Search results for: mMachine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7180

Search results for: mMachine learning

2770 Serious Digital Video Game for Solving Algebraic Equations

Authors: Liliana O. Martínez, Juan E González, Manuel Ramírez-Aranda, Ana Cervantes-Herrera

Abstract:

A serious game category mobile application called Math Dominoes is presented. The main objective of this applications is to strengthen the teaching-learning process of solving algebraic equations and is based on the board game "Double 6" dominoes. Math Dominoes allows the practice of solving first, second-, and third-degree algebraic equations. This application is aimed to students who seek to strengthen their skills in solving algebraic equations in a dynamic, interactive, and fun way, to reduce the risk of failure in subsequent courses that require mastery of this algebraic tool.

Keywords: algebra, equations, dominoes, serious games

Procedia PDF Downloads 128
2769 The Consumer's Behavior of Bakery Products in Bangkok

Authors: Jiraporn Weenuttranon

Abstract:

The objectives of the consumer behavior of bakery products in Bangkok are to study consumer behavior of the bakery product, to study the essential factors that could possibly affect the consumer behavior and to study recommendations for the development of the bakery products. This research is a survey research. Populations are buyer’s bakery products in Bangkok. The probability sample size is 400. The research uses a questionnaire for self-learning by using information technology. The researcher created a reliability value at 0.71 levels of significance. The data analysis will be done by using the percentage, mean, and standard deviation and testing the hypotheses by using chi-square.

Keywords: consumer, behavior, bakery, standard deviation

Procedia PDF Downloads 477
2768 Identifying the Hidden Curriculum Components in the Nursing Education

Authors: Alice Khachian, Shoaleh Bigdeli, Azita Shoghie, Leili Borimnejad

Abstract:

Background and aim: The hidden curriculum is crucial in nursing education and can determine professionalism and professional competence. It has a significant effect on their moral performance in relation to patients. The present study was conducted with the aim of identifying the hidden curriculum components in the nursing and midwifery faculty. Methodology: The ethnographic study was conducted over two years using the Spradley method in one of the nursing schools located in Tehran. In this focused ethnographic research, the approach of Lincoln and Goba, i.e., transferability, confirmability, and dependability, was used. To increase the validity of the data, they were collected from different sources, such as participatory observation, formal and informal interviews, and document review. Two hundred days of participatory observation, fifty informal interviews, and fifteen formal interviews from the maximum opportunities and conditions available to obtain multiple and multilateral information added to the validity of the data. Due to the situation of COVID, some interviews were conducted virtually, and the activity of professors and students in the virtual space was also monitored. Findings: The components of the hidden curriculum of the faculty are: the atmosphere (physical environment, organizational structure, rules and regulations, hospital environment), the interaction between activists, and teaching-learning activities, which ultimately lead to “A disconnection between goals, speech, behavior, and result” had revealed. Conclusion: The mutual effects of the atmosphere and various actors and activities on the process of student development, since the students have the most contact with their peers first, which leads to the most learning, and secondly with the teachers. Clinicians who have close and person-to-person contact with students can have very important effects on students. Students who meet capable and satisfied professors on their way become interested in their field and hope for their future by following the mentor of these professors. On the other hand, weak and dissatisfied professors lead students to feel abandoned, and by forming a colony of peers with different backgrounds, they distort the personality of a group of students and move away from family values, which necessitates a change in some cultural practices at the faculty level.

Keywords: hidden curriculum, nursing education, ethnography, nursing

Procedia PDF Downloads 108
2767 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 47
2766 Preparing Japanese University Students for an Increasingly Diverse Workplace

Authors: Jane O`Halloran

Abstract:

Japanese university students have traditionally shown antipathy towards English due to a generally unsatisfactory language-learning experience at the secondary level with a focus on grammar and translation rather than communication. The situation has become urgent, however, due to the rapid decline in the Japanese population, which will present both difficulties and opportunities as employees will increasingly be forced to use English in the workplace. For university lecturers, the challenge is to overcome the students` apathy and convince them of the need for English in the increasingly diverse workplaces they will be entering. This article will illustrate how English teachers and content teachers at a private science university came together to address this quandary.

