Search results for: recovery reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6477

Search results for: recovery reduction

2067 Study on the Efficiency of Some Antioxidants on Reduction of Maillard Reaction in Low Lactose Milk

Authors: Farnaz Alaeimoghadam, Farzad Alaeimoghadam

Abstract:

In low-lactose milk, due to lactose hydrolysis and its conversion to monosaccharides like glucose and galactose, the Maillard reaction (non-enzymatic browning) occurs more readily compared to non-hydrolyzed milk. This reaction incurs off-flavor and dark color, as well as a decrease in the nutritional value of milk. The target of this research was to evaluate the effect of natural antioxidants in diminishing the browning in low-lactose milk. In this research, three antioxidants, namely ascorbic acid, gallic acid, and pantothenic acid in the concentration range of 0-1 mM/L, either in combination with each other or separately, were added to low-lactose milk. After heat treatment (120 0C for 3 min.), milk samples incubated at 55 0C for one day and then stored at 4 0C for 9 days. Quality indices, including total phenol content, antioxidant activity, color indices, and sensory characters, were measured during intervals of 0, 2, 5, 7, and 9 days. Results of this research showed that the effect of storage time and adding antioxidants were significant on pH, antioxidant activity, total phenolic compounds either before or after heating, index L*, color change, and sensational characteristics (p < 0.05); however, acidity, a* and b* indices, chroma, and hue angle showed no significant changes (p > 0.05). The findings showed that the simultaneous application of gallic acid and ascorbic in the diminishing of non-enzymatic browning and color change, increasing pH, longevity, and antioxidant activity after heat treatment, and augmenting phenolic compounds before heat treatment was better than that of pantothenic acid.

Keywords: Maillard, low-lactose milk, non-enzymatic browning, natural antioxidant

Procedia PDF Downloads 137
2066 Experimental Investigation of Recycling Cementitious Materials in Low Strength Range for Sustainability and Affordability

Authors: Mulubrhan Berihu

Abstract:

Due to the design versatility, availability, and cost efficiency, concrete continues to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes, and the use of these industrial waste products has technical, economic, and environmental benefits besides the reduction of CO2 emission from cement production. This paper aims to document the effect on the strength property of concrete due to the use of low cement by maximizing supplementary cementitious materials like fly ash. The amount of cement content was below 250 kg/m3, and in all the mixes, the quantity of powder (cement + fly ash) is almost kept at about 500 kg. According to this, seven different cement content (250 kg/m3, 195 kg/m3, 150 kg/m3, 125 kg/m3, 100 kg/m3, 85 kg/m3, 70 kg/m3) with different amount of replacement of SCMs was conducted. The mix proportion was prepared by keeping the water content constant and varying the cement content, SCMs, and water-to-binder ratio. Based on the different mix proportions of fly ash, a range of mix designs was formulated. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa, and the experimental results indicate that strength is a function of w/b. The experiment result shows a big difference in gaining of compressive strength from 7 days to 28 days and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases, the strength decreases significantly. At the same time, higher permeability was seen in the specimens which were tested for three hours than one hour.

Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs

Procedia PDF Downloads 41
2065 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 386
2064 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 155
2063 Exploratory Study to Obtain a Biolubricant Base from Transesterified Oils of Animal Fats (Tallow)

Authors: Carlos Alfredo Camargo Vila, Fredy Augusto Avellaneda Vargas, Debora Alcida Nabarlatz

Abstract:

Due to the current need to implement environmentally friendly technologies, the possibility of using renewable raw materials to produce bioproducts such as biofuels, or in this case, to produce biolubricant bases, from residual oils (tallow), originating has been studied of the bovine industry. Therefore, it is hypothesized that through the study and control of the operating variables involved in the reverse transesterification method, a biolubricant base with high performance is obtained on a laboratory scale using animal fats from the bovine industry as raw materials, as an alternative for material recovery and environmental benefit. To implement this process, esterification of the crude tallow oil must be carried out in the first instance, which allows the acidity index to be decreased ( > 1 mg KOH/g oil), this by means of an acid catalysis with sulfuric acid and methanol, molar ratio 7.5:1 methanol: tallow, 1.75% w/w catalyst at 60°C for 150 minutes. Once the conditioning has been completed, the biodiesel is continued to be obtained from the improved sebum, for which an experimental design for the transesterification method is implemented, thus evaluating the effects of the variables involved in the process such as the methanol molar ratio: improved sebum and catalyst percentage (KOH) over methyl ester content (% FAME). Finding that the highest percentage of FAME (92.5%) is given with a 7.5:1 methanol: improved tallow ratio and 0.75% catalyst at 60°C for 120 minutes. And although the% FAME of the biodiesel produced does not make it suitable for commercialization, it does ( > 90%) for its use as a raw material in obtaining biolubricant bases. Finally, once the biodiesel is obtained, an experimental design is carried out to obtain biolubricant bases using the reverse transesterification method, which allows the study of the effects of the biodiesel: TMP (Trimethylolpropane) molar ratio and the percentage of catalyst on viscosity and yield as response variables. As a result, a biolubricant base is obtained that meets the requirements of ISO VG (Classification for industrial lubricants according to ASTM D 2422) 32 (viscosity and viscosity index) for commercial lubricant bases, using a 4:1 biodiesel molar ratio: TMP and 0.51% catalyst at 120°C, at a pressure of 50 mbar for 180 minutes. It is necessary to highlight that the product obtained consists of two phases, a liquid and a solid one, being the first object of study, and leaving the classification and possible application of the second one incognito. Therefore, it is recommended to carry out studies of the greater depth that allows characterizing both phases, as well as improving the method of obtaining by optimizing the variables involved in the process and thus achieving superior results.

