Search results for: automated drift detection and adaptation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5363

Search results for: automated drift detection and adaptation

983 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 149
982 Regularizing Software for Aerosol Particles

Authors: Christine Böckmann, Julia Rosemann

Abstract:

We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.

Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization

Procedia PDF Downloads 342
981 Signal Transduction in a Myenteric Ganglion

Authors: I. M. Salama, R. N. Miftahof

Abstract:

A functional element of the myenteric nervous plexus is a morphologically distinct ganglion. Composed of sensory, inter- and motor neurons and arranged via synapses in neuronal circuits, their task is to decipher and integrate spike coded information within the plexus into regulatory output signals. The stability of signal processing in response to a wide range of internal/external perturbations depends on the plasticity of individual neurons. Any aberrations in this inherent property may lead to instability with the development of a dynamics chaos and can be manifested as pathological conditions, such as intestinal dysrhythmia, irritable bowel syndrome. The aim of this study is to investigate patterns of signal transduction within a two-neuronal chain - a ganglion - under normal physiological and structurally altered states. The ganglion contains the primary sensory (AH-type) and motor (S-type) neurons linked through a cholinergic dendro somatic synapse. The neurons have distinguished electrophysiological characteristics including levels of the resting and threshold membrane potentials and spiking activity. These are results of ionic channel dynamics namely: Na+, K+, Ca++- activated K+, Ca++ and Cl-. Mechanical stretches of various intensities and frequencies are applied at the receptive field of the AH-neuron generate a cascade of electrochemical events along the chain. At low frequencies, ν < 0.3 Hz, neurons demonstrate strong connectivity and coherent firing. The AH-neuron shows phasic bursting with spike frequency adaptation while the S-neuron responds with tonic bursts. At high frequency, ν > 0.5 Hz, the pattern of electrical activity changes to rebound and mixed mode bursting, respectively, indicating ganglionic loss of plasticity and adaptability. A simultaneous increase in neuronal conductivity for Na+, K+ and Ca++ ions results in tonic mixed spiking of the sensory neuron and class 2 excitability of the motor neuron. Although the signal transduction along the chain remains stable the synchrony in firing pattern is not maintained and the number of discharges of the S-type neuron is significantly reduced. A concomitant increase in Ca++- activated K+ and a decrease in K+ in conductivities re-establishes weak connectivity between the two neurons and converts their firing pattern to a bistable mode. It is thus demonstrated that neuronal plasticity and adaptability have a stabilizing effect on the dynamics of signal processing in the ganglion. Functional modulations of neuronal ion channel permeability, achieved in vivo and in vitro pharmacologically, can improve connectivity between neurons. These findings are consistent with experimental electrophysiological recordings from myenteric ganglia in intestinal dysrhythmia and suggest possible pathophysiological mechanisms.

Keywords: neuronal chain, signal transduction, plasticity, stability

Procedia PDF Downloads 390
980 DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan

Authors: Zain Ul Abdin, Mirza Aizaz Asim, Rao Sohail Ahmad Khan, Luqman Amrao, Fiaz Hussain, Hasooba Hira, Saqi Kosar Abbas

Abstract:

The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases.

Keywords: zoonotic diseases, cytochrome oxidase, and insect vectors, CO1

Procedia PDF Downloads 166
979 A Study on Compromised Periodontal Health Status among the Pregnant Woman of Jamshedpur, Jharkhand, India

Authors: Rana Praween Kumar

Abstract:

Preterm-low birth weight delivery is a major cause of infant morbidity and mortality in developing countries and has been linked to poor periodontal health during pregnancy. Gingivitis and chronic periodontitis are highly prevalent chronic inflammatory oral diseases. The detection and diagnosis of these common diseases is a fundamentally important component of oral health care. This study is intended to investigate predisposing and enabling factors as determinants of oral health indicators in pregnancy as well as the association between periodontal problems during pregnancy with age and socio economic status of the individual. A community –based prospective cohort study will be conducted in Jamshedpur, Jharkhand, India among pregnant women using completed interviews and a full mouth oral clinical examination using the CPITN (Community Periodontal Index of Treatment Need) and OHI-S (Simplified Oral Hygiene) indices with adequate sample size and informed consent to the patient following proper inclusion and exclusion criteria. Multiple logistic regression analyses will be used to identify independent determinants of periodontal problems and use of dental services during pregnancy. Analysis of covariance (ANCOVA) will be used to investigate the relationship between periodontal problems with the age and socioeconomic status. The result will help in proper monitoring of periodontal health during pregnancy encouraging the delivery of healthy child and the maintenance of proper health of the mother.

