Search results for: chemical vapour deposition
892 Prophylactic and Curative Effect of Selenium on Infertility Induced by Formaldehyde Using Male Albino Mice
Authors: Suhera M. Aburawi, Habiba A. El Jaafari, Soad A. Treesh, Abdulssalam M. Abu-Aisha, Faisal S. Alwaer, Reda A. Eltubuly, Medeha Elghedamsi
Abstract:
Introduction: Infertility is a source of psychological, and sometimes social, stress on parents who desire to have children. Formaldehyde is used chiefly as disinfectant, preservative and in the chemical synthesis. The medical uses of formaldehyde are limited, but focused especially on laboratory use. Selenium is an essential trace mineral element for human; it is essential for sperm function and male fertility. Selenium deficiency has been linked to reproductive problems in animals. Objectives: To investigate the prophylactic and curative effect of selenium on male infertility induced by formaldehyde using male albino mice. Method: Forty male albino mice were used, weight 25-30 gm. Five groups of male mice (n=8) were used. Group 1 was daily administered water for injection (5ml/kg) for five days, group 2 was daily administered selenium (100 μg/kg) for five days, group 3 was daily administered formaldehyde (30mg/kg) for five days, group 4 (prophylaxis) was daily administered a combination of formaldehyde and selenium for five days, while group 5 (curative) was daily administered formaldehyde for five days followed by daily administration of selenium for the next five days. Intraperitoneal administration was adopted. At the end of the administration, seminal fluid was collected from vas deferens. Sperm count, morphology and motility were scored; histopathological screening of genital system was carried out. SPSS was applied for comparing groups. Results and conclusion: It was found that formaldehyde toxicity did not change the sperm count and percentage of motile sperm; unhealthy sperm was increased, while healthy sperm was decreased. Formaldehyde produces degeneration/damage to the male mice genital system. Selenium alone produce an increase in sperm count, volume of seminal fluid and the percentage of motile sperm. Selenium has prophylactic and curative effects against formaldehyde-induce genital system toxicity. Future work is recommended to find out if selenium protective effect is through antioxidant or other mechanisms.Keywords: infertility, formaldehyde, selenium, male mice
Procedia PDF Downloads 420891 In vivo Antidiabetic and Antioxidant Potential of Pseudovaria macrophylla Extract
Authors: Aditya Arya, Hairin Taha, Ataul Karim Khan, Nayiar Shahid, Hapipah Mohd Ali, Mustafa Ali Mohd
Abstract:
This study has investigated the antidiabetic and antioxidant potential of Pseudovaria macrophylla bark extract on streptozotocin–nicotinamide induced type 2 diabetic rats. LCMS-QTOF and NMR experiments were done to determine the chemical composition in the methanolic bark extract. For in vivo experiments, the STZ (60 mg/kg/b.w, 15 min after 120 mg/kg/1 nicotinamide, i.p.) induced diabetic rats were treated with methanolic extract of Pseuduvaria macrophylla (200 and 400 mg/kg∙bw) and glibenclamide (2.5 mg/kg) as positive control respectively. Biochemical parameters were assayed in the blood samples of all groups of rats. The pro-inflammatory cytokines, antioxidant status and plasma transforming growth factor βeta-1 (TGF-β1) were evaluated. The histological study of the pancreas was examined and its expression level of insulin was observed by immunohistochemistry. In addition, the expression of glucose transporters (GLUT 1, 2 and 4) were assessed in pancreas tissue by western blot analysis. The outcomes of the study displayed that the bark methanol extract of Pseuduvaria macrophylla has potentially normalized the elevated blood glucose levels and improved serum insulin and C-peptide levels with significant increase in the antioxidant enzyme, reduced glutathione (GSH) and decrease in the level of lipid peroxidation (LPO). Additionally, the extract has markedly decreased the levels of serum pro-inflammatory cytokines and transforming growth factor beta-1 (TGF-β1). Histopathology analysis demonstrated that Pseuduvaria macrophylla has the potential to protect the pancreas of diabetic rats against peroxidation damage by downregulating oxidative stress and elevated hyperglycaemia. Furthermore, the expression of insulin protein, GLUT-1, GLUT-2 and GLUT-4 in pancreatic cells was enhanced. The findings of this study support the anti-diabetic claims of Pseudovaria macrophylla bark.Keywords: diabetes mellitus, Pseuduvaria macrophylla, alkaloids, caffeic acid
Procedia PDF Downloads 359890 Antibacterial and Cytotoxicity Activity of Cinchona Alkaloids
Authors: Alma Ramić, Mirjana Skočibušić, Renata Odžak, Tomica Hrenar, Ines Primožič
Abstract:
In an attempt to identify a new class of antimicrobial agents, the antimicrobial potential of Cinchona alkaloid derivatives was evaluated. The bark of the Cinchona trees is the source of a variety of alkaloids, among which the best known are quinine, quinidine, cinchonine and cinchonidine. They are very useful as organocatalysts in stereoselective synthesis. On the other hand, quinine is traditionally used in the treatment of malaria. Furthermore, Cinchona alkaloids possess various analgesic, anti-inflammatory and anti–arrhythmic properties as well. In this work we present the synthesis of twenty quaternary derivatives of pseudo−enantiomeric Cinchona alkaloid derivatives to evaluate their antibacterial activity. Quaternization of quinuclidine moiety was carried out with groups diverse in their size. The structures of compounds were systematically modified to obtain drug-like properties with proper physical and chemical properties and avoiding toxophore. All compounds were prepared in good yields and were characterized by standard analytical spectroscopy methods (1D and 2D NMR, IR, MS). The antibacterial activities of all compounds were evaluated against series of recent clinical isolates of antibiotic susceptible Gram-positive and resistant Gram-negative pathogens by determining their zone of inhibition and minimum inhibitory concentrations. All compounds showed good to strong broad-spectrum activity, equivalent or better in comparison with standard antibiotics used. Furthermore, seven compounds exhibited significant antibacterial efficiency against Gram-negative isolates. To visualize the results, principal component analysis was used as an additional classification tool. Cytotoxicity of compounds with different cell lines in human cell culture was determined. Based on these results, substituted quaternary Cinchona scaffold can be considered as promising new class of antimicrobials and further investigations should be performed. Supported by Croatian Science Foundation, Project No 3775 ADESIRE.Keywords: antibacterial efficiency, cinchona alkaloids, cytotoxicity, pseudo‐enantiomers
Procedia PDF Downloads 157889 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain
Authors: Madiha El Awamie, Catherine Rees
Abstract:
Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.Keywords: antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative
Procedia PDF Downloads 343888 Assessment of Advanced Oxidation Process Applicability for Household Appliances Wastewater Treatment