Keywords: student motivation, CLIL, globalization, demographics

Procedia PDF Downloads 101
2765 Coaches Attitudes, Efficacy and Proposed Behaviors towards Athletes with Hidden Disabilities: A Review of Recent Survey Research

Authors: Robbi Beyer, Tiffanye Vargas, Margaret Flores

Abstract:

Within the United States, youths with hidden disabilities (specific learning disabilities, attention deficit hyperactivity disorder, emotional behavioral disorders, mild intellectual disabilities and speech/language disorders) can often be part of the kindergarten through twelfth grade school population. Because individuals with hidden disabilities have no apparent physical disability, learning difficulties may be overlooked and these youths may be mistakenly labeled as unmotivated, or defiant because they don't understand and follow directions, or maintain enough attention to remember and perform. These behaviors are considered especially challenging for youth sport coaches to manage and they often find it difficult to successfully select and deliver effective accommodations for the athletes. These deficits can be remediated and compensated through the use of research-validated strategies and instructional methods. However, while these techniques are commonly included in teacher preparation, they rarely, if ever, are included in coaching preparation. Therefore, the purpose of this presentation is to summarize consecutive research studies that examined coaching education within the United States for youth athletes with hidden disabilities. Each study utilized a questionnaire format to collect data from coaches on attitudes, efficacy and solutions for addressing challenging behaviors. Results indicated that although the majority of coaches’ attitudes were positive and they perceived themselves confident in working with athletes who have hidden disabilities, there were significant differences in the understanding of appropriate teaching strategies and techniques for this population. For example, when asked to describe a videotaped situation of why an athlete is not performing correctly, coaches often found the athlete to be at fault, as opposed to considering the possibility of faulty directions, or the need for accommodations in teaching/coaching style. When considering coaches’ preparation, 83% of participants declared they were inadequately prepared to coach athletes with hidden disabilities and 92% strongly supported improved preparation for coaches. The comprehensive examination of coaches’ perceptions and efficacy in working with youth athletes with hidden disabilities has provided valuable insight and highlights the need for continued research in this area.

Keywords: health, hidden disabilties, physical activity, youth recreational sports

Procedia PDF Downloads 345
2764 Alterations in Habitation and Architectural Education Due to the COVID-19 Pandemic: The Operation of the Architectural Studio as a Crossroad

Authors: Chrysi K. Nikoloutsou, Gianna Th. Siapati

Abstract:

The pandemic limitations have altered architectural education as the discourse shifted towards virtual studios and blended learning. In addition, lockdown conditions and remote working have affected habitation. Adaptability is now a key factor. The architectural studio needs to adjust to these new terms both in education and in inhabitation. This paper will investigate the operation of an architectural studio in relation to how one experiences their house due to the pandemic, based on a literature review and qualitative research methods (interviews & workshops with students). Zenetos’ prophetic ideas of ‘Electronic Urbanism’ and ‘tele-activities’ are now more present than ever.

Keywords: architectural education, pandemic, residential design, studio pedagogy

Procedia PDF Downloads 103
2763 Practical Experiences as Part of Project Management Course

Authors: H. Hussain, N. H. Mohamad

Abstract:

Practical experiences have been one of the successful criteria for the Project Management course for the art and design students. There are series of events that the students have to undergo as part of their practical exercises in the learning context for Project Management courses. These series have been divided into few mini programs that involved the whole individual in each group. Therefore, the events have been one of the bench marks for these students. Through the practical experience, the task that has been given to individual has been performed according to the needs of professional practice and ethics.