Keywords: infant, periodontal problems, pregnancy, pre-term-low birth weight delivery

Procedia PDF Downloads 161
978 The Effect of Different Strength Training Methods on Muscle Strength, Body Composition and Factors Affecting Endurance Performance

Authors: Shaher A. I. Shalfawi, Fredrik Hviding, Bjornar Kjellstadli

Abstract:

The main purpose of this study was to measure the effect of two different strength training methods on muscle strength, muscle mass, fat mass and endurance factors. Fourteen physical education students accepted to participate in this study. The participants were then randomly divided into three groups, traditional training group (TTG), cluster training group (CTG) and control group (CG). TTG consisted of 4 participants aged ( ± SD) (22.3 ± 1.5 years), body mass (79.2 ± 15.4 kg) and height (178.3 ± 11.9 cm). CTG consisted of 5 participants aged (22.2 ± 3.5 years), body mass (81.0 ± 24.0 kg) and height (180.2 ± 12.3 cm). CG consisted of 5 participants aged (22 ± 2.8 years), body mass (77 ± 19 kg) and height (174 ± 6.7 cm). The participants underwent a hypertrophy strength training program twice a week consisting of 4 sets of 10 reps at 70% of one-repetition maximum (1RM), using barbell squat and barbell bench press for 8 weeks. The CTG performed 2 x 5 reps using 10 s recovery in between repetitions and 50 s recovery between sets, while TTG performed 4 sets of 10 reps with 90 s recovery in between sets. Pre- and post-tests were administrated to assess body composition (weight, muscle mass, and fat mass), 1RM (bench press and barbell squat) and a laboratory endurance test (Bruce Protocol). Instruments used to collect the data were Tanita BC-601 scale (Tanita, Illinois, USA), Woodway treadmill (Woodway, Wisconsin, USA) and Vyntus CPX breath-to-breath system (Jaeger, Hoechberg, Germany). Analysis was conducted at all measured variables including time to peak VO2, peak VO2, heart rate (HR) at peak VO2, respiratory exchange ratio (RER) at peak VO2, and number of breaths per minute. The results indicate an increase in 1RM performance after 8 weeks of training. The change in 1RM squat was for the TTG = 30 ± 3.8 kg, CTG = 28.6 ± 8.3 kg and CG = 10.3 ± 13.8 kg. Similarly, the change in 1RM bench press was for the TTG = 9.8 ± 2.8 kg, CTG = 7.4 ± 3.4 kg and CG = 4.4 ± 3.4 kg. The within-group analysis from the oxygen consumption measured during the incremental exercise indicated that the TTG had only a statistical significant increase in their RER from 1.16 ± 0.04 to 1.23 ± 0.05 (P < 0.05). The CTG had a statistical significant improvement in their HR at peak VO2 from 186 ± 24 to 191 ± 12 Beats Per Minute (P < 0.05) and their RER at peak VO2 from 1.11 ± 0.06 to 1.18 ±0.05 (P < 0.05). Finally, the CG had only a statistical significant increase in their RER at peak VO2 from 1.11 ± 0.07 to 1.21 ± 0.05 (P < 0.05). The between-group analysis showed no statistical differences between all groups in all the measured variables from the oxygen consumption test during the incremental exercise including changes in muscle mass, fat mass, and weight (kg). The results indicate a similar effect of hypertrophy strength training irrespective of the methods of the training used on untrained subjects. Because there were no notable changes in body-composition measures, the results suggest that the improvements in performance observed in all groups is most probably due to neuro-muscular adaptation to training.

Keywords: hypertrophy strength training, cluster set, Bruce protocol, peak VO2

Procedia PDF Downloads 247
977 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 88
976 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks

Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE

Abstract:

Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.

Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network

Procedia PDF Downloads 118
975 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data

Authors: Zegrar Ahmed, Ghabi Mohamed

Abstract:

The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.

Keywords: remote sensing, SIG, ecosystem, degradation, desertification

Procedia PDF Downloads 337
974 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network

Procedia PDF Downloads 206
973 Screening of Thyroid Stimulating Hormone Using Paper-Based Lateral Flow Device

Authors: Pattarachaya Preechakasedkit, Kota Osada, Koji Suzuki, Daniel Citterio, Orawon Chailapakul

Abstract:

A paper-based lateral flow device for screening thyroid stimulating hormone (TSH) is reported. A sandwich immunoassay was performed using two mouse monoclonal TSH antibodies (anti-hTSH 5403 and 5404) as immobilized and labeled antibodies for capturing TSH samples. Test (anti-hTSH 5403) and control (goat anti-Mouse IgG) lines were fabricated on nitrocellulose membrane (NCM) using ballpoint pen printed with a speed of 3 cm/s and thickness setting of 1. The novel gold nanoparticles europium complex (AuNPs@Eu) was used as fluorescence label compared to conventional AuNPs label. The results obtained with this device can be visually assessed by the naked eyes and under UV hand lamps, and quantitative analysis can be performed using the ImageJ program. The limit of detection (LOD) under UV hand lamps (0.1 µIU/mL) provided 50-fold greater sensitivity than AuNPs (5 µIU/mL), which is suitable for both hypothyroidism and hyperthyroidism screening within 30 min. A linear relationship between the red intensity and the logarithmic concentrations of TSH was observed with a good correlation (R²=0.992). Furthermore, the device can be effectively applied for screening TSH in the spiked human serum with recovery range of 96.80-104.45% and RSD of 2.18-3.63%. Therefore, the developed device is an alternative method for TSH screening which provides a lot of advantages including low cost, short time analysis, ease of use, disposability, portability, and on-site measurement.

Keywords: thyroid stimulating hormone, paper-based lateral flow, hypothyroidism, hyperthyroidism

Procedia PDF Downloads 361
972 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment

Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan

Abstract:

In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.

Keywords: border security, sensors, abnormal activity detection, ontologies

Procedia PDF Downloads 480
971 Recognition by the Voice and Speech Features of the Emotional State of Children by Adults and Automatically

Authors: Elena E. Lyakso, Olga V. Frolova, Yuri N. Matveev, Aleksey S. Grigorev, Alexander S. Nikolaev, Viktor A. Gorodnyi

Abstract:

The study of the children’s emotional sphere depending on age and psychoneurological state is of great importance for the design of educational programs for children and their social adaptation. Atypical development may be accompanied by violations or specificities of the emotional sphere. To study characteristics of the emotional state reflection in the voice and speech features of children, the perceptual study with the participation of adults and the automatic recognition of speech were conducted. Speech of children with typical development (TD), with Down syndrome (DS), and with autism spectrum disorders (ASD) aged 6-12 years was recorded. To obtain emotional speech in children, model situations were created, including a dialogue between the child and the experimenter containing questions that can cause various emotional states in the child and playing with a standard set of toys. The questions and toys were selected, taking into account the child’s age, developmental characteristics, and speech skills. For the perceptual experiment by adults, test sequences containing speech material of 30 children: TD, DS, and ASD were created. The listeners were 100 adults (age 19.3 ± 2.3 years). The listeners were tasked with determining the children’s emotional state as “comfort – neutral – discomfort” while listening to the test material. Spectrographic analysis of speech signals was conducted. For automatic recognition of the emotional state, 6594 speech files containing speech material of children were prepared. Automatic recognition of three states, “comfort – neutral – discomfort,” was performed using automatically extracted from the set of acoustic features - the Geneva Minimalistic Acoustic Parameter Set (GeMAPS) and the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS). The results showed that the emotional state is worse determined by the speech of TD children (comfort – 58% of correct answers, discomfort – 56%). Listeners better recognized discomfort in children with ASD and DS (78% of answers) than comfort (70% and 67%, respectively, for children with DS and ASD). The neutral state is better recognized by the speech of children with ASD (67%) than by the speech of children with DS (52%) and TD children (54%). According to the automatic recognition data using the acoustic feature set GeMAPSv01b, the accuracy of automatic recognition of emotional states for children with ASD is 0.687; children with DS – 0.725; TD children – 0.641. When using the acoustic feature set eGeMAPSv01b, the accuracy of automatic recognition of emotional states for children with ASD is 0.671; children with DS – 0.717; TD children – 0.631. The use of different models showed similar results, with better recognition of emotional states by the speech of children with DS than by the speech of children with ASD. The state of comfort is automatically determined better by the speech of TD children (precision – 0.546) and children with ASD (0.523), discomfort – children with DS (0.504). The data on the specificities of recognition by adults of the children’s emotional state by their speech may be used in recruitment for working with children with atypical development. Automatic recognition data can be used to create alternative communication systems and automatic human-computer interfaces for social-emotional learning. Acknowledgment: This work was financially supported by the Russian Science Foundation (project 18-18-00063).