Authors: Pelin Yılmaz Çetiner, Metin Mert İlgün, Nazlı Çetindağ, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır
Abstract:
Water scarcity is an inevitable problem affecting more and more people day by day. It is a worldwide crisis and a consequence of rapid population growth, urbanization and overexploitation. Thus, the solutions providing the reclamation of the wastewater are the desired approach. Wastewater contains various substances such as organic, soaps and detergents, solvents, biological substances, and inorganic substances. The physical properties of the wastewater differs regarding to its origin such as commerical, domestic or hospital usage. Thus, the treatment strategy of this type of wastewater is should be comprehensively investigated and properly treated. The advanced oxidation process comes up as a hopeful method associated with the formation of reactive hydroxyl radicals that are highly reactive to oxidize of organic pollutants. This process has a priority on other methods such as coagulation, flocuation, sedimentation and filtration since it was not cause any undesirable by-products. In the present study, it was aimed to investigate the applicability of advanced oxidation process for the treatment of household appliances wastewater. For this purpose, the laboratory studies providing the effectively addressing of the formed radicals to organic pollutants were carried out. Then the effect of process parameters were comprehensively studied by using response surface methodology, Box-Benhken experimental desing. The final chemical oxygen demand (COD) was the main output to evaluate the optimum point providing the expected COD removal. The linear alkyl benzene sulfonate (LAS), total dissolved solids (TDS) and color were measured for the optimum point providing the expected COD removal. Finally, present study pointed out that advanced oxidation process might be efficiently preffered to treat of the household appliances wastewater and the optimum process parameters provided that expected removal of COD.Keywords: advanced oxidation process, household appliances wastewater, modelling, water reuse
Procedia PDF Downloads 68887 Screening Ecological Risk Assessment at an Old Abandoned Mine in Northern Taiwan
Authors: Hui-Chen Tsai, Chien-Jen Ho, Bo-Wei Power Liang, Ying Shen, Yi-Hsin Lai
Abstract:
Former Taiwan Metal Mining Corporation and its associated 3 wasted flue gas tunnels, hereinafter referred to as 'TMMC', was contaminated with heavy metals, Polychlorinated biphenyls (PCBs) and Total Petroleum Hydrocarbons (TPHs) in soil. Since the contamination had been exposed and unmanaged in the environment for more than 40 years, the extent of the contamination area is estimated to be more than 25 acres. Additionally, TMMC is located in a remote, mountainous area where almost no residents are residing in the 1-km radius area. Thus, it was deemed necessary to conduct an ecological risk assessment in order to evaluate the details of future contaminated site management plan. According to the winter and summer, ecological investigation results, one type of endangered, multiple vulnerable and near threaten plant was discovered, as well as numerous other protected species, such as Crested Serpent Eagle, Crested Goshawk, Black Kite, Brown Shrike, Taiwan Blue Magpie were observed. Ecological soil screening level (Eco-SSLs) developed by USEPA was adopted as a reference to conduct screening assessment. Since all the protected species observed surrounding TMMC site were birds, screening ecological risk assessment was conducted on birds only. The assessment was assessed mainly based on the chemical evaluation, which the contamination in different environmental media was compared directly with the ecological impact levels (EIL) of each evaluation endpoints and the respective hazard quotient (HQ) and hazard index (HI) could be obtained. The preliminary ecological risk assessment results indicated HI is greater than 1. In other words, the biological stressors (birds) were exposed to the contamination, which was already exceeded the dosage that could cause unacceptable impacts to the ecological system. This result was mainly due to the high concentration of arsenic, metal and lead; thus it was suggested the above mention contaminants should be remediated as soon as possible or proper risk management measures should be taken.Keywords: screening, ecological risk assessment, ecological impact levels, risk management
Procedia PDF Downloads 136886 Investigating the Effect of Using Amorphous Silica Ash Obtained from Rice Husk as a Partial Replacement of Ordinary Portland Cement on the Mechanical and Microstructure Properties of Cement Paste and Mortar
Authors: Aliyu Usman, Muhaammed Bello Ibrahim, Yusuf D. Amartey, Jibrin M. Kaura
Abstract:
This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the mechanical and microstructure properties of cement paste and mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 3 percent, 5 percent, 8 percent and 10 percent. These partial replacements were used to produce Cement-ASA paste and Cement-ASA mortar. ASA was found to contain all the major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. Consistency of Cement-ASA paste was found to increase with increase in ASA replacement. Likewise, the setting time and soundness of the Cement-ASA paste also increases with increase in ASA replacements. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) at 2, 7, 14 and 28 days curing and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel platens) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days. There is an increase in the drying shrinkage of Cement-ASA mortar with curing time, it was also observed that the drying shrinkages for all the curing ages were greater than the control specimen all of which were greater than the code recommendation of less than 0.03%. The scanning electron microscope (SEM) was used to study the Cement-ASA mortar microstructure and to also look for hydration product and morphology.Keywords: amorphous silica ash, cement mortar, cement paste, scanning electron microscope
Procedia PDF Downloads 437885 Analytical Characterization of TiO2-Based Nanocoatings for the Protection and Preservation of Architectural Calcareous Stone Monuments
Authors: Sayed M. Ahmed, Sawsan S. Darwish, Mahmoud A. Adam, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Nadia A. Al-Mouallimi
Abstract:
Historical stone surfaces and architectural heritage especially which located in open areas may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, air pollution, soluble salts, Rh/temperature, and biodeterioration are the main causes of decay of stone building materials. The development and application of self-cleaning treatments on historical and architectural stone surfaces could be a significant improvement in conservation, protection, and maintenance of cultural heritage. In this paper, nanometric titanium dioxide has become a promising photocatalytic material owing to its ability to catalyze the complete degradation of many organic contaminants and represent an appealing way to create self-cleaning surfaces, thus limiting maintenance costs, and to promote the degradation of polluting agents. The obtained nano-TiO2 coatings were applied on travertine (Marble and limestone often used in historical and monumental buildings). The efficacy of the treatments has been evaluated after coating and artificial thermal aging, through capillary water absorption, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the coated surface, while the surface morphology before and after treatment was examined by scanning electron microscopy (SEM). The changes of molecular structure occurring in treated samples were spectroscopy studied by FTIR-ATR, and Colorimetric measurements have been performed to evaluate the optical appearance. All the results get together with the apparent effect that coated TiO2 nanoparticles is an innovative method, which enhanced the durability of stone surfaces toward UV aging, improved their resistance to relative humidity and temperature, self-cleaning photo-induced effects are well evident, and no alteration of the original features.Keywords: architectural calcareous stone monuments, coating, photocatalysis TiO2, self-cleaning, thermal aging