Keywords: practical experience, project management, art and design students, events, programs

Procedia PDF Downloads 554
2762 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder

Procedia PDF Downloads 288
2761 Learning Traffic Anomalies from Generative Models on Real-Time Observations

Authors: Fotis I Giasemis, Alexandros Sopasakis

Abstract:

This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.

Keywords: traffic, anomaly detection, GNN, GAN

Procedia PDF Downloads 1
2760 Engagement as a Predictor of Student Flourishing in the Online Classroom

Authors: Theresa Veach, Erin Crisp

Abstract:

It has been shown that traditional students flourish as a function of several factors including level of academic challenge, student/faculty interactions, active/collaborative learning, enriching educational experiences, and supportive campus environment. With the increase in demand for remote or online courses, factors that result in academic flourishing in the virtual classroom have become more crucial to understand than ever before. This study seeks to give insight into those factors that impact student learning, overall student wellbeing, and flourishing among college students enrolled in an online program. 4160 unique students participated in the completion of End of Course Survey (EOC) before final grades were released. Quantitative results from the survey are used by program directors as a measure of student satisfaction with both the curriculum and the faculty. In addition, students also submitted narrative comments in an open comment field. No prompts were given for the comment field on the survey. The purpose of this analysis was to report on the qualitative data available with the goal of gaining insight into what matters to students. Survey results from July 1st, 2016 to December 1st, 2016 were compiled into spreadsheet data sets. The analysis approach used involved both key word and phrase searches and reading results to identify patterns in responses and to tally the frequency of those patterns. In total, just over 25,000 comments were included in the analysis. Preliminary results indicate that it is the professor-student relationship, frequency of feedback and overall engagement of both instructors and students that are indicators of flourishing in college programs offered in an online format. This qualitative study supports the notion that college students flourish with regard to 1) education, 2) overall student well-being and 3) program satisfaction when overall engagement of both the instructor and the student is high. Ways to increase engagement in the online college environment were also explored. These include 1) increasing student participation by providing more project-based assignments, 2) interacting with students in meaningful ways that are both high in frequency and in personal content, and 3) allowing students to apply newly acquired knowledge in ways that are meaningful to current life circumstances and future goals.

Keywords: college, engagement, flourishing, online

Procedia PDF Downloads 270
2759 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle

Authors: Babesse Saad, Ameddah Djemeleddine

Abstract:

In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.

Keywords: rollover, single unit heavy vehicle, neural networks, nonlinear side force

Procedia PDF Downloads 473
2758 SIPINA Induction Graph Method for Seismic Risk Prediction

Authors: B. Selma

Abstract:

The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.

Keywords: SIPINA algorithm, seism, focal depth, peak ground acceleration, displacement

Procedia PDF Downloads 312
2757 The Relationship between Body Positioning and Badminton Smash Quality

Authors: Gongbing Shan, Shiming Li, Zhao Zhang, Bingjun Wan

Abstract:

Badminton originated in ancient civilizations in Europe and Asia more than 2000 years ago. Presently, it is played almost everywhere with estimated 220 million people playing badminton regularly, ranging from professionals to recreational players; and it is the second most played sport in the world after soccer. In Asia, the popularity of badminton and involvement of people surpass soccer. Unfortunately, scientific researches on badminton skills are hardly proportional to badminton’s popularity. A search of literature has shown that the literature body of biomechanical investigations is relatively small. One of the dominant skills in badminton is the forehand overhead smash, which consists of 1/5 attacks during games. Empirical evidences show that one has to adjust the body position in relation to the coming shuttlecock to produce a powerful and accurate smash. Therefore, positioning is a fundamental aspect influencing smash quality. A search of literature has shown that there is a dearth/lack of study on this fundamental aspect. The goals of this study were to determine the influence of positioning and training experience on smash quality in order to discover information that could help learn/acquire the skill. Using a 10-camera, 3D motion capture system (VICON MX, 200 frames/s) and 15-segment, full-body biomechanical model, 14 skilled and 15 novice players were measured and analyzed. Results have revealed that the body positioning has direct influence on the quality of a smash, especially on shuttlecock release angle and clearance height (passing over the net) of offensive players. The results also suggest that, for training a proper positioning, one could conduct a self-selected comfort position towards a statically hanged shuttlecock and then step one foot back – a practical reference marker for learning. This perceptional marker could be applied in guiding the learning and training of beginners. As one gains experience through repetitive training, improved limbs’ coordination would increase smash quality further. The researchers hope that the findings will benefit practitioners for developing effective training programs for beginners.