Keywords: biolubricant base, bovine tallow, renewable resources, reverse transesterification

Procedia PDF Downloads 112
2062 Impact of the African Continental Free Trade Area on Ghana: A Computable General Equilibrium Approach

Authors: Gordon Newlove Asamoah

Abstract:

This study’s objective is to determine the impact of the African Continental Free Trade Area (AfCFTA) on Ghana using computable general equilibrium (CGE) modelling. The trade data for the simulation was drawn from the standard GTAP database version 10. The study estimated the Ad valorem equivalent (AVE) of Non-Tariff Measures (NTMs) for the Ghanaian sectors which were used for the analysis. Simulations were performed to remove import tariffs and export taxes for 90% of the tariff lines as well as 50% of the NTMs for all the AfCFTA participating countries. The NTMs' reduction was simulated using these two mechanisms: iceberg costs, also known as import augmenting technological change (AMS), and exporter costs (AXS). The study finds that removing the tariffs and NTMs in the AfCFTA regions has a positive impact on Ghana’s GDP, export and import volumes, terms of trade and welfare as measured by the equivalent variations. However, Ghana recorded a deficit of US$4766.69 million as a trade balance due to its high importation bills. This is not by chance, as Ghana is an importer of high-value-added goods but an exporter of basic agricultural raw materials with low export earnings. The study also finds much larger positive impacts for the AfCFTA regions for both importers and exporters when the NTMs that work as iceberg costs and export costs are reduced. It further finds that by reducing the export cost that increases the cost of intermediate inputs, trade among the AfCFTA regions (intra-AfCFTA trade) is enhanced.

Keywords: impact, AfCFTA, NTMs, Ghana, CGE

Procedia PDF Downloads 9
2061 Quality Assessment of the Given First Aid on the Spot Events in the Opinion of Members of the Teams of the Medical Rescue in Warsaw in Poland

Authors: Aneta Binkowska, Artur Kamecki

Abstract:

The ability to provide first aid should be one of the basic skills of each of us. First aid by the Law on National Medical Emergency dated 8 September 2006 as amended, is a set of actions undertaken to save a person at the scene of an accident. In Poland, on the basis of Article 162 of the Criminal Code, we are obliged to provide first aid to the victim. In addition, according to a large part of society, unselfishness towards others in need of help is our moral obligation. The aim of the study was to learn the opinion of the members of Medical Rescue Teams (MRT) of the ‘Meditrans’ Provincial Ambulance and Sanitary Transport Service (PA and STS ‘Meditrans’) in Warsaw on how people react in real situations threatening life or health of the injured person. The study was conducted in the third quarter of 2015 on 335 members of medical rescue teams, including 77 W and 258 M, who provided medical services in the ‘Meditrans’ Provincial Ambulance and Sanitary Transport Service MRT in Warsaw. The research tool was an anonymous questionnaire survey of own design, which consisted of 12 questions: closed, half open and one open question. Respondents were divided into 3 age groups and by individual medical professions (doctor, paramedic, nurse). The straight majority of respondents encountered granting the first aid the event on the spot. However, the frequency of appearing in such proceedings isn’t too high. The first aid has most often been given in the street and in houses. The final audited fairly important element is the reason not to provide first aid by bystanders in the opinion of members of the medical teams. Respondents to this question, which was an open question were asked to name the reason for not taking any action while waiting for an ambulance. Over 50% of respondents could not answer. The most common answers were: fear, lack of knowledge and skills, reluctance, indifference, lack of training, lack of experience and fear that harm. Conclusion: The majority of respondents have encountered instances of first aid provision, but respondents assessed the frequency of such situations as low. Placing the victim in the recovery position is the simplest and most common form of first aid. Therefore, training should be introduced not only on CPR but also in the scope of helping persons in sudden health emergency, who do not have a sudden cardiac arrest. A statement can be formulated, as a main conclusion of the analysis, that only continuous education and in particular practical training will help people to overcome the barrier of their limitations in order to help others. Among the largest group of witnesses providing first aid are the elderly and youth, who are subjected to various forms of education related to first aid provision.

Keywords: BLS, first aid, medical rescue, resuscitation

Procedia PDF Downloads 151
2060 Physical and Morphological Response to Land Reclamation Projects in a Wave-Dominated Bay

Authors: Florian Monetti, Brett Beamsley, Peter McComb, Simon Weppe

Abstract:

Land reclamation from the ocean has considerably increased over past decades to support worldwide rapid urban growth. Reshaping the coastline, however, inevitably affects coastal systems. One of the main challenges for coastal oceanographers is to predict the physical and morphological responses for nearshore systems to man-made changes over multiple time-scales. Fully-coupled numerical models are powerful tools for simulating the wide range of interactions between flow field and bedform morphology. Restricted and inconsistent measurements, combined with limited computational resources, typically make this exercise complex and uncertain. In the present study, we investigate the impact of proposed land reclamation within a wave-dominated bay in New Zealand. For this purpose, we first calibrated our morphological model based on the long-term evolution of the bay resulting from land reclamation carried out in the 1950s. This included the application of sedimentological spin-up and reduction techniques based on historical bathymetry datasets. The updated bathymetry, including the proposed modifications of the bay, was then used to predict the effect of the proposed land reclamation on the wave climate and morphology of the bay after one decade. We show that reshaping the bay induces a distinct symmetrical response of the shoreline which likely will modify the nearshore wave patterns and consequently recreational activities in the area.