Procedia PDF Downloads 257884 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal
Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero
Abstract:
The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater
Procedia PDF Downloads 91883 Charge Transport of Individual Thermoelectric Bi₂Te₃ Core-Poly(3,4-Ethylenedioxythiophene):Polystyrenesulfonate Shell Nanowires Determined Using Conductive Atomic Force Microscopy and Spectroscopy
Authors: W. Thongkham, K. Sinthiptharakoon, K. Tantisantisom, A. Klamchuen, P. Khanchaitit, K. Jiramitmongkon, C. Lertsatitthanakorn, M. Liangruksa
Abstract:
Due to demands of sustainable energy, thermoelectricity converting waste heat into electrical energy has become one of the intensive fields of worldwide research. However, such harvesting technology has shown low device performance in the temperature range below 150℃. In this work, a hybrid nanowire of inorganic bismuth telluride (Bi₂Te₃) and organic poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) synthesized using a simple in-situ one-pot synthesis, enhancing efficiency of the nanowire-incorporated PEDOT:PSS-based thermoelectric converter is highlighted. Since the improvement is ascribed to the increased electrical conductivity of the thermoelectric host material, the individual hybrid nanowires are investigated using voltage-dependent conductive atomic force microscopy (CAFM) and spectroscopy (CAFS) considering that the electrical transport measurement can be performed either on insulating or conducting areas of the sample. Correlated with detailed chemical information on the crystalline structure and compositional profile of the nanowire core-shell structure, an electrical transporting pathway through the nanowire and the corresponding electronic-band structure have been determined, in which the native oxide layer on the Bi₂Te₃ surface is not considered, and charge conduction on the topological surface states of Bi₂Te₃ is suggested. Analyzing the core-shell nanowire synthesized using the conventional mixing of as-prepared Bi₂Te₃ nanowire with PEDOT:PSS for comparison, the oxide-removal effect of the in-situ encapsulating polymeric layer is further supported. The finding not only provides a structural information for mechanistic determination of the thermoelectricity, but it also encourages new approach toward more appropriate encapsulation and consequently higher efficiency of the nanowire-based thermoelectric generation.Keywords: electrical transport measurement, hybrid Bi₂Te₃-PEDOT:PSS nanowire, nanoencapsulation, thermoelectricity, topological insulator
Procedia PDF Downloads 207882 Wet Processing of Algae for Protein and Carbohydrate Recovery as Co-Product of Algal Oil
Authors: Sahil Kumar, Rajaram Ghadge, Ramesh Bhujade
Abstract:
Historically, lipid extraction from dried algal biomass remained a focus area of the algal research. It has been realized over the past few years that the lipid-centric approach and conversion technologies that require dry algal biomass have several challenges. Algal culture in cultivation systems contains more than 99% water, with algal concentrations of just a few hundred milligrams per liter ( < 0.05 wt%), which makes harvesting and drying energy intensive. Drying the algal biomass followed by extraction also entails the loss of water and nutrients. In view of these challenges, focus has shifted toward developing processes that will enable oil production from wet algal biomass without drying. Hydrothermal liquefaction (HTL), an emerging technology, is a thermo-chemical conversion process that converts wet biomass to oil and gas using water as a solvent at high temperature and high pressure. HTL processes wet algal slurry containing more than 80% water and significantly reduces the adverse cost impact owing to drying the algal biomass. HTL, being inherently feedstock agnostic, i.e., can convert carbohydrates and proteins also to fuels and recovers water and nutrients. It is most effective with low-lipid (10--30%) algal biomass, and bio-crude yield is two to four times higher than the lipid content in the feedstock. In the early 2010s, research remained focused on increasing the oil yield by optimizing the process conditions of HTL. However, various techno-economic studies showed that simply converting algal biomass to only oil does not make economic sense, particularly in view of low crude oil prices. Making the best use of every component of algae is a key for economic viability of algal to oil process. On investigation of HTL reactions at the molecular level, it has been observed that sequential HTL has the potential to recover value-added products along with biocrude and improve the overall economics of the process. This potential of sequential HTL makes it a most promising technology for converting wet waste to wealth. In this presentation, we will share our experience on the techno-economic and engineering aspects of sequential HTL for conversion of algal biomass to algal bio-oil and co-products.Keywords: algae, biomass, lipid, protein
Procedia PDF Downloads 219881 Characterization of AlOOH Film Containing Mg-Al Layered Double Hydroxide Prepared on Al Alloy by Steam Coating
Authors: Ai Serizawa, Kotaro Mori, Takahiro Ishizaki
Abstract:
Al alloys have been used as advanced structural materials in automobile and railway industries because of excellent physical and mechanical properties such as low density, good heat conductivity, and high specific strength. Their low corrosion resistance, however, limits their use in the corrosive environment. To improve the corrosion resistance of the Al alloys, the development of a novel coating technology has been highly desirable. Chemical conversion methods using layered double hydroxide (LDH) have attracted much attention because the LDH can suppress corrosion reaction due to their trapping ability of corrosive anions such as Cl- between layers. In this presentation, we report on a novel preparation method of AlOOH film containing Mg-Al layered double hydroxide (LDH) on Al alloy by steam coating. The corrosion resistance of the composite film including LDH was especially focused. Al-Mg-Si alloy was used as the substrate. The substrates were ultrasonically cleaned in ethanol for 10 min. The cleaned substrates were set in the autoclave with a 100 mL capacity. 