Keywords: 3D motion analysis, biomechanical modeling, shuttlecock release speed, shuttlecock release angle, clearance height

Procedia PDF Downloads 497
2756 Convolutional Neural Networks Architecture Analysis for Image Captioning

Authors: Jun Seung Woo, Shin Dong Ho

Abstract:

The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.

Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3

Procedia PDF Downloads 130
2755 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 89
2754 Start with the Art: Early Results from a Study of Arts-Integrated Instruction for Young Children

Authors: Juliane Toce, Steven Holochwost

Abstract:

A substantial and growing literature has demonstrated that arts education benefits young children’s socioemotional and cognitive development. Less is known about the capacity of arts-integrated instruction to yield benefits to similar domains, particularly among demographically and socioeconomically diverse groups of young children. However, the small literature on this topic suggests that arts-integrated instruction may foster young children’s socioemotional and cognitive development by presenting opportunities to 1) engage in instructional content in diverse ways, 2) experience and regulate strong emotions, 3) experience growth-oriented feedback, and 4) engage in collaborative work with peers. Start with the Art is a new program of arts-integrated instruction currently being implemented in four schools in a school district that serves students from a diverse range of backgrounds. The program employs a co-teaching model in which teaching artists and classroom teachers engage in collaborative lesson planning and instruction over the course of the academic year and is currently the focus of an impact study featuring a randomized-control design, as well as an implementation study, both of which are funded through an Educational Innovation and Research grant from the United States Department of Education. The paper will present the early results from the Start with the Art implementation study. These results will provide an overview of the extent to which the program was implemented in accordance with design, with a particular emphasis on the degree to which the four opportunities enumerated above (e.g., opportunities to engage in instructional content in diverse ways) were presented to students. There will be a review key factors that may influence the fidelity of implementation, including classroom teachers’ reception of the program and the extent to which extant conditions in the classroom (e.g., the overall level of classroom organization) may have impacted implementation fidelity. With the explicit purpose of creating a program that values and meets the needs of the teachers and students, Start with the Art incorporates the feedback from individuals participating in the intervention. Tracing its trajectory from inception to ongoing development and examining the adaptive changes made in response to teachers' transformative experiences in the post-pandemic classroom, Start with the Art continues to solicit input from experts in integrating artistic content into core curricula within educational settings catering to students from under-represented backgrounds in the arts. Leveraging the input from this rich consortium of experts has allowed for a comprehensive evaluation of the program’s implementation. The early findings derived from the implementation study emphasize the potential of arts-integrated instruction to incorporate restorative practices. Such practices serve as a crucial support system for both students and educators, providing avenues for children to express themselves, heal emotionally, and foster social development, while empowering teachers to create more empathetic, inclusive, and supportive learning environments. This all-encompassing analysis spotlights Start with the Art’s adaptability to any learning environment through the program’s effectiveness, resilience, and its capacity to transform - through art - the classroom experience within the ever-evolving landscape of education.

Keywords: arts-integration, social emotional learning, diverse learners, co-teaching, teaching artists, post-pandemic teaching

Procedia PDF Downloads 61
2753 Developing a Group Guidance Framework: A Review of Literature

Authors: Abdul Rawuf Hussein, Rusnani Abdul Kadir, Mona Adlina Binti Adanan

Abstract:

Guidance program has been an essential approach in helping professions from many institutions of learning as well as communities, organizations, and clinical settings. Although the term varies depending on the approaches, objectives, and theories, the core and central element is typically developmental in nature. In this conceptual paper, the researcher will review literature on the concept of group guidance, its impact on students’ and individual’s development, developing a guidance module and proposing a synthesised framework for group guidance program.

