Search results for: violation data discovery
21453 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models
Authors: I. V. Pinto, M. R. Sooriyarachchi
Abstract:
It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error
Procedia PDF Downloads 14621452 Cloud Computing Security for Multi-Cloud Service Providers: Controls and Techniques in Our Modern Threat Landscape
Authors: Sandesh Achar
Abstract:
Cloud computing security is a broad term that covers a variety of security concerns for organizations that use cloud services. Multi-cloud service providers must consider several factors when addressing security for their customers, including identity and access management, data at rest and in transit, egress and ingress traffic control, vulnerability and threat management, and auditing. This paper explores each of these aspects of cloud security in detail and provides recommendations for best practices for multi-cloud service providers. It also discusses the challenges inherent in securing a multi-cloud environment and offers solutions for overcoming these challenges. By the end of this paper, readers should have a good understanding of the various security concerns associated with multi-cloud environments in the context of today’s modern cyber threats and how to address them.Keywords: multi-cloud service, system organization control, data loss prevention, identity and access management
Procedia PDF Downloads 10121451 Hydrodynamic and Morphological Simulation of Karnafuli River Using CCHE2D Model
Authors: Shah Md. Imran Kabir, Md. Mostafa Ali
Abstract:
Karnafuli is one of the most important rivers of Bangladesh which is playing a vital role in our national economy. The major sea port of Bangladesh is the Chittagong port located on the right bank of Karnafuli River Bangladesh. Karnafuli river port is considered as the lifeline of the economic activities of the country. Therefore, it is always necessary to keep the river active and live in terms of its navigability. Due to man-made intervention, the river flow becomes interrupted and thereby may cause the change in the river morphology. The specific objective of this study is the application of 2D model to assess different hydrodynamic and morphological characteristics of the river due to normal flow condition and sea level rise condition. The model has been set with the recent bathymetry data collected from CPA hydrography division. For model setup, the river reach is selected between Kalurghat and Khal no-18. Time series discharge and water level data are used as boundary condition at upstream and downstream. Calibration and validation have been carried out with the recent water level data at Khal no-10 and Sadarghat. The total reach length of the river has been divided into four parts to determine different hydrodynamic and morphological assessments like variation of velocity, sediment erosion and deposition and bed level changes also have been studied. This model has been used for the assessment of river response due sediment transport and sea level rise. Model result shows slight increase in velocity. It also changes the rate of erosion and deposition at some location of the selected reach. It is hoped that the result of the model simulation will be helpful to suggest the effect of possible future development work to be implemented on this river.Keywords: CCHE 2D, hydrodynamic, morphology, sea level rise
Procedia PDF Downloads 38621450 Secure and Privacy-Enhanced Blockchain-Based Authentication System for University User Management
Authors: Ali El Ksimi
Abstract:
In today's digital academic environment, secure authentication methods are essential for managing sensitive user data, including that of students and faculty. The rise in cyber threats and data breaches has exposed the vulnerabilities of traditional authentication systems used in universities. Passwords, often the first line of defense, are particularly susceptible to hacking, phishing, and brute-force attacks. While multi-factor authentication (MFA) provides an additional layer of security, it can still be compromised and often adds complexity and inconvenience for users. As universities seek more robust security measures, blockchain technology emerges as a promising solution. Renowned for its decentralization, immutability, and transparency, blockchain has the potential to transform how user management is conducted in academic institutions. In this article, we explore a system that leverages blockchain technology specifically for managing user accounts within a university setting. The system enables the secure creation and management of accounts for different roles, such as administrators, teachers, and students. Each user is authenticated through a decentralized application (DApp) that ensures their data is securely stored and managed on the blockchain. By eliminating single points of failure and utilizing cryptographic techniques, the system enhances the security and integrity of user management processes. We will delve into the technical architecture, security benefits, and implementation considerations of this approach. By integrating blockchain into user management, we aim to address the limitations of traditional systems and pave the way for the future of digital security in education.Keywords: blockchain, university, authentication, decentralization, cybersecurity, user management, privacy