20 ml of ultrapure water was located at the bottom of the autoclave to produce steam. The autoclave was heated up to a temperature of 100 to 200 °C, and then held at this temperature for up to 48 h, and was subsequently cooled naturally to room temperature, resulting in the formation of anticorrosive films on Al alloys. The resultant films were characterized by XRD, FT-IR, FE-SEM and electrochemical measurements. FE-SEM image of film surface treated at 180 °C for 48 h demonstrated that needle-like nanostructure was densely formed on the surface. XRD patterns revealed that the film formed on the Al alloys by steam coating was composed of crystal AlOOH and Mg-Al LDH. The corrosion resistance of the film was evaluated using electrochemical measurements. The potentiodynamic polarization curves of the film coated and uncoated substrates of Al-Mg-Si alloy after immersion in the 5 wt% NaCl aqueous solution for 30 min revealed that the corrosion current density, jcorr, of the film coated sample decreased by more than two orders of magnitude as compared to the uncoated sample, indicating that the corrosion resistance of the substrates of Al-Mg-Si alloy were improved by the formation of the anticorrosive film via steam coating.Keywords: aluminum alloy, boehmite, corrosion resistance, steam process
Procedia PDF Downloads 292880 Experimental and Theoretical Characterization of Supramolecular Complexes between 7-(Diethylamino)Quinoline-2(1H)-One and Cucurbit[7] Uril
Authors: Kevin A. Droguett, Edwin G. Pérez, Denis Fuentealba, Margarita E. Aliaga, Angélica M. Fierro
Abstract:
Supramolecular chemistry is a field of growing interest. Moreover, studying the formation of host-guest complexes between macrocycles and dyes is highly attractive due to their potential applications. Examples of the above are drug delivery, catalytic process, and sensing, among others. There are different dyes of interest in the literature; one example is the quinolinone derivatives. Those molecules have good optical properties and chemical and thermal stability, making them suitable for developing fluorescent probes. Secondly, several macrocycles can be seen in the literature. One example is the cucurbiturils. This water-soluble macromolecule family has a hydrophobic cavity and two identical carbonyl portals. Additionally, the thermodynamic analysis of those supramolecular systems could help understand the affinity between the host and guest, their interaction, and the main stabilization energy of the complex. In this work, two 7-(diethylamino) quinoline-2 (1H)-one derivative (QD1-2) and their interaction with cucurbit[7]uril (CB[7]) were studied from an experimental and in-silico point of view. For the experimental section, the complexes showed a 1:1 stoichiometry by HRMS-ESI and isothermal titration calorimetry (ITC). The inclusion of the derivatives on the macrocycle lends to an upward shift in the fluorescence intensity, and the pKa value of QD1-2 exhibits almost no variation after the formation of the complex. The thermodynamics of the inclusion complexes was investigated using ITC; the results demonstrate a non-classical hydrophobic effect with a minimum contribution from the entropy term and a constant binding on the order of 106 for both ligands. Additionally, dynamic molecular studies were carried out during 300 ns in an explicit solvent at NTP conditions. Our finding shows that the complex remains stable during the simulation (RMSD ~1 Å), and hydrogen bonds contribute to the stabilization of the systems. Finally, thermodynamic parameters from MMPBSA calculations were obtained to generate new computational insights to compare with experimental results.Keywords: host-guest complexes, molecular dynamics, quinolin-2(1H)-one derivatives dyes, thermodynamics
Procedia PDF Downloads 95879 Nanostructured Oxide Layer by Anodization on Austenitic Stainless Steels: Structural and Corrosion Insights
Authors: Surya Prakash Gajagouni, Akram Alfantazi, Imad Barsoum
Abstract:
Austenitic stainless steels are widely recognized for their exceptional corrosion resistance and mechanical properties, rendering them indispensable materials across various industries from construction to biomedical applications. However, in chloride and high temperature atmosphere it to further enhance their surface properties, anodization has emerged as a promising surface treatment technique. Anodization modifies the surface of stainless steels by creating a protective oxide layer, improving corrosion resistance and imparting additional functional characteristics. This paper explores the structural and corrosion characteristics of anodized austenitic stainless steels (AISI 304) using a two-step anodic technique. We utilized a perchloric acid-based electrolyte followed by an ammonium fluoride-based electrolyte. This sequential approach aimed to cultivate deeper and intricately self-ordered nanopore oxide arrays on a substrate made of 304 stainless steel. Electron Microscopic (SEM and TEM) images revealed nanoporous layered structures with increased length and crack development correlating with higher voltage and anodization time. Surface composition and chemical oxidation state of surface-treated SS were determined using X-ray photoelectron spectroscopy (XPS) techniques, revealing a surface layer rich in Ni and suppressed Cr, resulting in a thin film composed of Ni and Fe oxide compared to untreated SS. Electrochemical studies demonstrated enhanced corrosion resistance in a strong alkaline medium compared to untreated SS. Understanding the intricate relationship between the structural features of anodized stainless steels and their corrosion resistance is crucial for optimizing the performance of these materials in diverse applications. This study aims to contribute to the advancement of surface engineering strategies for enhancing the durability and functionality of austenitic stainless steels in aggressive environments.Keywords: austenitic stainless steel, anodization, nanoporous oxides, marine corrosion
Procedia PDF Downloads 38878 Silicon-Photonic-Sensor System for Botulinum Toxin Detection in Water
Authors: Binh T. T. Nguyen, Zhenyu Li, Eric Yap, Yi Zhang, Ai-Qun Liu
Abstract:
Silicon-photonic-sensor system is an emerging class of analytical technologies that use evanescent field wave to sensitively measure the slight difference in the surrounding environment. The wavelength shift induced by local refractive index change is used as an indicator in the system. These devices can be served as sensors for a wide variety of chemical or biomolecular detection in clinical and environmental fields. In our study, a system including a silicon-based micro-ring resonator, microfluidic channel, and optical processing is designed, fabricated for biomolecule detection. The system is demonstrated to detect Clostridium botulinum type A neurotoxin (BoNT) in different water sources. BoNT is one of the most toxic substances known and relatively easily obtained from a cultured bacteria source. The toxin is extremely lethal with LD50 of about 0.1µg/70kg intravenously, 1µg/ 70 kg by inhalation, and 70µg/kg orally. These factors make botulinum neurotoxins primary candidates as bioterrorism or biothreat agents. It is required to have a sensing system which can detect BoNT in a short time, high sensitive and automatic. For BoNT detection, silicon-based micro-ring resonator is modified with a linker for the immobilization of the anti-botulinum capture antibody. The enzymatic reaction is employed to increase the signal hence gains sensitivity. As a result, a detection limit to 30 pg/mL is achieved by our silicon-photonic sensor within a short period of 80 min. The sensor also shows high specificity versus the other type of botulinum. In the future, by designing the multifunctional waveguide array with fully automatic control system, it is simple to simultaneously detect multi-biomaterials at a low concentration within a short period. The system has a great potential to apply for online, real-time and high sensitivity for the label-free bimolecular rapid detection.Keywords: biotoxin, photonic, ring resonator, sensor