Keywords: concept, framework, group guidance, module development

Procedia PDF Downloads 525
2752 Comparing Test Equating by Item Response Theory and Raw Score Methods with Small Sample Sizes on a Study of the ARTé: Mecenas Learning Game

Authors: Steven W. Carruthers

Abstract:

The purpose of the present research is to equate two test forms as part of a study to evaluate the educational effectiveness of the ARTé: Mecenas art history learning game. The researcher applied Item Response Theory (IRT) procedures to calculate item, test, and mean-sigma equating parameters. With the sample size n=134, test parameters indicated “good” model fit but low Test Information Functions and more acute than expected equating parameters. Therefore, the researcher applied equipercentile equating and linear equating to raw scores and compared the equated form parameters and effect sizes from each method. Item scaling in IRT enables the researcher to select a subset of well-discriminating items. The mean-sigma step produces a mean-slope adjustment from the anchor items, which was used to scale the score on the new form (Form R) to the reference form (Form Q) scale. In equipercentile equating, scores are adjusted to align the proportion of scores in each quintile segment. Linear equating produces a mean-slope adjustment, which was applied to all core items on the new form. The study followed a quasi-experimental design with purposeful sampling of students enrolled in a college level art history course (n=134) and counterbalancing design to distribute both forms on the pre- and posttests. The Experimental Group (n=82) was asked to play ARTé: Mecenas online and complete Level 4 of the game within a two-week period; 37 participants completed Level 4. Over the same period, the Control Group (n=52) did not play the game. The researcher examined between group differences from post-test scores on test Form Q and Form R by full-factorial Two-Way ANOVA. The raw score analysis indicated a 1.29% direct effect of form, which was statistically non-significant but may be practically significant. The researcher repeated the between group differences analysis with all three equating methods. For the IRT mean-sigma adjusted scores, form had a direct effect of 8.39%. Mean-sigma equating with a small sample may have resulted in inaccurate equating parameters. Equipercentile equating aligned test means and standard deviations, but resultant skewness and kurtosis worsened compared to raw score parameters. Form had a 3.18% direct effect. Linear equating produced the lowest Form effect, approaching 0%. Using linearly equated scores, the researcher conducted an ANCOVA to examine the effect size in terms of prior knowledge. The between group effect size for the Control Group versus Experimental Group participants who completed the game was 14.39% with a 4.77% effect size attributed to pre-test score. Playing and completing the game increased art history knowledge, and individuals with low prior knowledge tended to gain more from pre- to post test. Ultimately, researchers should approach test equating based on their theoretical stance on Classical Test Theory and IRT and the respective  assumptions. Regardless of the approach or method, test equating requires a representative sample of sufficient size. With small sample sizes, the application of a range of equating approaches can expose item and test features for review, inform interpretation, and identify paths for improving instruments for future study.

Keywords: effectiveness, equipercentile equating, IRT, learning games, linear equating, mean-sigma equating

Procedia PDF Downloads 191
2751 Greek Teachers' Understandings of Typical Language Development and of Language Difficulties in Primary School Children and Their Approaches to Language Teaching

Authors: Konstantina Georgali

Abstract:

The present study explores Greek teachers’ understandings of typical language development and of language difficulties. Its core aim was to highlight that teachers need to have a thorough understanding of educational linguistics, that is of how language figures in education. They should also be aware of how language should be taught so as to promote language development for all students while at the same time support the needs of children with language difficulties in an inclusive ethos. The study, thus argued that language can be a dynamic learning mechanism in the minds of all children and a powerful teaching tool in the hands of teachers and provided current research evidence to show that structural and morphological particularities of native languages- in this case, of the Greek language- can be used by teachers to enhance children’s understanding of language and simultaneously improve oral language skills for children with typical language development and for those with language difficulties. The research was based on a Sequential Exploratory Mixed Methods Design deployed in three consecutive and integrative phases. The first phase involved 18 exploratory interviews with teachers. Its findings informed the second phase involving a questionnaire survey with 119 respondents. Contradictory questionnaire results were further investigated in a third phase employing a formal testing procedure with 60 children attending Y1, Y2 and Y3 of primary school (a research group of 30 language impaired children and a comparison group of 30 children with typical language development, both identified by their class teachers). Results showed both strengths and weaknesses in teachers’ awareness of educational linguistics and of language difficulties. They also provided a different perspective of children’s language needs and of language teaching approaches that reflected current advances and conceptualizations of language problems and opened a new window on how best they can be met in an inclusive ethos. However, teachers barely used teaching approaches that could capitalize on the particularities of the Greek language to improve language skills for all students in class. Although they seemed to realize the importance of oral language skills and their knowledge base on language related issues was adequate, their practices indicated that they did not see language as a dynamic teaching and learning mechanism that can promote children’s language development and in tandem, improve academic attainment. Important educational implications arose and clear indications of the generalization of findings beyond the Greek educational context.

Keywords: educational linguistics, inclusive ethos, language difficulties, typical language development

Procedia PDF Downloads 381
2750 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit

Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira

Abstract:

Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.

Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing

Procedia PDF Downloads 143
2749 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor

Authors: Zeinabsadat Haghshenas

Abstract:

Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.

Keywords: adult education, affective domain, cognitive domain, memory loss, psychomotor domain

Procedia PDF Downloads 462
2748 Consequences of Inadequate Funding in Nigerian Educational System

Authors: Sylvia Nkiru Ogbuoji

Abstract:

This paper discussed the consequences of inadequate funding in Nigerian education system. It briefly explained the meaning of education in relation to the context and identified various ways education in Nigeria can be funded. It highlighted some of the consequences of inadequate funding education system to include: Inadequate facilitates for teaching and learning, western brain drain, unemployment, crises of poverty, low staff morale it. Finally, some recommendations were put forward, the government should improve the annual budget allocation to education, in order to achieve educational objective, also government should monitor the utilization of allocated funds to minimize embezzlement.

Keywords: consequences, corruption, education, funding

Procedia PDF Downloads 452
2747 Knowledge Management at Spanish Higher Education Institutions

Authors: Yolanda Ramirez, Angel Tejada, Agustin Baidez

Abstract:

In the knowledge-based economy, intangible elements are considered essential in order to achieve competitive advantage in organizations. In this sense, the Balanced Scorecard is a very suitable tool to recognize value and manage intangibles because it translates an organization’s strategic objectives into a set of performance indicators from a financial, as well as customer perspective, internal process and learning and growth perspectives. The aim of this paper is to expose and justify the benefits that the Balanced Scorecard might have for identifying, measuring and managing intellectual capital at universities, by means of reviewing the most important Balanced Scorecard implementations at Spanish public universities.

Keywords: knowledge management, balanced scorecard, universities, Spain

Procedia PDF Downloads 271
2746 Analyzing Quranic Pedagogical Approaches in Comparison to Modern Teaching Methods

Authors: Sajjad Ali

Abstract:

The Quranic pedagogical methods don't imply that the Quran explicitly prescribes teaching methods. Instead, it acknowledges the inherent ways of learning and teaching that align with human nature, offering guidance in this direction. Qur'an briefly describes different angles of acquiring knowledge. Narrative, interrogative, question, analytical, poetic, comparative and critical methods of teaching are briefly described in the Holy Quran. The Muslim Ummah has a firm belief that the Qur'an is a comprehensive book which mentions every dry and wet, but this does not mean that the Qur'an is a manual book. This means that the Qur'an contains symbols and hints about everything. The fact that everything is mentioned in the Qur'an means that the Qur'an only provides guidance, while its interpretation requires contemplation.