Keywords: coastal waves, impact of land reclamation, long-term coastal evolution, morphodynamic modeling

Procedia PDF Downloads 173
2059 Virtual Prototyping of Ventilated Corrugated Fibreboard Carton of Fresh Fruit for Improved Containerized Transportation

Authors: Alemayehu Ambaw, Matia Mukama, Umezuruike Linus Opara

Abstract:

This study introduces a comprehensive method for designing ventilated corrugated fiberboard carton for fresh fruit packaging utilising virtual prototyping. The technique efficiently assesses and analyses the mechanical and thermal capabilities of fresh fruit packing boxes prior to making production investments. Comprehensive structural, aerodynamic, and thermodynamic data from designs were collected and evaluated in comparison to real-world packaging needs. Physical prototypes of potential designs were created and evaluated afterward. The virtual prototype is created with computer-aided graphics, computational structural dynamics, and computational fluid dynamics technologies. The virtual prototyping quickly generated data on carton compression strength, airflow resistance, produce cooling rate, spatiotemporal temperature, and product quality map in the cold chain within a few hours. Six distinct designs were analysed. All the various carton designs showed similar effectiveness in preserving the quality of the goods. The innovative packaging box design is more compact, resulting in a higher freight density of 1720 kg more fruit per reefer compared to the commercial counterpart. The precooling process was improved, resulting in a 17% increase in throughput and a 30% reduction in power usage.

Keywords: postharvest, container logistics, space/volume usage, computational method, packaging technology

Procedia PDF Downloads 56
2058 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.

Keywords: bioconvection, finite element method, gyrotactic micro-organisms, inclined stretching sheet, nanofluid

Procedia PDF Downloads 188
2057 A Multi-Arm Randomized Trial Comparing the Weight Gain of Very Low Birth Weight Neonates: High Glucose versus High Protein Intake

Authors: Farnaz Firuzian, Farhad Choobdar, Ali Mazouri

Abstract:

As Very Low Birth Weight (VLBW) neonates cannot tolerate enteral feeding, parenteral nutrition (PN) must be administered shortly after birth. To find an optimal combination of nutrition, in this study, we compare administering high glucose versus high protein intake as a component of total parenteral nutrition (TPN) to test their effect on birth weight (BW) regain in VLBW. This study employs a multi-arm randomized trial: 145 newborns with BW < 1500 g were randomized to control (C) or experimental groups: high glucose (G) or high protein (P). All samples in each group received the same TPN regimens except glucose and protein intake: Glocuse was provided by dextrose water (DW) serum: 7-15 g/kg/d (10% DW) in groups C and P versus 8.75-18.75 g/kg/d (12.5% DW) in group G. Protein provided by amino acids 3 g/kg/d for groups C and G versus 4 g/kg/d for group P. Outcomes (weight, height, and head circumference) was monitored on a daily basis until the BW was regained. Data has been gathered recently and is being processed. We hypothesize that neonates with higher amino acid intake will result in sooner BW regain than other groups. The result will be presented at the conference. The findings of this study not only can help optimize nutrition, cost reduction, and shorter NICU admission of VLBW neonates at the hospital level but eventually contribute to reduced healthcare-associated infections (HAIs) and an improved health economy.

Keywords: very low birth weight neonates, weight gain, parenteral nutrition, glucose, amino acids

Procedia PDF Downloads 83
2056 Influence of Laser Excitation on SERS of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Surface enhanced Raman spectroscopy (SERS) of Silicon nano crystals (SiNCs) were obtained using two different laser excitations: 488 nm and 514.5 nm. Silver nano particles were used as plasmonics metal nano particles due to a robust SERS effect that observed when they mixed with SiNCs. SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. Silver nano particles (AgNPs) of two different sizes were synthesized using photo chemical reduction of AgNO3 with sodium dodecyl sulfate (SDS). The synthesized AgNPs have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement in the SERS intensity was observed for AgNPs100/SiNCs and AgNPs30/SiNCs mixtures increasing up to 9 and 3 times respectively using 488 nm intensity; whereas the intensity of the SERS signal increased up to 7 and 2 times respectively, using 514.5 nm excitation source. The enhancement in SERS intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs. The results provide good consensus between the wavelength of the laser excitation source and surface plasmon resonance absorption band of silver nano particles consider to be an important requirement in SERS experiments.