Procedia PDF Downloads 3221449 A Critical Discourse Analysis of Jamaican and Trinidadian News Articles about D/Deafness
Authors: Melissa Angus Baboun
Abstract:
Utilizing a Critical Discourse Analysis (CDA) methodology and a theoretical framework based on disability studies, how Jamaican and Trinidadian newspapers discussed issues relating to the Deaf community were examined. The term deaf was inputted into the search engine tool of the online website for the Jamaica Observer and the Trinidad & Tobago Guardian. All 27 articles that contained the term deaf in its content and were written between August 1, 2017 and November 15, 2017 were chosen for the study. The data analysis was divided into three steps: (1) listing and analysis instances of metaphorical deafness (e.g. fall on deaf ears), (2) categorization of the content of the articles into the models of disability discourse (the medical, socio-cultural, and superscrip models of disability narratives), and (3) the analysis of any additional data found. A total of 42% of the articles pulled for this study did not deal with the Deaf community in any capacity, but rather instances of the use of idiomatic expressions that use deafness as a metaphor for a non-physical, undesirable trait. The most common idiomatic expression found was fall on deaf ears. Regarding the models of disability discourse, eight articles were found to follow the socio-cultural model, two were found to follow the medical model, and two were found to follow the superscrip model. The additional data found in these articles include two instances of the term deaf and mute, an overwhelming use of lower case d for the term deaf, and the misuse of the term translator (to mean interpreter).Keywords: deafness, disability, news coverage, Caribbean newspapers
Procedia PDF Downloads 23621448 Impact of Anthropogenic Climate Change on Hail in Eastern Georgia
Authors: MIkheil Pipia, Nazibrola Beglarashvili
Abstract:
Modern anthropogenic changes in climate can affect the microphysical and electrical properties of clouds, such as the conditions that cause intense hail and lightning. At the same time, the effect of the impact largely depends on the physical-geographical conditions and the ecological situation. It should be noted that the growth of anthropogenic pollution in the atmosphere has a significant impact on the dynamics of hail processes. For the statistical analysis of the number of hail days against the background of modern climate change, the average number of hail days at the stations according to decades was used, which allows to weaken short-term fluctuations and reveal long-term changes. In order to determine the dynamics of hail days in Eastern Georgia, the observation data of some meteorological stations from 1951-2000 were analyzed. In total, the data of 41 meteorological stations of Eastern Georgia about hail for the period of 1961-2018 have been processed.Keywords: climate, meteorology phenomena, anthropocenic influence, hail
Procedia PDF Downloads 7921447 A Heart Arrhythmia Prediction Using Machine Learning’s Classification Approach and the Concept of Data Mining
Authors: Roshani S. Golhar, Neerajkumar S. Sathawane, Snehal Dongre
Abstract:
Background and objectives: As the, cardiovascular illnesses increasing and becoming cause of mortality worldwide, killing around lot of people each year. Arrhythmia is a type of cardiac illness characterized by a change in the linearity of the heartbeat. The goal of this study is to develop novel deep learning algorithms for successfully interpreting arrhythmia using a single second segment. Because the ECG signal indicates unique electrical heart activity across time, considerable changes between time intervals are detected. Such variances, as well as the limited number of learning data available for each arrhythmia, make standard learning methods difficult, and so impede its exaggeration. Conclusions: The proposed method was able to outperform several state-of-the-art methods. Also proposed technique is an effective and convenient approach to deep learning for heartbeat interpretation, that could be probably used in real-time healthcare monitoring systemsKeywords: electrocardiogram, ECG classification, neural networks, convolutional neural networks, portable document format
Procedia PDF Downloads 7321446 Neural Networks Models for Measuring Hotel Users Satisfaction
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring
Procedia PDF Downloads 13721445 The Nexus between Social Media Usage and Overtourism: A Survey Study Applied to Hangzhou in China
Authors: Song Qingfeng
Abstract:
This research aims to seek the relationship between social media usage and overtourism from the perspective of tourists based on the theory of Maslow’s hierarchy needs. A questionnaire is formulated to collect data from 400 tourists who have visited the Hangzhou city in China in the last 12 months. Structural Equation Model (SEM) is employed to analysis data. The finding is that social media usage aggravates overtourism. Specifically, social media is used by tourists to information-seeking, entertainment, self-presentation, and socialization for traveling. These roles of social media would evoke the traveling intention to a specific destination at a certain time, which further influences the tourist flow. When the tourist flow concentrate, the overtourism would be aggravated. This study contributes to the destination managers to deep-understand the cause-effect relationship between social media and overtourism in order to address this problem.Keywords: social media, overtourism, tourist flow, SEM, Maslow’s hierarchy of needs, Hangzhou
Procedia PDF Downloads 13621444 Higher Education Leadership and Creating Sites of Institutional Belonging: A Global Case Study
Authors: Lisa M. Coleman
Abstract:
The focus on disability, LGBTQ+, and internationalization has certainly been the subject of much research and programmatic across higher education. Many universities have entered into global partnerships with varying success and challenges across the various areas, including laws and policies. Attentiveness to the specific nuances of global inclusion, diversity, equity, belonging, and access (GIDBEA) and the leadership to support these efforts is crucial to the development of longstanding success across the programs. There have been a number of shifts related to diversification across student and alumni bodies. These shifts include but are not limited to how people identify gender, race, and sexuality (and the intersections across such identities), as well as trends across emerging and diverse disability communities. NYU is the most international campus in the United States, with the most campuses and sites outside of its county of origin and the most international students and exchange programs than any other university. As a result, the ongoing work related to GIDEBA is at the center of much of the leadership, administrative, and research efforts. Climate assessment work across NYU’s diverse global campus landscape will serve as the foundation to exemplify best practices related to data collection and dissemination, community and stakeholder engagement, and effective implementation of innovative strategies to close gap areas as identified. The data (quantitative and qualitative) and related research findings represent data collected from close to 22,000 stakeholders across the NYU campuses. The case study centers on specific methodological considerations, data integrity, stakeholder engagement from across student-faculty, staff, and alumni constituencies, and tactics to advance specific GIDBEA initiatives related to navigating shifting landscapes. Design thinking, incubation, and co-creation strategies have been employed to expand, leverage, actualize, and implement GIDBEA strategies that are – concrete, measurable, differentiated, and specific to global sites and regions and emerging trends.Keywords: disability, LGBTQ+, DEI, research, case studies
Procedia PDF Downloads 10821443 The Customer Satisfaction of Convenience Stores in the Municipality Northern Part of Thailand
Authors: Sivilai Jayankura
Abstract:
The objective is to study the behaviors, lifestyles and consumption of the student of Suan Sunandha Rajabhat University. This paper is survey research by using a questionnaire to collect the data with students of Suan Sunandha Rajabhat University for 385 sampling, random coincidence sampling has been provide. Data analysis by descriptive statistics include the distribution, frequency, percentage, average, and standard deviation. The result found that the majority of students are female, and spend their time with their own ideas, like socializing with friends and shopping at the shopping mall, see the movie at the theaters and at the night time will enjoy with their mobile phone and found they long for the quality-price and also brand name regarding the dress. The media and promotion is a key factor impact to the decision to purchase the product and service with mobile phones will be good business to expand business channel also.Keywords: consumption of teenager, internet, lifestyle behavior, Suan Sunundha Rajabhat University
Procedia PDF Downloads 18121442 Monitoring a Membrane Structure Using Non-Destructive Testing
Authors: Gokhan Kilic, Pelin Celik
Abstract:
Structural health monitoring (SHM) is widely used in evaluating the state and health of membrane structures. In the past, in order to collect data and send it to a data collection unit on membrane structures, wire sensors had to be put as part of the SHM process. However, this study recommends using wireless sensors instead of traditional wire ones to construct an economical, useful, and easy-to-install membrane structure health monitoring system. Every wireless sensor uses a software translation program that is connected to the monitoring server. Operational neural networks (ONNs) have recently been developed to solve the shortcomings of convolutional neural networks (CNNs), such as the network's resemblance to the linear neuron model. The results of using ONNs for monitoring to evaluate the structural health of a membrane are presented in this work.Keywords: wireless sensor network, non-destructive testing, operational neural networks, membrane structures, dynamic monitoring