Procedia PDF Downloads 119877 Monitoring of Water Quality Using Wireless Sensor Network: Case Study of Benue State of Nigeria
Authors: Desmond Okorie, Emmanuel Prince
Abstract:
Availability of portable water has been a global challenge especially to the developing continents/nations such as Africa/Nigeria. The World Health Organization WHO has produced the guideline for drinking water quality GDWQ which aims at ensuring water safety from source to consumer. Portable water parameters test include physical (colour, odour, temperature, turbidity), chemical (PH, dissolved solids) biological (algae, plytoplankton). This paper discusses the use of wireless sensor networks to monitor water quality using efficient and effective sensors that have the ability to sense, process and transmit sensed data. The integration of wireless sensor network to a portable sensing device offers the feasibility of sensing distribution capability, on site data measurements and remote sensing abilities. The current water quality tests that are performed in government water quality institutions in Benue State Nigeria are carried out in problematic locations that require taking manual water samples to the institution laboratory for examination, to automate the entire process based on wireless sensor network, a system was designed. The system consists of sensor node containing one PH sensor, one temperature sensor, a microcontroller, a zigbee radio and a base station composed by a zigbee radio and a PC. Due to the advancement of wireless sensor network technology, unexpected contamination events in water environments can be observed continuously. local area network (LAN) wireless local area network (WLAN) and internet web-based also commonly used as a gateway unit for data communication via local base computer using standard global system for mobile communication (GSM). The improvement made on this development show a water quality monitoring system and prospect for more robust and reliable system in the future.Keywords: local area network, Ph measurement, wireless sensor network, zigbee
Procedia PDF Downloads 174876 Identification of Persistent Trace Organic Pollutants in Various Waste Water Samples Using HPLC
Authors: Almas Hamid, Ghazala Yaqub, Aqsa Riaz
Abstract:
Qualitative validation was performed to detect the presence of persistent organic pollutants (POPs) in various wastewater samples collected from domestic sources (Askari XI housing society, Bedian road Lahore) industrial sources (PET bottles, pharmaceutical, textile) and a municipal drain (Hudiara drain) in Lahore. In addition wastewater analysis of the selected parameter was carried out. pH for wastewater samples from Askari XI, PET bottles, pharmaceutical, textile and Hudiara drain were 6.9, 6.7, 6.27, 7.18 and 7.9 respectively, within the NEQS Pakistan range that is 6-9. TSS for the respective samples was 194, 241, 254, 140 and 251 mg/L, in effluent for pet bottle industry, pharmaceutical and Hudiara drain and exceeded the NEQS Pakistan. Chemical oxygen demand (COD) for the wastewater samples was 896 mg/L, 166 mg/L, 419 mg/L, 812 mg/L and 610 mg/L respectively, all in excess of NEQS (150 mg/L). Similarly the biological oxygen demand (BOD) values (110.8, 170, 423, 355 and 560 mg/L respectively) were also above NEQS limits (80 mg/L). Chloride (Cl-) content, total dissolved solids (TDS) and temperature were found out to be within the prescribed standard limits. The POPs selected for analysis included five pesticides/insecticides (D. D, Karate, Commando, Finis insect killer, Bifenthrin) and three polycyclic aromatic hydrocarbons (PAHs) (naphthalene, anthracene, phenanthrene). Peak values of standards were compared with that of wastewater samples. The results showed the presence of D.D in all wastewater samples, pesticide Karate was identified in Askari XI and textile industry sample. Pesticide Commando, Finis (insect killer) and Bifenthrin were detected in Askari XI and Hudiara drain wastewater samples. In case of PAHs; naphthalene was identified in all the five wastewater samples whereas anthracene and phenanthrene were detected in samples of Askari XI housing society, PET bottles industry, pharmaceutical industry and textile industry but totally absent in Hudiara drain wastewater. Practical recommendations have been put forth to avoid hazardous impacts of incurred samples.Keywords: HPLC studies, lahore, physicochemical analysis, wastewater
Procedia PDF Downloads 273875 Post Harvest Losses and Food Security in Northeast Nigeria What Are the Key Challenges and Concrete Solutions
Authors: Adebola Adedugbe
Abstract:
The challenge of post-harvest losses poses serious threats for food security in Nigeria and the north-eastern part with the country losing about $9billion annually due to postharvest losses in the sector. Post-harvest loss (PHL) is the quantitative and qualitative loss of food in various post-harvest operations. In Nigeria, post-harvest losses (PHL) have been a major challenge to food security and improved farmer’s income. In 2022, the Nigerian government had said over 30 percent of food produced by Nigerian farmers perish during post-harvest. For many in northeast Nigeria, agriculture is the predominant source of livelihood and income. The persistent communal conflicts, flood, decade-old attacks by boko haram and insurgency in this region have disrupted farming activities drastically, with farmlands becoming insecure and inaccessible as communities are forced to abandon ancestral homes, The impact of climate change is also affecting agricultural and fishing activities, leading to shortage of food supplies, acute hunger and loss of livelihood. This has continued to impact negatively on the region and country’s food production and availability making it loose billions of US dollars annually in income in this sector. The root cause of postharvest losses among others in crops, livestock and fisheries are lack of modern post-harvest equipment, chemical and lack of technologies used for combating losses. The 2019 Global Hunger Index showed Nigeria’s case was progressing from a ‘serious to alarming level’. As part of measures to address the problem of post-harvest losses experienced by farmers, the federal government of Nigeria concessioned 17 silos with 6000 metric tonne storage space to private sector to enable farmers to have access to storage facilities. This paper discusses the causes, effects and solutions in handling post-harvest losses and optimize returns on food security in northeast Nigeria.Keywords: farmers, food security, northeast Nigeria, postharvest loss
Procedia PDF Downloads 78874 Identification and Quantification of Sesquiterpene Lactones of Sagebrush (Artemisia tridentate) and Its Chemical Modification