Keywords: autism spectrum disorders, automatic recognition of speech, child’s emotional speech, Down syndrome, perceptual experiment

Procedia PDF Downloads 186
970 The Ephemeral Re-Use of Cultural Heritage: The Incorporation of the Festival Phenomenon Within Monuments and Archaeological Sites in Lebanon

Authors: Joe Kallas

Abstract:

It is now widely accepted that the preservation of cultural heritage must go beyond simple restoration and renovation actions. While some historic monuments have been preserved for millennia, many of them, less important or simply neglected because of lack of money, have disappeared. As a result, the adaptation of monuments and archaeological sites to new functions allow them to 'survive'. Temporary activities or 'ephemeral' re-use, are increasingly recognized as a means of vitalization of deprived areas and enhancement of historic sites that became obsolete. They have the potential to increase economic and cultural value while making the best use of existing resources. However, there are often conservation and preservation issues related to the implementation of this type of re-use, which can also threaten the integrity and authenticity of archaeological sites and monuments if they have not been properly managed. This paper aims to get a better knowledge of the ephemeral re-use of heritage, and more specifically the subject of the incorporation of the festival phenomenon within the monuments and archaeological sites in Lebanon, a topic that is not yet studied enough. This paper tried to determine the elements that compose it, in order to analyze this phenomenon and to trace its good practices, by comparing international study cases to important national cases: the International Festival of Baalbek, the International Festival of Byblos and the International Festival of Beiteddine. Various factors have been studied and analyzed in order to best respond to the main problematic of this paper: 'How can we preserve the integrity of sites and monuments after the integration of an ephemeral function? And what are the preventive conservation measures to be taken when holding festivals in archaeological sites with fragile structures?' The impacts of the technical problems were first analyzed using various data and more particularly the effects of mass tourism, the integration of temporary installations, sound vibrations, the effects of unstudied lighting, until the mystification of heritage. Unfortunately, the DGA (General Direction of Antiquities in Lebanon) does not specify any frequency limit for the sound vibrations emitted by the speakers during musical festivals. In addition, there is no requirement from its part regarding the installations of the lighting systems in the historic monuments and no monitoring is done in situ, due to the lack of awareness of the impact that could be generated by such interventions, and due to the lack of materials and tools needed for the monitoring process. The study and analysis of the various data mentioned above led us to the elaboration of the main objective of this paper, which is the establishment of a list of recommendations. This list enables to define various preventive conservation measures to be taken during the holding of the festivals within the cultural heritage sites in Lebanon. We strongly hope that this paper will be an awareness document to start taking into consideration several factors previously neglected, in order to improve the conservation practices in the archaeological sites and monuments during the incorporation of the festival phenomenon.

Keywords: archaeology, authenticity, conservation, cultural heritage, festival, historic sites, integrity, monuments, tourism

Procedia PDF Downloads 117
969 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 87
968 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads

Authors: Riaan Kleyn

Abstract:

Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.

Keywords: computer vision, wine grapes, machine learning, machine harvested grapes

Procedia PDF Downloads 93
967 Exploring the Intricate Microbiology of Street Cuisine: Delving into Potential Dangers in Order to Enhance Safety and Quality

Authors: Raana Babadi Fathipour

Abstract:

Street foods hold a significant place in the tapestry of socioeconomic and cultural norms, beloved across the globe. Serving as a convenient and affordable option for city dwellers seeking nourishment, these culinary delights also serve as a vital source of income for vendors, particularly women. Additionally, street food acts as a mirror reflecting traditional local customs and practices, an element that draws tourists to experience the authenticity of a culture firsthand. Despite its many virtues, concerns have emerged regarding the microbiological safety of street food worldwide. Often prepared and sold in subpar conditions without proper oversight or regulation, street food has become synonymous with potential health risks. The presence of elevated levels of fecal indicator bacteria and various pathogens in these unregulated delicacies further perpetuates anxieties surrounding their consumption. This analysis delves into the intricate microbiological intricacies inherent in street food, shedding light on the pertinent safety concerns and prevalent pathogens. Additionally, it elaborates on the worldwide standing of this vital economic endeavor. Moreover, it advocates for the adoption of molecular detection techniques over conventional culture-based methods to gain a more comprehensive grasp of the true microbial risks posed by street cuisine. Acknowledgment marks the initial step towards resolving any given issue.

Keywords: foodborne pathogens, microbiological safety, street food, viruses

Procedia PDF Downloads 48
966 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems

Authors: Messaoud Eljamai, Sami Hidouri

Abstract:

Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.

Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency

Procedia PDF Downloads 146
965 Gas Chromatography Coupled to Tandem Mass Spectrometry and Liquid Chromatography Coupled to Tandem Mass Spectrometry Qualitative Determination of Pesticides Found in Tea Infusions

Authors: Mihai-Alexandru Florea, Veronica Drumea, Roxana Nita, Cerasela Gird, Laura Olariu

Abstract:

The aim of this study was to investigate the residues of pesticide found in tea water infusions. A multi-residues method to determine 147 pesticides has been developed using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) procedure and dispersive solid phase extraction (d-SPE) for the cleanup the pesticides from complex matrices such as plants and tea. Sample preparation was carefully optimized for the efficient removal of coextracted matrix components by testing more solvent systems. Determination of pesticides was performed using GC-MS/MS (100 of pesticides) and LC-MS/MS (47 of pesticides). The selected reaction monitoring (SRM) mode was chosen to achieve low detection limits and high compounds selectivity and sensitivity. Overall performance was evaluated and validated according to DG-SANTE Guidelines. To assess the pesticide residue transfer rate (qualitative) from dried tea in infusions the samples (tea) were spiked with a mixture of pesticides at the maximum residues level accepted for teas and herbal infusions. In order to investigate the release of the pesticides in tea preparations, the medicinal plants were prepared in four ways by variation of water temperature and the infusion time. The pesticides from infusions were extracted using two methods: QuEChERS versus solid-phase extraction (SPE). More that 90 % of the pesticides studied was identified in infusion.

Keywords: tea, solid-phase extraction (SPE), selected reaction monitoring (SRM), QuEChERS

Procedia PDF Downloads 212
964 Analysis of Stress and Strain in Head Based Control of Cooperative Robots through Tetraplegics

Authors: Jochen Nelles, Susanne Kohns, Julia Spies, Friederike Schmitz-Buhl, Roland Thietje, Christopher Brandl, Alexander Mertens, Christopher M. Schlick

Abstract:

Industrial robots as part of highly automated manufacturing are recently developed to cooperative (light-weight) robots. This offers the opportunity of using them as assistance robots and to improve the participation in professional life of disabled or handicapped people such as tetraplegics. Robots under development are located within a cooperation area together with the working person at the same workplace. This cooperation area is an area where the robot and the working person can perform tasks at the same time. Thus, working people and robots are operating in the immediate proximity. Considering the physical restrictions and the limited mobility of tetraplegics, a hands-free robot control could be an appropriate approach for a cooperative assistance robot. To meet these requirements, the research project MeRoSy (human-robot synergy) develops methods for cooperative assistance robots based on the measurement of head movements of the working person. One research objective is to improve the participation in professional life of people with disabilities and, in particular, mobility impaired persons (e.g. wheelchair users or tetraplegics), whose participation in a self-determined working life is denied. This raises the research question, how a human-robot cooperation workplace can be designed for hands-free robot control. Here, the example of a library scenario is demonstrated. In this paper, an empirical study that focuses on the impact of head movement related stress is presented. 12 test subjects with tetraplegia participated in the study. Tetraplegia also known as quadriplegia is the worst type of spinal cord injury. In the experiment, three various basic head movements were examined. Data of the head posture were collected by a motion capture system; muscle activity was measured via surface electromyography and the subjective mental stress was assessed via a mental effort questionnaire. The muscle activity was measured for the sternocleidomastoid (SCM), the upper trapezius (UT) or trapezius pars descendens, and the splenius capitis (SPL) muscle. For this purpose, six non-invasive surface electromyography sensors were mounted on the head and neck area. An analysis of variance shows differentiated muscular strains depending on the type of head movement. Systematically investigating the influence of different basic head movements on the resulting strain is an important issue to relate the research results to other scenarios. At the end of this paper, a conclusion will be drawn and an outlook of future work will be presented.

Keywords: assistance robot, human-robot interaction, motion capture, stress-strain-concept, surface electromyography, tetraplegia

Procedia PDF Downloads 314
963 The Physiological Effects of Thyriod Disorders During the Gestatory Period on Fetal Neurological Development: A Descriptive Review

Authors: Vanessa Bennemann, Gabriela Laste, Márcia Inês Goettert

Abstract:

The gestational period is a phase in which the pregnant woman undergoes constant physiological and hormonal changes, which are part of the woman’s biological cycle, the development of the fetus, childbirth, and lactation. These are factors of response to the immunological adaptation of the human reproductive process that is directly related to the pregnancy’s well-being and development. Although most pregnancies occur without complications, about 15% of pregnant women will develop potentially fatal complications, implying maternal and fetal risk. Therefore, requiring specialized care for high-risk pregnant women (HRPW) with obstetric interventions for the survival of the mother and/or fetus. Among the risk factors that characterize HRPW are the women's age, gestational diabetes mellitus (GDM), autoimmune diseases, infectious diseases such as syphilis and HIV, hypertension (SAH), preeclampsia, eclampsia, HELLP syndrome, uterine contraction abnormalities, and premature placental detachment (PPD), thyroid disorders, among others. Thus, pregnancy has an impact on the thyroid gland causing changes in the functioning of the mother's thyroid gland, altering the thyroid hormone (TH) profiles and production as pregnancy progresses. Considering, throughout the gestational period, the interpretation of the results of the tests to evaluate the thyroid functioning depends on the stage in which the pregnancy is. Thyroid disorders are directly related to adverse obstetric outcomes and in child development. Therefore, the adequate release of TH is important for a pregnancy without complications and optimal fetal growth and development. Objective: Investigate the physiological effects caused by thyroid disorders in the gestational period. Methods: A search for articles indexed in PubMed, Scielo, and MDPI databases, was performed using the term “AND”, with the descriptors: Pregnancy, Thyroid. With several combinations that included: Melatonin, Thyroidopathy, Inflammatory processes, Cytokines, Anti-inflammatory, Antioxidant, High-risk pregnancy. Subsequently, the screening was performed through the analysis of titles and/or abstracts. The criteria were: including clinical studies in general, randomized or not, in the period of 10 years prior to the research, in the English literature; excluded: experimental studies, case reports, research in the development phase. Results: In the preliminary results, a total of studies (n=183) were found, (n=57) excluded, such as studies of cancer, diabetes, obesity, and skin diseases. Conclusion: To date, it has been identified that thyroid diseases can impair the fetus’s brain development. Further research is suggested on this matter to identify new substances that may have a potential therapeutic effect to aid the gestational period with thyroid diseases.

Keywords: pregnancy, thyroid, melatonin, high-risk pregnancy

Procedia PDF Downloads 141
962 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers

Authors: Rajkumar Kolangarakandy

Abstract:

Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.

Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL

Procedia PDF Downloads 333
961 The Impact of Tourism on the Intangible Cultural Heritage of Pilgrim Routes: The Case of El Camino de Santiago

Authors: Miguel Angel Calvo Salve

Abstract:

This qualitative and quantitative study will identify the impact of tourism pressure on the intangible cultural heritage of the pilgrim route of El Camino de Santiago (Saint James Way) and propose an approach to a sustainable touristic model for these Cultural Routes. Since 1993, the Spanish Section of the Pilgrim Route of El Camino de Santiago has been on the World Heritage List. In 1994, the International Committee on Cultural Routes (CIIC-ICOMOS) initiated its work with the goal of studying, preserving, and promoting the cultural routes and their significance as a whole. Another ICOMOS group, the Charter on Cultural Routes, pointed out in 2008 the importance of both tangible and intangible heritage and the need for a holistic vision in preserving these important cultural assets. Tangible elements provide a physical confirmation of the existence of these cultural routes, while the intangible elements serve to give sense and meaning to it as a whole. Intangible assets of a Cultural Route are key to understanding the route's significance and its associated heritage values. Like many pilgrim routes, the Route to Santiago, as the result of a long evolutionary process, exhibits and is supported by intangible assets, including hospitality, cultural and religious expressions, music, literature, and artisanal trade, among others. A large increase in pilgrims walking the route, with very different aims and tourism pressure, has shown how the dynamic links between the intangible cultural heritage and the local inhabitants along El Camino are fragile and vulnerable. Economic benefits for the communities and population along the cultural routes are commonly fundamental for the micro-economies of the people living there, substituting traditional productive activities, which, in fact, modifies and has an impact on the surrounding environment and the route itself. Consumption of heritage is one of the major issues of sustainable preservation promoted with the intention of revitalizing those sites and places. The adaptation of local communities to new conditions aimed at preserving and protecting existing heritage has had a significant impact on immaterial inheritance. Based on questionnaires to pilgrims, tourists and local communities along El Camino during the peak season of the year, and using official statistics from the Galician Pilgrim’s Office, this study will identify the risk and threats to El Camino de Santiago as a Cultural Route. The threats visible nowadays due to the impact of mass tourism include transformations of tangible heritage, consumerism of the intangible, changes of local activities, loss in the authenticity of symbols and spiritual significance, and pilgrimage transformed into a tourism ‘product’, among others. The study will also approach some measures and solutions to mitigate those impacts and better preserve this type of cultural heritage. Therefore, this study will help the Route services providers and policymakers to better preserve the Cultural Route as a whole to ultimately improve the satisfying experience of pilgrims.