Keywords: hadith, knowledge, reality, understanding

Procedia PDF Downloads 73
2745 Codifying the Creative Self: Conflicts of Theory and Content in Creative Writing

Authors: Danielle L. Iamarino

Abstract:

This paper explores the embattled territory of academic creative writing—and most focally, the use of critical theory in the teaching and structuring of creative practice. It places creative writing in contemporary social, cultural, and otherwise anthropological contexts, and evaluates conventional creative writing pedagogies based on how well they serve the updated needs of increasingly diverse student congregations. With continued emphasis on student-centered learning, this paper compares theoretical to practical applications of discipline-specific knowledge, examining and critiquing theory in terms of its relevance, accessibility, and whether or not it is both actionable and beneficial in the creative writing classroom.

Keywords: creative writing, literary theory, content, pedagogy, workshop, teaching

Procedia PDF Downloads 335
2744 The Application of Sensory Integration Techniques in Science Teaching Students with Autism

Authors: Joanna Estkowska

Abstract:

The Sensory Integration Method is aimed primarily at children with learning disabilities. It can also be used as a complementary method in treatment of children with cerebral palsy, autistic, mentally handicapped, blind and deaf. Autism is holistic development disorder that manifests itself in the specific functioning of a child. The most characteristic are: disorders in communication, difficulties in social relations, rigid patterns of behavior and impairment in sensory processing. In addition to these disorders may occur abnormal intellectual development, attention deficit disorders, perceptual disorders and others. This study was focused on the application sensory integration techniques in science education of autistic students. The lack of proper sensory integration causes problems with complicated processes such as motor coordination, movement planning, visual or auditory perception, speech, writing, reading or counting. Good functioning and cooperation of proprioceptive, tactile and vestibular sense affect the child’s mastery of skills that require coordination of both sides of the body and synchronization of the cerebral hemispheres. These include, for example, all sports activities, precise manual skills such writing, as well as, reading and counting skills. All this takes place in stages. Achieving skills from the first stage determines the development of fitness from the next level. Any deficit in the scope of the first three stages can affect the development of new skills. This ultimately reflects on the achievements at school and in further professional and personal life. After careful analysis symptoms from the emotional and social spheres appear to be secondary to deficits of sensory integration. During our research, the students gained knowledge and skills in the classroom of experience by learning biology, chemistry and physics with application sensory integration techniques. Sensory integration therapy aims to teach the child an adequate response to stimuli coming to him from both the outside world and the body. Thanks to properly selected exercises, a child can improve perception and interpretation skills, motor skills, coordination of movements, attention and concentration or self-awareness, as well as social and emotional functioning.

Keywords: autism spectrum disorder, science education, sensory integration, special educational needs

Procedia PDF Downloads 184
2743 Applications of Artificial Intelligence (AI) in Cardiac imaging

Authors: Angelis P. Barlampas

Abstract:

The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.

Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine

Procedia PDF Downloads 77
2742 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity

Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan

Abstract:

Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.

Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM

Procedia PDF Downloads 120
2741 Mobile Games Applications Android-Based Physics Education to Improve Student Motivation and Interest in Learning Physics

Authors: Rizky Dwi A, Mikha Herlina Pi

Abstract:

Physics lessons for high school students, especially in Indonesia is less desirable because many people believe that physics is very difficult, especially the development of increasingly sophisticated era make online gaming more attractive many people especially school children with a variety of increasingly sophisticated gadgets. Therefore, if those two things combined to attract students in physics, the physics-based educational game android can motivate students' interest and understanding of the physics because while playing, they can also learn physics.

Keywords: education, game physics, interest, student's motivation

Procedia PDF Downloads 277