Keywords: silicon nanocrystals (SiNCs), silver nanoparticles (AgNPs), surface enhanced raman spectroscopy (SERS)

Procedia PDF Downloads 331
2055 Bulking Rate of Cassava Genotypes and Their Root Yield Relationship at Guinea Savannah and Forest Transition Agroecological Zone of Nigeria

Authors: Olusegun D. Badewa, E. K. Tsado, A. S. Gana, K. D. Tolorunse, R. U. Okechukwu, P. Iluebbey, S. Ibrahim

Abstract:

Farmers are faced with varying production challenges ranging from unstable weather due to climate change, low yield, malnutrition, cattle invasion, and bush fires that have always affected their livelihood. Research effort must therefore be centered on improving farmers’ livelihood, nutrition, and health by providing early bulking biofortified cassava varieties that could be harvested earlier with reasonable root yield and thereby preventing long stay of the crop on their farmland. This study evaluated cassava genotypes at different harvesting months of 3, 6, 9, and 12 months after planting in order to evaluate their bulking rate at different agroecology of Mokwa and Ubiaja. Data were collected on fresh storage root yield, Harvest index, and Dry matter content. It was shown from the study that traits FSRY, HI, and DM were significant for genotype and months after planting and variable among the genotype while location had no effect on the yield traits. Early bulking genotypes were not high yielding and showed discontinuity at some point across the months. The retrogression in yield performance across months had no effect on the highest yielding. Also, for all the genotypes and across evaluated months, FSRY reduces at 9 MAP due to a reduction in dry matter content during the same month, and the best performing genotype was the genotype IBA90581, followed by IBA120036, IBA130896, and IBA980581 while the least performing was genotype IBA130818.

Keywords: early bulking, dry mater, harvest index, high yielding, root yield

Procedia PDF Downloads 226
2054 A Reference Framework Integrating Lean and Green Principles within Supply Chain Management

Authors: M. Bortolini, E. Ferrari, F. G. Galizia, C. Mora

Abstract:

In the last decades, an increasing set of companies adopted lean philosophy to improve their productivity and efficiency promoting the so-called continuous improvement concept, reducing waste of time and cutting off no-value added activities. In parallel, increasing attention rises toward green practice and management through the spread of the green supply chain pattern, to minimise landfilled waste, drained wastewater and pollutant emissions. Starting from a review on contributions deepening lean and green principles applied to supply chain management, the most relevant drivers to measure the performance of industrial processes are pointed out. Specific attention is paid on the role of cost because it is of key importance and it crosses both lean and green principles. This analysis leads to figure out an original reference framework for integrating lean and green principles in designing and managing supply chains. The proposed framework supports the application, to the whole value chain or to parts of it, e.g. distribution network, assembly system, job-shop, storage system etc., of the lean-green integrated perspective. Evidences show that the combination of the lean and green practices lead to great results, higher than the sum of the performances from their separate application. Lean thinking has beneficial effects on green practices and, at the same time, methods allowing environmental savings generate positive effects on time reduction and process quality increase.

Keywords: environmental sustainability, green supply chain, integrated framework, lean thinking, supply chain management

Procedia PDF Downloads 392
2053 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps

Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur

Abstract:

The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.

Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion

Procedia PDF Downloads 115
2052 Cognitive Performance Post Stroke Is Affected by the Timing of Evaluation

Authors: Ayelet Hersch, Corrine Serfaty, Sigal Portnoy

Abstract:

Stroke survivors commonly report persistent fatigue and sleep disruptions during rehabilitation and post-recovery. While limited research has explored the impact of stroke on a patient's chronotype, there is a gap in understanding the differences in cognitive performance based on treatment timing. Study objectives: (a) To characterize the sleep chronotype in sub-acute post-stroke individuals. (b) Explore cognitive task performance differences during preferred and non-preferred hours. (c) Examine the relationships between sleep quality and cognitive performance. For this intra-subject study, twenty participants (mean age 60.2±8.6) post-first stroke (6-12 weeks post stroke) underwent assessments at preferred and non-preferred chronotypic times. The assessment included demographic surveys, the Munich Chronotype Questionnaire, Montreal Cognitive Assessment (MoCA), Rivermead Behavioral Memory Test (RBMT), a fatigue questionnaire, and 4-5 days of actigraphy (wrist-worn wGT3X-BT, ActiGraph) to record sleep characteristics. Four sleep quality indices were extracted from actigraphy wristwatch recordings: The average of total sleep time per day (minutes), the average number of awakenings during the sleep period per day, the efficiency of sleep (total hours of sleep per day divided by hours spent in bed per day, averaged across the days and presented as percentage), and the Wake after Sleep Onset (WASO) index, indicating the average number of minutes elapsed from the onset of sleep to the first awakening. Stroke survivors exhibited an earlier sleep chronotype post-injury compared to pre-injury. Enhanced attention, as indicated by higher RBMT scores, occurred during preferred hours. Specifically, 30% of the study participants demonstrated an elevation in their final scores during their preferred hours, transitioning from the category of "mild memory impairment" to "normal memory." However, no significant differences emerged in executive functions, attention tasks, and MoCA scores between preferred and non-preferred hours. The Wake After Sleep Onset (WASO) index correlated with MoCA/RBMT scores during preferred hours (r=0.53/0.51, p=0.021/0.027, respectively). The number of awakenings correlated with MoCA letter task performance during non-preferred hours (r=0.45, p=0.044). Enhanced attention during preferred hours suggests a potential relationship between chronotype and cognitive performance, highlighting the importance of personalized rehabilitation strategies in stroke care. Further exploration of these relationships could contribute to optimizing the timing of cognitive interventions for stroke survivors.