Procedia PDF Downloads 9621441 Heating System for Water Pool by Solar Energy
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
A swimming pool heating system is presented, composed of two alternative collectors with serial PVC absorber tubes that work in regimen of forced stream that is gotten through a bomb. A 500 liters reservoir was used, simulating the swimming pool, being raised some data that show the viability of the considered system. The chosen outflow was corresponding to 100 l/h. In function of the low outflow it was necessary the use of a not popular bomb, choosing the use of a low outflow alternative pumping system, using an air conditioner engine with three different rotations for the desired end. The thermal data related to each collector and their developed system will be presented. The UV and thermal degradations of the PVC exposed to solar radiation will be also boarded, demonstrating the viability of using tubes of this material as absorber elements of radiation in water heating solar collectors.Keywords: solar energy, solar swimming pool, water heating, PVC tubes, alternative system
Procedia PDF Downloads 46721440 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process
Authors: S. Ghorbani, N. I. Polushin
Abstract:
The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.Keywords: decision tree forest, GMDH, surface roughness, Taguchi method, turning process
Procedia PDF Downloads 44721439 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design
Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong
Abstract:
This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring
Procedia PDF Downloads 9221438 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)
Authors: Zeki Oralhan, Mahmut Tokmakçı
Abstract:
SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP
Procedia PDF Downloads 26721437 Literature Review on Text Comparison Techniques: Analysis of Text Extraction, Main Comparison and Visual Representation Tools
Authors: Andriana Mkrtchyan, Vahe Khlghatyan
Abstract:
The choice of a profession is one of the most important decisions people make throughout their life. With the development of modern science, technologies, and all the spheres existing in the modern world, more and more professions are being arisen that complicate even more the process of choosing. Hence, there is a need for a guiding platform to help people to choose a profession and the right career path based on their interests, skills, and personality. This review aims at analyzing existing methods of comparing PDF format documents and suggests that a 3-stage approach is implemented for the comparison, that is – 1. text extraction from PDF format documents, 2. comparison of the extracted text via NLP algorithms, 3. comparison representation using special shape and color psychology methodology.Keywords: color psychology, data acquisition/extraction, data augmentation, disambiguation, natural language processing, outlier detection, semantic similarity, text-mining, user evaluation, visual search
Procedia PDF Downloads 8221436 A Qualitative Study Examining the Process of EFL Course Design from the Perspectives of Teachers
Authors: Iman Al Khalidi
Abstract:
Recently, English has become the language of globalization and technology. In turn, this has resulted in a seemingly bewildering array of influences and trends in the domain of TESOL curriculum. In light of these changes, higher education has to provide a new and more powerful kind of education. It should prepare students to be more engaged citizens, more capable to solve complex problems at work, and well prepared to lead meaningful life. In response to this, universities, colleges, schools, and departments have to work out in light of the requirements and challenges of the global and technological era. Consequently they have to focus on the adoption of contemporary curriculum which goes in line with the pedagogical shifts from teaching –centered approach to learning centered approach. Ideally, there has been noticeable emphasis on the crucial importance of developing and professionalizing teachers in order to engage them in the process of curriculum development and action research. This is a qualitative study that aims at understanding and exploring the process of designing EFL courses by teachers at the tertiary level from the perspectives of the participants in a professional context in TESOL, Department of English, a private college in Oman. It is a case study that stands on the philosophy of the qualitative approach. It employs multi methods for collecting qualitative data: semi-structured interviews with teachers, focus group discussions with students, and document analysis. The collected data have been analyzed qualitatively by adopting Miles and Huberman's Approach using procedures of reduction, coding, displaying and conclusion drawing and verification.Keywords: course design, components of course design, case study, data analysis