Authors: Rosemary Anibogwu, Kavita Sharma, Karl De Jesus
Abstract:
Sagebrush is an abundant and naturally occurring plant in the Intermountain West region of the United States. The plant contains an array of bioactive compounds such as flavonoids, terpenoids, sterols, and phenolic acids. It is important to identify and characterize these compounds because Native Americans use sagebrush as herbal medicine. These compounds are also utilized for preventing infection in wounds, treating headaches and colds, and possess antitumor properties. This research is an exploratory study on the sesquiterpene present in the leaves of sagebrush. The leaf foliage was extracted with 100 % chloroform and 100 % methanol. The percentage yield for the crude was considerably higher in chloroform. The Thin Layer Chromatography (TLC) analysis of the crude extracted unveiled a brown band at Rf = 0.25 and a dark brown band at Rf = 0.74, along with three unknown faint bands the 254 nm UV lamp. Furthermore, the two distinct brown (Achillin) and dark brown band (Hydroxyachillin) in TLC were further utilized in the isolation of pure compounds with column chromatography. The structures of Achillin and Hydroxyachillin were elucidated based on extensive spectroscopic analysis, including TLC, High-Performance Liquid Chromatography (HPLC), 1D- and 2D-Nuclear Magnetic Resonance (NMR), and Mass Spectroscopy (MS). The antioxidant activities of crude extract and three pure compounds were evaluated in terms of their peroxyl radical scavenging by Ferric Reducing Ability of Plasma (FRAP) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude extract showed the antioxidant activity of 18.99 ± 0.51 µmol TEg -1 FW for FRAP and 11.59 ± 0.38 µmol TEg -1 FW for DPPH. The activities of Achillin, Hydroxyachillin, and Quercetagetin trimethyl ether were 13.03, 15.90 and 14.02 µmol TEg -1 FW respectively for the FRAP assay. The three purified compounds have been submitted to the National Cancer Institute 60 cancer cell line for further study.Keywords: HPLC, nuclear magnetic resonance spectroscopy, sagebrush, sesquiterpene lactones
Procedia PDF Downloads 137873 Use of Radiation Chemistry Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases
Authors: B. M. Pardeshi
Abstract:
Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux * 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, INDIA, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb, Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed.Keywords: instrumental neutron activation analysis, atomic absorption spectroscopy, medicinal plants, trace elemental analysis, mineral contents
Procedia PDF Downloads 334872 Evaluation and Risk Assessment of Heavy Metals Pollution Using Edible Crabs, Based on Food Intended for Human Consumption
Authors: Nayab Kanwal, Noor Us Saher
Abstract:
The management and utilization of food resources is becoming a big issue due to rapid urbanization, wastage and non-sustainable use of food, especially in developing countries. Therefore, the use of seafood as alternative sources is strongly promoted worldwide. Marine pollution strongly affects marine organisms, which ultimately decreases their export quality. The monitoring of contamination in marine organisms is a good indicator of the environmental quality as well as seafood quality. Monitoring the accumulation of chemical elements within various tissues of organisms has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this perspective, this study was carried out to compare the previous and current levels (Year 2012 and 2014) of heavy metals (Cd, Pb, Cr, Cu and Zn) in crabs marketed in Karachi and to estimate the toxicological risk associated with their intake. The accumulation of metals in marine organisms, both essential (Cu and Zn) and toxic (Pb, Cd and Cr), natural and anthropogenic, is an actual food safety issue. Significant (p>0.05) variations in metal concentrations were found in all crab species between the two years, with most of the metals showing high accumulation in 2012. For toxicological risk assessment, EWI (Estimated weekly intake), Target Hazard quotient (THQ) and cancer risk (CR) were also assessed and high EWI, Non- cancer risk (THQ < 1) showed that there is no serious threat associated with the consumption of shellfish species on Karachi coast. The Cancer risk showed the highest risk from Cd and Pb pollution if consumed in excess. We summarize key environmental health research on health effects associated with exposure to contaminated seafood. It could be concluded that considering the Pakistan coast, these edible species may be sensitive and vulnerable to the adverse effects of environmental contaminants; more attention should be paid to the Pb and Cd metal bioaccumulation and to toxicological risks to seafood and consumers.Keywords: cancer risk, edible crabs, heavy metals pollution, risk assessment
Procedia PDF Downloads 383871 Evaluation of Coagulation Efficiency of Protein Extracts from Lupinus Albus L., Moringa Stenopetala Cufod., Trigonella Foenum-Graecum L. And Vicia Faba L. For Water Purification
Authors: Neway Adele, Adey Feleke
Abstract:
Access to clean drinking water is a basic human right. However, an estimated 1.2 billion people across the world consume unclean water daily. Interest has been growing in natural coagulants as the health and environmental concerns of conventional chemical coagulants are rising. Natural coagulants have the potential to serve as alternative water treatment agents. In this study, Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were evaluated as natural coagulants for water treatment. The protein extracts were purified from crude extracts using a protein purifier, and protein concentrations were determined by the spectrophotometric method. Small-volume coagulation efficiency tests were conducted on raw water taken from the Legedadi water treatment plant. These were done using a completely randomized design (CRD) experiment with settling times of 0 min (initial time), 90 min, 180 min and 270 min and protein extract doses of 5 mg/L, 10 mg/L, 15 mg/L and 20 mg/L. Raw water as negative control and polyelectrolyte as positive control were also included. The optical density (OD) values were measured for all the samples. At 270 min and 20 mg/L, the coagulation efficiency percentages for Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were 71%, 89%, 12% and 67% in the water sample collected in April 2019 respectively. Similarly, Lupinus albus, Moringa stenopetala and Vicia faba achieved 17%, 92% and 12% at 270 min settling times and 5 mg/L, 20 mg/L and 10 mg/L concentration in the water sample collected from August 2019, respectively. Negative control (raw water) and polyelectrolyte (positive control) were also 6 − 10% and 89 − 94% at 270 min settling time in April and August 2019, respectively. Among the four protein extracts, Moringa stenopetala showed the highest coagulation efficiency, similar to polyelectrolyte. This study concluded that Moringa stenopetala protein extract could be used as a natural coagulant for water purification in both sampling times.Keywords: coagulation efficiency, extraction, natural coagulant, protein extract
Procedia PDF Downloads 72870 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic
Authors: Miroslav Dumbrovsky
Abstract:
The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.Keywords: soil degradation, land consolidation, soil erosion, soil conservation
Procedia PDF Downloads 360869 CICAP: Promising Wound Healing Gel from Bee Products and Medicinal Plants
Authors: Laïd Boukraâ
Abstract:
Complementary and Alternative Medicine is an inclusive term that describes treatments, therapies, and modalities that are not accepted as components of mainstream education or practice, but that are performed on patients by some practitioners. While these treatments and therapies often form part of post-graduate education, study and writing, they are generally viewed as alternatives or complementary to more universally accepted treatments. Ancient civilizations used bee products and medicinal plants, but modern civilization and ‘education’ have seriously lessened our natural instinctive ability and capability. Despite the fact that the modern Western establishment appears to like to relegate apitherapy and aromatherapy to the status of 'folklore' or 'old wives' tales', they contain a vast spread of pharmacologically-active ingredients and each one has its own unique combination and properties. They are classified in modern herbal medicine according to their spheres of action. Bee products and medicinal plants are well-known natural product for their healing properties and their increasing popularity recently as they are widely used in wound healing. Honey not only has antibacterial properties which can help as an antibacterial agent but also has chemical properties which may further help in the wound healing process. A formulation with honey as its main component was produced into a honey gel. This new formulation has enhanced texture and is more user friendly for usage as well. This new formulation would be better than other formulas as it is hundred percent consisting of natural products and has been made into a better formulation. In vitro assay, animal model study and clinical trials have shown the effectiveness of LEADERMAX for the treatment of diabetic foot, burns, leg ulcer and bed sores. This one hundred percent natural product could be the best alternative to conventional products for wound and burn management. The advantages of the formulation are: 100% natural, affordable, easy to use, strong power of absorption, dry surface on the wound making a film, will not stick to the wound bed; helps relieve wound pain, inflammation, edema and bruising while improving comfort.Keywords: bed sore bee products, burns, diabetic foot, medicinal plants, leg ulcer, wounds
Procedia PDF Downloads 340868 Influence of Chelators, Zn Sulphate and Silicic Acid on Productivity and Meat Quality of Fattening Pigs
Authors: A. Raceviciute-Stupeliene, V. Sasyte, V. Viliene, V. Slausgalvis, J. Al-Saifi, R. Gruzauskas
Abstract:
The objective of this study was to investigate the influence of special additives such as chelators, zinc sulphate and silicic acid on productivity parameters, carcass characteristics and meat quality of fattening pigs. The test started with 40 days old fattening pigs (mongrel (mother) and Yorkshire (father)) and lasted up to 156 days of age. During the fattening period, 32 pigs were divided into 2 groups (control and experimental) with 4 replicates (total of 8 pens). The pigs were fed for 16 weeks’ ad libitum with a standard wheat-barley-soybean meal compound (Control group) supplemented with chelators, zinc sulphate and silicic acid (dosage 2 kg/t of feed, Experimental group). Meat traits in live pigs were measured by ultrasonic equipment Piglog 105. The results obtained throughout the experimental period suggest that supplementation of chelators, zinc sulphate and silicic acid tend to positively affect average daily gain and feed conversion ratio of pigs for fattening (p < 0.05). Pigs’ evaluation with Piglog 105 showed that thickness of fat in the first and second point was by 4% and 3% respectively higher in comparison to the control group (p < 0.05). Carcass weight, yield, and length, also thickness of fat showed no significant difference among the groups. The water holding capacity of meat in Experimental group was lower by 5.28%, and tenderness – lower by 12% compared with that of the pigs in the Control group (p < 0.05). Regarding pigs’ meat chemical composition of the experimental group, a statistically significant difference comparing with the data of the control group was not determined. Cholesterol concentration in muscles of pigs fed diets supplemented with chelators, zinc sulphate and silicic acid was lower by 7.93 mg/100 g of muscle in comparison to that of the control group. These results suggest that supplementation of chelators, zinc sulphate and silicic acid in the feed for fattening pigs had significant effect on pigs growing performance and meat quality.Keywords: silicic acid, chelators, meat quality, pigs, zinc sulphate
Procedia PDF Downloads 181867 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation
Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst
Abstract:
There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation
Procedia PDF Downloads 194866 The Interactions between Phosphorus Leaching and Lime Application in Undisturbed Soil Columns with Different Soil Textures
Authors: Faezeh Eslamian, Zhiming Qi, Michael J. Tate
Abstract:
Phosphorus losses from agricultural fields through leaching is one of the main contributors to eutrophication of lakes in Quebec as well as North America. The main objective of this study is to evaluate the application of high calcium hydrated lime as a soil amendment in reducing the subsurface transport of phosphorus to water bodies by studying the interactions between phosphorus leaching and lime application in three common agricultural soil textures (sandy loam, loam and clay loam) in Quebec. For this purpose, 6 intact soil columns of 10 cm diameter and 20 cm deep were taken from each of the three different soil textured agricultural fields. Lime (high calcium hydrated lime) was applied to the top 5 cm of half of the intact soil columns while the rest were left as controls. The columns were leached with artificial rainwater in-consecutively at a rate of 3 mm h-1 over a 90-day period. The total amount of water added was equal to the average total rainfall of the region in fall. The leachate samples were collected daily and analyzed for dissolved reactive phosphorus, total dissolved phosphorus, total phosphorus, pH, electrical conductivity, calcium, magnesium, potassium and iron. The results showed that lime was able to significantly reduce dissolved reactive phosphorus concentrations in the leachates by 70 and 40 percent in sandy loam and loam soil columns, respectively, while phosphorus concentration in the clay loam soil leachates were increased by 40 percent. The calcium in lime has P-binding capabilities. Soil chemical properties in sandy and loamy soils can affect phosphorus leaching, whereas, transport mechanisms in clay soils with macropores dominate phosphorus leaching behaviors. The presence of preferential pathways and cracks in the clay soil columns has led to a quick transport of phosphorus through the soil and the less contact time with the soil matrix, therefore, causing less opportunity for P sorption and larger P release. Application of lime to agricultural fields can be considered as a promising measure in mitigating phosphorus loss from sandy loam and loam soils.Keywords: leaching, lime, phosphorus, soil texture