Keywords: sleep chronotype, chronobiology, circadian rhythm, rehabilitation timing

Procedia PDF Downloads 62
2051 The Effects of Root Zone Supply of Aluminium on Vegetative Growth of 15 Groundnut Cultivars Grown in Solution Culture

Authors: Mosima M. Mabitsela

Abstract:

Groundnut is preferably grown on light textured soils. Most of these light textured soils tend to be highly weathered and characterized by high soil acidity and low nutrient status. One major soil factor associated with infertility of acidic soils that can negatively depress groundnut yield is aluminium (Al) toxicity. In plants Al toxicity damages root cells, leading to inhibition of root growth as a result of the suppression of cell division, cell elongation and cell expansion in the apical meristem cells of the root. The end result is that roots become stunted and brittle, root hair development is poor, and the root apices become swollen. This study was conducted to determine the effects of aluminium (Al) toxicity on a range of groundnut varieties. Fifteen cultivars were tested in incremental aluminum (Al) supply in an ebb and flow solution culture laid out in a randomized complete block design. There were six aluminium (Al) treatments viz. 0 µM, 1 µM, 5.7 µM, 14.14 µM, 53.18 µM, and 200 µM. At 1 µM there was no inhibitory effect on the growth of groundnut. The inhibition of groundnut growth was noticeable from 5.7 µM to 200 µM, where the severe effect of aluminium (Al) stress was observed at 200 µM. The cultivars varied in their response to aluminium (Al) supply in solution culture. Groundnuts are one of the most important food crops in the world, and its supply is on a decline due to the light-textured soils that they thrive under as these soils are acidic and can easily solubilize aluminium (Al) to its toxic form. Consequently, there is a need to develop groundnut cultivars with high tolerance to soil acidity.

Keywords: aluminium toxicity, cultivars, reduction, root growth

Procedia PDF Downloads 150
2050 Characterization and Selection of Phosphorus Deficiency Tolerant Genotypes in Nigeria Based on Morpho-Physiologic Traits

Authors: Umego Chukwudi T., Ntui Valentine O., Uyoh Edak A.

Abstract:

Phosphorus (P) deficiency has been identified as a major hindrance to rice production the world over. Eleven (11) rice genotypes predominantly used by local farmers in Nigeria were studied for their responses to P deficient conditions. The characterization was based on morpho-physiologic parameters. The genotypes were screened using a hydroponic system in a modified Hoagland’s solution. Morphological and physiologic parameters, including Plant height (PH), number of tillers per plant, shoot dry weight (SDW), shoot phosphate concentration (SPC), and chlorophyll content, were recorded after exposure to three levels of phosphate concentration (0µM, 400 µM, and 800 µM). The data obtained were subjected to analysis of variance (ANOVA), and the means were separated using least significance difference tests. The results obtained showed that P starvation caused a significant (p≤0.05) reduction in PH, SDW, and tillering and also triggered a significant (p≤0.05) increase in root length among the genotypes. The Pearsons correlation coefficient was used to estimate the relationships among studied parameters, and a significant negative correlation was observed between plant height and root length. FARO63 was identified as a highly tolerant genotype to P deficiency with a low (0.24) SPC and higher (4.81) phosphate utilization efficiency (PUE). This study has identified FARO63 as a true tolerant genotype to Phosphate deficiency, which will be useful in breeding for phosphate deficiency tolerance in rice and thus combating food insecurity.

Keywords: phosphate deficiency, rice genotypes, hydroponic system, food security

Procedia PDF Downloads 108
2049 Loss of Green Space in Urban Metropolitan and Its Alarming Impacts on Teenagers' Life: A Case Study on Dhaka

Authors: Nuzhat Sharmin

Abstract:

Human being is the most integral part of the nature and responsible for maintaining ecological balance both in rural and urban areas. But unfortunately, we are not doing our job with a holistic approach. The rapid growth of urbanization is making human life more isolated from greenery. Nowadays modern urban living involves sensory deprivation and overloaded stress. In many cities and towns of the world are expanding unabated in the name of urbanization and industrialization and in fact becoming jungles of concrete. Dhaka is one of the examples of such cities where open and green spaces are decreasing because of accommodating the overflow of population. This review paper has been prepared based on interviewing 30 teenagers, both male and female in Dhaka city. There were 12 open-ended questions in the questionnaire. For the literature review information had been gathered from scholarly papers published in various peer-reviewed journals. Some information was collected from the newspapers and some from fellow colleagues working around the world. Ideally about 25% of an urban area should be kept open or with parks, fields and/or plants and vegetation. But currently Dhaka has only about 10-12% open space and these also are being filled up rapidly. Old Dhaka has only about 5% open space while the new Dhaka has about 12%. Dhaka is now one of the most populated cities in the world. Accommodating this huge influx of people Dhaka is continuously losing its open space. As a result, children and teenagers are losing their interest in playing games and making friends, rather they are mostly occupied by television, gadgets and social media. It has been known from the interview that only 28% of teenagers regularly play. But the majority of them have to play on the street and rooftop for the lack of open space. On an average they are occupied with electronic devices for 8.3 hours/day. 64% of them has chronic diseases and often visit doctors. Most shockingly 35% of them claimed for not having any friends. Green space offers relief from stress. Areas of natural environment in towns and cities are theoretically seen providing setting for recovery and recuperation from anxiety and strains of the urban environment. Good quality green spaces encourage people to walk, run, cycle and play. Green spaces improve air quality and reduce noise, while trees and shrubbery help to filter out dust and pollutants. Relaxation, contemplation and passive recreation are essential to stress management. All city governments that are losing its open spaces should immediately pay attention to this aesthetic issue for the benefit of urban people. All kinds of development must be sustainable both for human being and nature.

