts
Abstract:
In the emerging world of human-robot interaction, people and robots will interact socially in real-world situations. This paper presents the results of an experimental study probing the interaction between situational context and emotional body language in robots. 34 people rated video clips of robots performing expressive behaviours in different situational contexts both for emotional expressivity on Valence-Arousal-Dominance dimensions and by selecting a specific emotional term from a list of suggestions. Results showed that a contextual information enhanced a recognition of emotional body language of a robot, although it did not override emotional signals provided by robot expressions. Results are discussed in terms of design guidelines on how an emotional body language of a robot can be used by roboticists developing social robots.Keywords: social robotics, non-verbal communication, situational context, artificial emotions, body language
Procedia PDF Downloads 289551 Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing
Authors: Saad Al-Baddai, Karema Al-Subari, Elmar Lang, Bernd Ludwig
Abstract:
Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.Keywords: empirical mode decomposition (EMD), mode mixing, sifting process, over-sifting
Procedia PDF Downloads 393550 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms
Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary
Abstract:
Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.Keywords: ADHD, autism, epilepsy, EEG, SVM
Procedia PDF Downloads 190549 A Novel Method for Silence Removal in Sounds Produced by Percussive Instruments
Authors: B. Kishore Kumar, Rakesh Pogula, T. Kishore Kumar
Abstract:
The steepness of an audio signal which is produced by the musical instruments, specifically percussive instruments is the perception of how high tone or low tone which can be considered as a frequency closely related to the fundamental frequency. This paper presents a novel method for silence removal and segmentation of music signals produced by the percussive instruments and the performance of proposed method is studied with the help of MATLAB simulations. This method is based on two simple features, namely the signal energy and the spectral centroid. As long as the feature sequences are extracted, a simple thresholding criterion is applied in order to remove the silence areas in the sound signal. The simulations were carried on various instruments like drum, flute and guitar and results of the proposed method were analyzed.Keywords: percussive instruments, spectral energy, spectral centroid, silence removal
Procedia PDF Downloads 411548 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis
Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze
Abstract:
The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.Keywords: auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter
Procedia PDF Downloads 425547 A New Dual Forward Affine Projection Adaptive Algorithm for Speech Enhancement in Airplane Cockpits
Authors: Djendi Mohmaed
Abstract:
In this paper, we propose a dual adaptive algorithm, which is based on the combination between the forward blind source separation (FBSS) structure and the affine projection algorithm (APA). This proposed algorithm combines the advantages of the source separation properties of the FBSS structure and the fast convergence characteristics of the APA algorithm. The proposed algorithm needs two noisy observations to provide an enhanced speech signal. This process is done in a blind manner without the need for ant priori information about the source signals. The proposed dual forward blind source separation affine projection algorithm is denoted (DFAPA) and used for the first time in an airplane cockpit context to enhance the communication from- and to- the airplane. Intensive experiments were carried out in this sense to evaluate the performance of the proposed DFAPA algorithm.Keywords: adaptive algorithm, speech enhancement, system mismatch, SNR
Procedia PDF Downloads 135546 Compensation of Power Quality Disturbances Using DVR
Authors: R. Rezaeipour
Abstract:
One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic voltage restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using MATLAB software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.Keywords: DVR, power quality, voltage sags, voltage swells, flicker
Procedia PDF Downloads 345545 Overview of Wireless Body Area Networks
Authors: Rashi Jain
Abstract:
The Wireless Body Area Networks (WBANs) is an emerging interdisciplinary area where small sensors are placed on/within the human body. These sensors monitor the physiological activities and vital statistics of the body. The data from these sensors is aggregated and communicated to a remote doctor for immediate attention or to a database for records. On 6 Feb 2012, the IEEE 802.15.6 task group approved the standard for Body Area Network (BAN) technologies. The standard proposes the physical and MAC layer for the WBANs. The work provides an introduction to WBANs and overview of the physical and MAC layers of the standard. The physical layer specifications have been covered. A comparison of different protocols used at MAC layer is drawn. An introduction to the network layer and security aspects of the WBANs is made. The WBANs suffer certain limitations such as regulation of frequency bands, minimizing the effect of transmission and reception of electromagnetic signals on the human body, maintaining the energy efficiency among others. This has slowed down their implementation.Keywords: vehicular networks, sensors, MicroController 8085, LTE
Procedia PDF Downloads 259544 A Voice Signal Encryption Scheme Based on Chaotic Theory
Authors: Hailang Yang
Abstract:
To ensure the confidentiality and integrity of speech signals in communication transmission, this paper proposes a voice signal encryption scheme based on chaotic theory. Firstly, the scheme utilizes chaotic mapping to generate a key stream and then employs the key stream to perform bitwise exclusive OR (XOR) operations for encrypting the speech signal. Additionally, the scheme utilizes a chaotic hash function to generate a Message Authentication Code (MAC), which is appended to the encrypted data to verify the integrity of the data. Subsequently, we analyze the security performance and encryption efficiency of the scheme, comparing and optimizing it against existing solutions. Finally, experimental results demonstrate that the proposed scheme can resist common attacks, achieving high-quality encryption and speed.Keywords: chaotic theory, XOR encryption, chaotic hash function, Message Authentication Code (MAC)
Procedia PDF Downloads 51543 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification
Authors: Zin Mar Lwin
Abstract:
Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods. Procedia PDF Downloads 277542 An Improved Circulating Tumor Cells Analysis Method for Identifying Tumorous Blood Cells
Authors: Salvador Garcia Bernal, Chi Zheng, Keqi Zhang, Lei Mao
Abstract:
Circulating Tumor Cells (CTC) is used to detect tumoral cell metastases using blood samples of patients with cancer (lung, breast, etc.). Using an immunofluorescent method a three channel image (Red, Green, and Blue) are obtained. These set of images usually overpass the 11 x 30 M pixels in size. An aided tool is designed for imaging cell analysis to segmented and identify the tumorous cell based on the three markers signals. Our Method, it is cell-based (area and cell shape) considering each channel information and extracting and making decisions if it is a valid CTC. The system also gives information about number and size of tumor cells found in the sample. We present results in real-life samples achieving acceptable performance in identifying CTCs in short time.Keywords: Circulating Tumor Cells (CTC), cell analysis, immunofluorescent, medical image analysis
Procedia PDF Downloads 214