Procedia PDF Downloads 54721435 A Qualitative Study Examining the Process of Course Design from the Perspectives of Teachers
Authors: Iman Al Khalidi
Abstract:
Recently, English has become the language of globalization and technology. In turn, this has resulted in a seemingly bewildering array of influences and trends in the domain of TESOL curriculum. In light of these changes, higher education has to provide a new and more powerful kind of education. It should prepare students to be more engaged citizens, more capable to solve complex problems at work, and well prepared to lead a meaningful life. In response to this, universities, colleges, schools, and departments have to work out in light of the requirements and challenges of the global and technological era. Consequently, they have to focus on the adoption of contemporary curriculum which goes in line with the pedagogical shifts from teaching –centered approach to learning centered approach. Ideally, there has been noticeable emphasis on the crucial importance of developing and professionalizing teachers in order to engage them in the process of curriculum development and action research. This is a qualitative study that aims at understanding and exploring the process of designing EFL courses by teachers at the tertiary level from the perspectives of the participants in a professional context in TESOL, Department of English, a private college in Oman. It is a case study that stands on the philosophy of the qualitative approach. It employs multi-methods for collecting qualitative data: semi-structured interviews with teachers, focus group discussions with students, and document analysis. The collected data have been analyzed qualitatively by adopting Miles and Huberman's Approach using procedures of reduction, coding, displaying, and conclusion drawing and verification.Keywords: course design, components of course design, case study, data analysis
Procedia PDF Downloads 44321434 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band
Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava
Abstract:
An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE
Procedia PDF Downloads 43021433 Location Quotients Model in Turkey’s Provinces and Nuts II Regions
Authors: Semih Sözer
Abstract:
One of the most common issues in economic systems is understanding characteristics of economic activities in cities and regions. Although there are critics to economic base models in conceptual and empirical aspects, these models are useful tools to examining the economic structure of a nation, regions or cities. This paper uses one of the methodologies of economic base models namely the location quotients model. Data for this model includes employment numbers of provinces and NUTS II regions in Turkey. Time series of data covers the years of 1990, 2000, 2003, and 2009. Aim of this study is finding which sectors are export-base and which sectors are import-base in provinces and regions. Model results show that big provinces or powerful regions (population, size etc.) mostly have basic sectors in their economic system. However, interesting facts came from different sectors in different provinces and regions in the model results.Keywords: economic base, location quotients model, regional economics, regional development
Procedia PDF Downloads 42721432 A New Method to Reduce 5G Application Layer Payload Size
Authors: Gui Yang Wu, Bo Wang, Xin Wang
Abstract:
Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.Keywords: 5G, JSON, payload size, service-based interface
Procedia PDF Downloads 18921431 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 16021430 Unconventional Explorers: Gen Z Travelers Redefinding the Travel Experience
Authors: M. Panidou, F. Kilipiris, E. Christou, K. Alexandris
Abstract:
This study intends to investigate the travel preferences of Generation Z (born between 1996 and 2012), focusing on their inclination towards unique and unconventional travel experiences, prioritization of authentic cultural immersion and local experiences over traditional tourist attractions, and their value for flexibility and spontaneity in travel plans. By examining these aspects, the research aims to provide insights into the preferences and behaviors of Generation Z travelers, contributing to a better understanding of their travel choices and informing the tourism industry in catering to their needs and desires. Secondary data was gathered from academic literature and industry reports to offer a thorough study of the topic. A quantitative method was used, and primary data was collected through an online questionnaire. One hundred Greek people between the ages of eighteen and twenty-seven were the study's sample. SPSS software was used to assist in the analysis of the data. The findings of the research showed that Gen Z is attracted to unusual and distinctive travel experiences, prioritizing genuine cultural immersion over typical tourist attractions, and they highly value flexibility in their travel decision-making. This research contributes to a deeper understanding of how Gen Z travelers are reshaping the travel industry. Travel companies, marketers, and destination management organizations will find the findings useful in adjusting their products to suit this influential demographic's changing demands and preferences. Considering the limitations of the sample size, future studies could expand the sample size to include individuals from different cultural backgrounds for a more comprehensive understanding.Keywords: cultural immersion, flexibility, generation Z, travel preferences, unique experiences