Procedia PDF Downloads 178865 Changing Colours and Odours: Exploring Cues Used by Insect Pollinators in Two Brassicaceous Plants
Authors: Katherine Y. Barragan-Fonseca, Joop J. A. Van Loon, Marcel Dicke, Dani Lucas-Barbosa
Abstract:
Flowering plants use different traits to attract pollinators, which indicate flower location and reward quality. Visual and olfactory cues are among the most important floral traits exploited by pollinating insects. Pollination can alter physical and chemical cues of flowers, which can subsequently influence the behaviour of flower visitors. We investigated the main cues exploited by the syrphid fly Episyrphus balteatus and the butterfly Pieris brassicae when visiting flowers of Brassica nigra and Raphanus sativus plants. We studied post-pollination changes and their effects on the behaviour of flower visitors and flower volatile emission. Preference of pollinators was investigated by offering visual and olfactory cues simultaneously as well as separately in two-choice bioassays. We also assessed whether pollen is used as a cue by pollinating insects. In addition, we studied whether behavioural responses could be correlated with changes in plant volatile emission, by collecting volatiles from flower headspace. P. brassicae and E. balteatus did not use pollen as a cue in either of the two plant species studied. Interestingly, pollinators showed a strong bias for visual cues over olfactory cues when exposed to B. nigra plants. Flower visits by pollinators were influenced by post-pollination changes in B. nigra. In contrast, plant responses to pollination did not influence pollinator preference for R. sativus flowers. These results correlate well with floral volatile emission of B. nigra and R. sativus; pollination influenced the volatile profile of B. nigra flowers but not that of R. sativus. Collectively, our data show that different pollinators exploit different visual and olfactory traits when searching for nectar or pollen of flowers of two close related plant species. Although the syrphid fly consumes mostly pollen from brassicaceous flowers, it cannot detect pollen from a distance and likely associates other flower traits with quantity and quality of pollen.Keywords: plant volatiles, pollinators, post-pollination changes, visual and odour cues
Procedia PDF Downloads 166864 Microstructure of Virgin and Aged Asphalts by Small-Angle X-Ray Scattering
Authors: Dong Tang, Yongli Zhao
Abstract:
The study of the microstructure of asphalt is of great importance for the analysis of its macroscopic properties. However, the peculiarities of the chemical composition of the asphalt itself and the limitations of existing direct imaging techniques have caused researchers to face many obstacles in studying the microstructure of asphalt. The advantage of small-angle X-ray scattering (SAXS) is that it allows quantitative determination of the internal structure of opaque materials and is suitable for analyzing the microstructure of materials. Therefore, the SAXS technique was used to study the evolution of microstructures on the nanoscale during asphalt aging. And the reasons for the change in scattering contrast during asphalt aging were also explained with the help of Fourier transform infrared spectroscopy (FTIR). SAXS experimental results show that the SAXS curves of asphalt are similar to the scattering curves of scattering objects with two-level structures. The Porod curve for asphalt shows that there is no obvious interface between the micelles and the surrounding mediums, and there is only a fluctuation of the hot electron density between the two. The Beaucage model fit SAXS patterns shows that the scattering coefficient P of the asphaltene clusters as well as the size of the micelles, gradually increase with the aging of the asphalt. Furthermore, aggregation exists between the micelles of asphalt and becomes more pronounced with increasing aging. During asphalt aging, the electron density difference between the micelles and the surrounding mediums gradually increases, leading to an increase in the scattering contrast of the asphalt. Under long-term aging conditions due to the gradual transition from maltenes to asphaltenes, the electron density difference between the micelles and the surrounding mediums decreases, resulting in a decrease in the scattering contrast of asphalt SAXS. Finally, this paper correlates the macroscopic properties of asphalt with microstructural parameters, and the results show that the high-temperature rutting resistance of asphalt is enhanced and the low-temperature cracking resistance decreases due to the aggregation of micelles and the generation of new micelles. These results are useful for understanding the relationship between changes in microstructure and changes in properties during asphalt aging and provide theoretical guidance for the regeneration of aged asphalt.Keywords: asphalt, Beaucage model, microstructure, SAXS
Procedia PDF Downloads 84863 Degradation of Emerging Pharmaceuticals by Gamma Irradiation Process
Authors: W. Jahouach-Rabai, J. Aribi, Z. Azzouz-Berriche, R. Lahsni, F. Hosni
Abstract:
Gamma irradiation applied in removing pharmaceutical contaminants from wastewater is an effective advanced oxidation process (AOP), considered as an alternative to conventional water treatment technologies. In this purpose, the degradation efficiency of several detected contaminants under gamma irradiation was evaluated. In fact, radiolysis of organic pollutants in aqueous solutions produces powerful reactive species, essentially hydroxyl radical ( ·OH), able to destroy recalcitrant pollutants in water. Pharmaceuticals considered in this study are aqueous solutions of paracetamol, ibuprofen, and diclofenac at different concentrations 0.1-1 mmol/L, which were treated with irradiation doses from 3 to 15 kGy. The catalytic oxidation of these compounds by gamma irradiation was investigated using hydrogen peroxide (H₂O₂) as a convenient oxidant. Optimization of the main parameters influencing irradiation process, namely irradiation doses, initial concentration and oxidant volume (H₂O₂) were investigated, in the aim to release high degradation efficiency of considered pharmaceuticals. Significant modifications attributed to these parameters appeared in the variation of degradation efficiency, chemical oxygen demand removal (COD) and concentration of radio-induced radicals, confirming them synergistic effect to attempt total mineralization. Pseudo-first-order reaction kinetics could be used to depict the degradation process of these compounds. A sophisticated analytical study was released to quantify the detected radio-induced radicals (electron paramagnetic resonance spectroscopy (EPR) and high performance liquid chromatography (HPLC)). All results showed that this process is effective for the degradation of many pharmaceutical products in aqueous solutions due to strong oxidative properties of generated radicals mainly hydroxyl radical. Furthermore, the addition of an optimal amount of H₂O₂ was efficient to improve the oxidative degradation and contribute to the high performance of this process at very low doses (0.5 and 1 kGy).Keywords: AOP, COD, hydroxyl radical, EPR, gamma irradiation, HPLC, pharmaceuticals
Procedia PDF Downloads 172