Keywords: greenery, health, human, urban

Procedia PDF Downloads 174
2048 The Materiality of Noise Barriers: Sustainability Approach

Authors: Mostafa Gabr, Rania Abdul Galil, Nihal Salim

Abstract:

Various interventions are applied in cities with the aim to improve living and acoustic environmental conditions. Noise is one of the most influential and critical factors in the environment that has an effect on the QOL (quality of life) and urban environment. It ranks second among environmental pollution issues according to EEAA. Traffic noise is a major source of noise. Noise barriers are one of the physical techniques in landscape design used to reduce the impact of noise pollution in urban areas. Roadways noise pollution can be best controlled by a noise barrier. The aim of this paper is to consider all facets of sustainability when designing a comfortable acoustic environment in roadways, through different strategies related to planning and the design process. The study focuses on the relation between the design of noise barriers as a landscape noise mitigation installation and their materiality in so far as it influences the sustainability of the open space and the acceptability of users. According to previous studies, design of noise barrier mainly depends on cost as a decisive factor. This study asserts that environmental and socioeconomic costs associated are equally important. Hence, the paper presents a strategy for sustainable soundscape design. It builds a framework focusing on materiality considering the environmental and socioeconomic impact of noise barriers shaping urban open space around the road ways, and the different academic and market positions on noise barrier types and materials. Finally, it concludes with a matrix of the relation between the noise barrier design consideration and the three pillars of sustainability (social, economic and environmental).

Keywords: traffic noise level, acoustic sustainability, noise barrier, noise reduction, noise control, acoustical level

Procedia PDF Downloads 481
2047 Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis

Authors: Mohamed Bendoukha, Mustapha Mosbah

Abstract:

The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension.

Keywords: intervertebral disc, lumbar spine, degenerative nuclesion, L4-L5, range of motion finite element model, hyperelasticy

Procedia PDF Downloads 184
2046 Bioefficacy of Catharanthus roseus on Reproductive Performance of Red Cotton Bug, Dysdercus koenigii (Heteroptera: Pyrrhocoriedae)

Authors: Sunil Kayesth, Kamal Kumar Gupta

Abstract:

Influence of hexane extract of Catharanthus roseus leaves on reproductive fitness of Dysdercus koenigii was investigated by evaluating mating behaviour, oviposition behaviour and fertility of the treated insects. The volatiles of the plants were extracted in hexane by ‘cold extraction method’. The insects were treated with the extracts by ‘dry film residual method’. Our studies indicated that the treated male showed altered courtship behaviour, less number of mounting attempts, took more time to mate, less percent successful mating, and more disrupted mating. Similarly, the treated female exhibited either mating refusal or neutral behaviour towards courting males. The maximum disruption in the mating was observed in a cross T♂ X T♀, where males and females were treated with Catharanthus extract. The Dysdercus treated with Catharanthus extracts also showed marked reduction in their reproductive success. The treated females laid lesser number of egg batches and eggs in their life span. Catharanthus extract was effective in alteration of the oviposition behaviour. The eggs laid by the mated females were fertile indicating insemination of the mated females. However, the percent hatchability of the eggs laid by the treated females was less than control. The GC-MS analysis of the extract revealed the presence of juvenile hormone mimics, and the intermediates of juvenile hormone biosynthesis. Therefore, some of these compounds individually or synergistically alter reproductive behaviour of Dysdercus.

Keywords: Catharanthus roseus, Dysdercus koenigii, GC-MS analysis, reproductive performance

Procedia PDF Downloads 259
2045 Investigation of Cold Atmospheric Plasma Exposure Protocol on Wound Healing in Diabetic Foot Ulcer

Authors: P. Akbartehrani, M. Khaledi Pour, M. Amini, M. Khani, M. Mohajeri Tehrani, E. Ghasemi, P. Charipoor, B. Shokri

Abstract:

A common problem between diabetic patients is foot ulcers which are chronic and require specialized treatment. Previous studies illustrate that Cold atmospheric plasma (CAP) has beneficial effects on wound healing and infection. Nevertheless, the comparison of different cap exposure protocols in diabetic ulcer wound healing remained to be studied. This study aims to determine the effect of two different exposure protocols on wound healing in diabetic ulcers. A prospective, randomized clinical trial was conducted at two clinics. Diabetic patients with G1 and G2 wanger classification diabetic foot ulcers were divided into two groups of study. One group was treated by the first protocol, which was treating wounds by argon-generated cold atmospheric plasma jet once a week for five weeks in a row. The other group was treated by the second protocol, which was treating wounds every three days for five weeks in a row. The wounds were treated for 40 seconds/cubic centimeter, while the nozzle tip was moved nonlocalized 1 cm above the wounds. A patient with one or more wounds could participate in different groups as wounds were separately randomized, which allow a participant to be treated several times during the study. The study's significant findings were two different reductions rate in wound size, microbial load, and two different healing speeds. This study concludes that CAP therapy by the second protocol yields more effective healing speeds, reduction in wound sizes, and microbial loads of foot ulcers in diabetic patients.