Procedia PDF Downloads 6421429 Real Time Activity Recognition Framework for Health Monitoring Support in Home Environments
Authors: Shaikh Farhad Hossain, Liakot Ali
Abstract:
Technology advances accelerate the quality and type of services provided for health care and especially for monitoring health conditions. Sensors have turned out to be more effective to detect diverse physiological signs and can be worn on the human body utilizing remote correspondence modules. An assortment of programming devices have been created to help in preparing a difference rundown of essential signs by examining and envisioning information produced by different sensors. In this proposition, we presented a Health signs and Activity acknowledgment monitoring system. Utilizing off-the-rack sensors, we executed a movement location system for identifying five sorts of action: falling, lying down, sitting, standing, and walking. The framework collects and analyzes sensory data in real-time, and provides different feedback to the users. In addition, it can generate alerts based on the detected events and store the data collected to a medical server.Keywords: ADL, SVM, TRIL , MEMS
Procedia PDF Downloads 40021428 Long-Term Sitting Posture Identifier Connected with Cloud Service
Authors: Manikandan S. P., Sharmila N.
Abstract:
Pain in the neck, intermediate and anterior, and even low back may occur in one or more locations. Numerous factors can lead to back discomfort, which can manifest into sensations in the other parts of your body. Up to 80% of people will have low back problems at a certain stage of their lives, making spine-related pain a highly prevalent ailment. Roughly twice as commonly as neck pain, low back discomfort also happens about as often as knee pain. According to current studies, using digital devices for extended periods of time and poor sitting posture are the main causes of neck and low back pain. There are numerous monitoring techniques provided to enhance the sitting posture for the aforementioned problems. A sophisticated technique to monitor the extended sitting position is suggested in this research based on this problem. The system is made up of an inertial measurement unit, a T-shirt, an Arduino board, a buzzer, and a mobile app with cloud services. Based on the anatomical position of the spinal cord, the inertial measurement unit was positioned on the inner back side of the T-shirt. The IMU (inertial measurement unit) sensor will evaluate the hip position, imbalanced shoulder, and bending angle. Based on the output provided by the IMU, the data will be analyzed by Arduino, supplied through the cloud, and shared with a mobile app for continuous monitoring. The buzzer will sound if the measured data is mismatched with the human body's natural position. The implementation and data prediction with design to identify balanced and unbalanced posture using a posture monitoring t-shirt will be further discussed in this research article.Keywords: IMU, posture, IOT, textile
Procedia PDF Downloads 9121427 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 16421426 The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection
Authors: Jinming Ma, Tianbing Xia, Janusz Getta
Abstract:
This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.Keywords: mobile internet, advertisement, anti-fraud, fuzzy set theory
Procedia PDF Downloads 18521425 Research on the Correlation between College Students' Physical Fitness and Running Habits: Data Mining of Smart Phone Sports App
Authors: Mingming Guo, Xiaozan Wang
Abstract:
Introduction: The purpose of this study is to examine the correlation between the physical fitness of Chinese college students and their daily running habits (RH). Methods: A total of 718 college students from East China Normal University participated in this study (385 boys and 333 girls). Each participant participated in the Chinese Students’ Physical Fitness Test during the 2018-2019 school year. In addition, each student is also required to use the app to record all their running results during each run during the 2018-2019 school year. Researchers can query and export all running records through the app's management platform. Results: (1) The total number of kilometers run by the students showed a significant negative correlation with their vital capacity (VC), sitting body flexion (SBF), and long jump (LJ) (rᵥKeywords: college students, physical fitness, running habits, data mining
Procedia PDF Downloads 14621424 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights
Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu
Abstract:
Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network
Procedia PDF Downloads 277