Keywords: cultural routes, El Camino de Santiago, impact of tourism, intangible heritage

Procedia PDF Downloads 81
960 Multi Attribute Failure Mode Analysis of the Catering Systems: A Case Study of Sefako Makgatho Health Sciences University in South Africa

Authors: Mokoena Oratilwe Penwell, Seeletse Solly Matshonisa

Abstract:

The demand for quality products is a vital factor determining the success of a producing company, and the reality of this demand influences customer satisfaction. In Sefako Makgatho Health Sciences University (SMU), concerns over the quality of food being sold have been raised by mostly students and staff who are primary consumers of food being sold by the cafeteria. Suspicions of food poisoning and the occurrence of diarrhea-related to food from the cafeteria, amongst others, have been raised. However, minimal measures have been taken to resolve the issue of food quality. New service providers have been appointed, and still, the same trends are being observed, the quality of food seems to depreciate continuously. This paper uses multi-attribute failure mode analysis (MAFMA) for failure detection and minimization on the machines used for food production by SMU catering company before being sold to both staff, and students so as to improve production plant reliability, and performance. Analytical Hierarchy Process (AHP) will be used for the severity ranking of the weight criterions and development of the hierarchical structure for the cafeteria company. Amongst other potential issues detected, maintenance of the machines and equipment used for food preparations was of concern. Also, the staff lacked sufficient hospitality skills, supervision, and management in the cafeteria needed greater attention to mitigate some of the failures occurring in the food production plant.

Keywords: MAFMA, food quality, maintenance, supervision

Procedia PDF Downloads 131
959 Environmental and Formal Conditions for the Development of Blue-green Infrastructure (BGI) in the Cities of Central Europe on the Example of Poland

Authors: Magdalena Biela, Marta Weber-Siwirska, Edyta Sierka

Abstract:

The current noticed trend in Central European countries, as in other regions of the world, is for people to migrate to cities. As a result, the urban population is to have reached 70% of the total by 2050. Due to this tendency, as well as taking high real estate prices and limited reserves of city green areas into consideration, the greenery and agricultural soil adjacent to cities is are to be devoted to housing projects, while city centres are expected to undergo partial depopulation. Urban heat islands and phenomena such as torrential rains may cause serious damage. They may even endanger the very life and health of the inhabitants. Due to these tangible effects of climate change, residents expect that local government takes action to develop green infrastructure (GI). The main purpose of our research has been to assess the degree of readiness on the part of the local government in Poland to develop BGI. A questionnaire using the CAWI method was prepared, and a survey was carried out. The target group were town hall employees in all 380 powiat cities and towns (380 county centres) in Poland. The form contained 14 questions covering, among others, actions taken to support the development of GI and ways of motivating residents to take such actions. 224 respondents replied to the questions. The results of the research show that 52% of the cities/towns have taken or intend to take measures to favour the development of green spaces. Currently, the installation of green roofs and living walls is are only carried out by 6 Polish cities, and a few more are at the stage of preparing appropriate regulations. The problem of rainwater retention is much more widespread. Among the municipalities declaring any activities for the benefit of GI, approximately 42% have decided to work on this problem. Over 19% of the respondents are planning an increase in the surface occupied by green areas, 14% - the installation of green roofs, and 12% - redevelopment of city greenery. It is optimistic that 67% of the respondents are willing to acquire knowledge about BGI by means of taking part in educational activities both at the national and international levels. There are many ways to help GI development. The most common type of support in the cities and towns surveyed is co-financing (35%), followed by full financing of projects (11%). About 15% of the cities declare only advisory support. Thus, the problem of GI in Central European cities is at the stage of initial development and requires advanced measures and implementation of both proven solutions applied in other European and world countries using the concept of Nature-based Solutions.

Keywords: city/town, blue-green infrastructure, green roofs, climate change adaptation

Procedia PDF Downloads 209
958 Microbial Contaminants in Drinking Water Collected from Different Regions of Kuwait

Authors: Abu Salim Mustafa

Abstract:

Water plays a major role in maintaining life on earth, but it can also serve as a matrix for pathogenic organisms, posing substantial health threats to humans. Although, outbreaks of diseases attributable to drinking water may not be common in industrialized countries, they still occur and can lead to serious acute, chronic, or sometimes fatal health consequences. The analysis of drinking water samples from different regions of Kuwait was performed in this study for bacterial and viral contaminations. Drinking tap water samples were collected from 15 different locations of the six Kuwait governorates. All samples were analyzed by confocal microscopy for the presence of bacteria. The samples were cultured in vitro to detect cultivable organisms. DNA was isolated from the cultured organisms and the identity of the bacteria was determined by sequencing the bacterial 16S rRNA genes, followed by BLAST analysis in the database of NCBI, USA. RNA was extracted from water samples and analyzed by real-time PCR for the detection of viruses with potential health risks, i.e. Astrovirus, Enterovirus, Norovirus, Rotavirus, and Hepatitis A. Confocal microscopy showed the presence of bacteria in some water samples. The 16S rRNA gene sequencing of culture grown organisms, followed by BLAST analysis, identified the presence of several non-pathogenic bacterial species. However, one sample had Acinetobacter baumannii, which often causes opportunistic infections in immunocompromised people, but none of the studied viruses could be detected in the drinking water samples analyzed. The results indicate that drinking water samples analyzed from various locations in Kuwait are relatively safe for drinking and do not contain many harmful pathogens.