Keywords: wound healing, diabetic ulcers, cold atmospheric plasma, cold argon jet

Procedia PDF Downloads 215
2044 Effects of Live Yeast Supplementation to Reduce Oxidative Stress and Increase Lactation Performance of Dairy Cattle during the Summer Season

Authors: Ahmad Nawid Mirzad, Akira Goto, Takuto Endo, Hitoshi Ano, Hiromu Katamoto, Takenori Yamauchi

Abstract:

The objective of this study was to evaluate the effects of live yeast supplementation on oxidative stress biomarker and antioxidant vitamin levels as well as lactation performance in Holstein Friesian cows during the summer season in Fukuoka prefecture. Sixteen lactating cows weighing 707.50 ± 13.09 kg (Mean ± SE) were used and randomly assigned to either supplemented (n = 8) or control (n = 8) group. The cows in supplemented group were administered with live yeast product at 10 g/d per cow from middle of July to middle of September for eight weeks. In treatment group, serum levels of derivatives of reactive oxygen metabolites (d-ROMs) were lower at week six. In addition, serum levels of glucose and retinol were higher at week eight and those of α-tocopherol were higher at week 2 in treatment group. During study period daily average milk yield decreased in both groups. Daily average milk yield 63 days after the onset of supplementation in treatment and control groups were 23.5 and 22.2 kg, respectively. The reduction rate of milk yield in treatment group tended to be lower (17.6 vs. 20.0%). These results suggest that live yeast supplementation may reduce oxidative stress and improve energy metabolism in lactating dairy cows during the summer season.

Keywords: cow, live yeast, milk, oxidative stress, summer season

Procedia PDF Downloads 159
2043 Growth Inhibition of Candida Albicans Strains Co-Cultured with Lactobacillus Strains in a Cereal Medium

Authors: Richard Nyanzi, Maupi E. Letsoalo, Jacobus N. Eloff, Piet J. Jooste

Abstract:

Candida albicans naturally occurs in the gastrointestinal tract (GIT) of more than 50% of humans. Overgrowth of the fungus causes several forms of candidiasis including oral thrush. Overgrowth tends to occur in immunocompromised humans such as diabetic, cancer and HIV patients. Antifungal treatment is available, but not without shortcomings. In this study, inhibitory activity of five probiotic Lactobacillus strains was demonstrated against the growth of seven clinical strains of Candida albicans by co-culturing of the organisms in a maize gruel (MG) medium. Phenotypic tests, molecular techniques and phylogenetic analysis have enabled precise identification of the organisms used in the study. The quantitative pour plate technique was used to enumerate colonies of the yeasts and the lactobacilli and the Kruskal-Wallis test and ANOVA tests were employed to compare the distributions of the colonies of the organisms. The cereal medium, containing added carbon sources, was inoculated with a Candida and a Lactobacillus strain in combination and incubated at 37 °C for 168 h. Aliquots were regularly taken and subjected to pH determination and colony enumeration. Certain Lactobacillus strains proved to be inhibitory and also lethal to some Candida albicans strains. A low pH due to Lactobacillus acid production resulted in significant low Candida colony counts. Higher Lactobacillus colony counts did not necessarily result in lower Candida counts suggesting that inhibitory factors besides low pH and competitive growth by lactobacilli contributed to the reduction in Candida counts. Such anti-Candida efficacy however needs to be confirmed by in vivo studies.

Keywords: candida albicans, oral thrush, candidiasis, lactobacillus, probiotics

Procedia PDF Downloads 398
2042 Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity.

Keywords: liquid-liquid interfaces, surfactant concentrations, potential determining ions, residual oil mobilization

Procedia PDF Downloads 141
2041 Sheathed Cotton Fibers: Material for Oil-Spill Cleanup

Authors: Benjamin M Dauda, Esther Ibrahim, Sylvester Gadimoh, Asabe Mustapha, Jiyah Mohammed

Abstract:

Despite diverse optimization techniques on natural hydrophilic fibers, hydrophobic synthetic fibers are still the best oil sorption materials. However, these hydrophobic fibers are not biodegradable, making their disposal problematic. To this end, this work sets out to develop Nonwoven sorbents from epoxy-coated Cotton fibers. As a way of improving the compatibility of the crude oil and reduction of moisture absorption, cotton fibers were coated with epoxy resin by immersion in acetone-thinned epoxy solution. A needle-punching machine was used to convert the fibers into coherent nonwoven sheets. An oil sorption experiment was then carried out. The result indicates that the developed epoxy-modified sorbent has a higher crude oil-sorption capacity compared with those of untreated cotton and commercial polypropylene sorbents. Absorption Curves show that the coated fiber and polypropylene sorbent saturated faster than the uncoated cotton fiber pad. The result also shows that the coated cotton sorbent adsorbed crude faster than the polypropylene sorbent, and the equilibrium exhaustion was also higher. After a simple mechanical squeezing process, the Nonwoven pads could be restored to their original form and repeatedly recycled for oil/water separation. The results indicate that the cotton-coated non-woven pads hold promise for the cleanup of oil spills. Our data suggests that the sorption behaviors of the epoxy-coated Nonwoven pads and their crude oil sorption capacity are relatively stable under various environmental conditions compared to the commercial sheet.

Keywords: oil spill, adsorption, cotton, epoxy, nonwoven

Procedia PDF Downloads 54
2040 Healthcare Professional’s Well-Being: Case Study of Two Care Units in a Big Hospital in Canada

Authors: Zakia Hammouni

Abstract:

Healthcare professionals’ well-being is becoming a priority during this Covid-19 pandemic due to stress, fatigue, and workload. Well before this pandemic, contemporary hospitals are endowed with environmental attributes that contribute to achieving well-being within their environment with the emphasis on the patient. The patient-centered care approach has been followed by the patient-centered design approach. Studies that have focused on the physical environment in hospitals have dealt with the patient's recovery process and his well-being. Prior scientific literature has placed less emphasis on the healthcare professionals’ interactions within the physical environment and to guide hospital designers to make evidence-based design choices to meet the needs and expectations of hospital users by considering, in addition to patients, healthcare professionals. This paper examines these issues related to the daily stress of professionals who provide care in a hospital environment. In this exploratory study, the interest was to grasp the issues related to this environment and explores the current realities of newly built hospitals based on design approaches and what attributes of the physical setting support healthcare professional’s well-being. Within a constructivist approach, this study was conducted in two care units in a new hospital in a big city in Canada before the Covid-19 pandemic (august 2nd to November 2nd 2018). A spatial evaluation of these care units allowed us to understand the interaction of health professionals in their work environment, to understand the spatial behavior of these professionals, and the narratives from 44 interviews of various healthcare professionals. The mental images validated the salient components of the hospital environment as perceived by these healthcare professionals. Thematic analysis and triangulation of the data set were conducted. Among the key attributes promoting the healthcare professionals’ well-being as revealed by the healthcare professionals are the overall light-color atmosphere in the hospital and care unit, particularly in the corridors and public areas of the hospital, the maintenance and cleanliness. The presence of the art elements also brings well-being to the health professionals as well as panoramic views from the staff lounge and corridors of the care units or elevator lobbies. Despite the overall positive assessment of this environment, some attributes need to be improved to ensure the well-being of healthcare professionals and to provide them with a restructuring environment. These are the supply of natural light, softer colors, sufficient furniture, comfortable seating in the restroom, and views, which are important in allowing these healthcare professionals to recover from their work stress. Noise is another attribute that needs to be further improved in the hospital work environment, especially in the nursing workstations and consultant's room. In conclusion, this study highlights the importance of providing healthcare professionals with work and rest areas that allow them to resist the stress they face, particularly during periods of extreme stress and fatigue such as a Covid-19 pandemic.

Keywords: healthcare facilities, healthcare professionals, physical environment, well-being

Procedia PDF Downloads 127
2039 Antibacterial Hydrogels for Wound Care

Authors: Saba Atefyekta

Abstract:

Aim: Control of bacterial bioburden in wounds is an important step for minimizing the risk of wound infection. An antimicrobial hydrogel wound dressing is developed out of soft polymeric hydrogels that contain antimicrobial peptides (AMPs). Such wound dressings can bind and kill all types of bacteria, even the resistance types at the wound site. Methods: AMPs are permanently bonded onto a soft nanostructured polymer via covalent attachment and physical entanglement. This improves stability, rapid antibacterial activity, and, most importantly, prevents the leaching of AMPs. Major Findings: Antimicrobial analysis of antimicrobial hydrogels using in-vitro wound models confirmed >99% killing efficiency against multiple bacterial trains, including MRSA, MDR, E. Coli. Furthermore, the hydrogel retained its antibacterial activity for up to 4 days when exposed to human serum. Tests confirmed no release of AMPs, and it was proven non-toxic to mammalian cells. An in-vivo study on human intact skin showed a significant reduction of bacteria for part of the subject’s skin treated with antibacterial hydrogels. A similar result was detected through a qualitative study in veterinary trials on different types of surgery wounds in cats, dogs, and horses. Conclusions: Antimicrobial hydrogels wound dressings developed by permanent attachment of AMPs can effectively and rapidly kill bacteria in contact. Such antibacterial hydrogel wound dressings are non-toxic and do not release any substances into the wound.

Keywords: antibacterial wound dressing, antimicrobial peptides, post-surgical wounds, infection

Procedia PDF Downloads 78
2038 Fungicidal Action of the Mycogenic Silver Nanoparticles Against Aspergillus niger Inciting Collar Rot Disease in Groundnut (Arachis hypogaea L.)

Authors: R. Sarada Jayalakshmi Devi B. Bhaskar, S. Khayum Ahammed, T. N. V. K. V. Prasad

Abstract:

Use of bioagents and biofungicides is safe to manage the plant diseases and to avoid human health hazards which improves food security. Myconanotechnology is the study of nanoparticles synthesis using fungi and their applications. The present work reports on preparation, characterization and antifungal activity of biogenic silver nanoparticles produced by the fungus Trichoderma sp. which was collected from groundnut rhizosphere. The culture filtrate of Trichoderma sp. was used for the reduction of silver ions (Ag+) in AgNO3 solution to the silver (Ag0) nanoparticles. The different ages (4 days, 6 days, 8 days, 12 days, and 15 days) of culture filtrates were screened for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Vis spectrophotometer, particle size and zeta potential analyzer, Fourier Transform Infrared Spectrophotometer (FTIR) and Transmission Electron Microscopy. Among all the treatments the silver nitrate solution treated with six days aged culture filtrate of Trichoderma sp. showed the UV absorption peak at 440 nm with maximum intensity (0.59) after 24 hrs incubation. The TEM micrographs showed the spherical shaped silver nanoparticles with an average size of 30 nm. The antifungal activity of silver nanoparticles against Aspergillus niger causing collar rot disease in groundnut and aspergillosis in humans showed the highest per cent inhibition at 100 ppm concentration (74.8%). The results points to the usage of these mycogenic AgNPs in agriculture to control plant diseases.

Keywords: groundnut rhizosphere, Trichoderma sp., silver nanoparticles synthesis, antifungal activity

Procedia PDF Downloads 497