Keywords: drinking water, microbial contaminant, 16S rDNA, Kuwait

Procedia PDF Downloads 152
957 Role of Surfactant Protein D (SP-D) as a Biomarker of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection

Authors: Lucia Salvioni, Pietro Giorgio Lovaglio, Valerio Leoni, Miriam Colombo, Luisa Fiandra

Abstract:

The involvement of plasmatic surfactant protein-D (SP-D) in pulmonary diseases has been long investigated, and over the last two years, more interest has been directed to determine its role as a marker of COVID-19. In this direction, several studies aimed to correlate pulmonary surfactant proteins with the clinical manifestations of the virus indicated SP-D as a prognostic biomarker of COVID-19 pneumonia severity. The present work has performed a retrospective study on a relatively large cohort of patients of Hospital Pio XI of Desio (Lombardia, Italy) with the aim to assess differences in the hematic SP-D concentrations among COVID-19 patients and healthy donors and the role of SP-D as a prognostic marker of severity and/or of mortality risk. The obtained results showed a significant difference in the mean of log SP-D levels between COVID-19 patients and healthy donors, so as between dead and survived patients. SP-D values were significantly higher for both hospitalized COVID-19 and dead patients, with threshold values of 150 and 250 ng/mL, respectively. SP-D levels at admission and increasing differences among follow-up and admission values resulted in the strongest significant risk factors of mortality. Therefore, this study demonstrated the role of SP-D as a predictive marker of SARS-CoV-2 infection and its outcome. A significant correlation of SP-D with patient mortality indicated that it is also a prognostic factor in terms of mortality, and its early detection should be considered to design adequate preventive treatments for COVID-19 patients.

Keywords: SARS-CoV-2 infection, COVID-19, surfactant protein-D (SP-D), mortality, biomarker

Procedia PDF Downloads 74
956 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 266
955 Helicopter Exhaust Gases Cooler in Terms of Computational Fluid Dynamics (CFD) Analysis

Authors: Mateusz Paszko, Ksenia Siadkowska

Abstract:

Due to the low-altitude and relatively low-speed flight, helicopters are easy targets for actual combat assets e.g. infrared-guided missiles. Current techniques aim to increase the combat effectiveness of the military helicopters. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. One of them is cooling hot exhaust gasses, emitting from the engines to the atmosphere in special heat exchangers. Nowadays, this process is realized in ejective coolers, where strong heat and momentum exchange between hot exhaust gases and cold air ejected from atmosphere takes place. Flow effects of air, exhaust gases; mixture of those two and the heat transfer between cold air and hot exhaust gases are given by differential equations of: Mass transportation–flow continuity, ejection of cold air through expanding exhaust gasses, conservation of momentum, energy and physical relationship equations. Calculation of those processes in ejective cooler by means of classic mathematical analysis is extremely hard or even impossible. Because of this, it is necessary to apply the numeric approach with modern, numeric computer programs. The paper discussed the general usability of the Computational Fluid Dynamics (CFD) in a process of projecting the ejective exhaust gases cooler cooperating with helicopter turbine engine. In this work, the CFD calculations have been performed for ejective-based cooler cooperating with the PA W3 helicopter’s engines.

Keywords: aviation, CFD analysis, ejective-cooler, helicopter techniques

Procedia PDF Downloads 329
954 Mapping and Mitigation Strategy for Flash Flood Hazards: A Case Study of Bishoftu City

Authors: Berhanu Keno Terfa

Abstract:

Flash floods are among the most dangerous natural disasters that pose a significant threat to human existence. They occur frequently and can cause extensive damage to homes, infrastructure, and ecosystems while also claiming lives. Although flash floods can happen anywhere in the world, their impact is particularly severe in developing countries due to limited financial resources, inadequate drainage systems, substandard housing options, lack of early warning systems, and insufficient preparedness. To address these challenges, a comprehensive study has been undertaken to analyze and map flood inundation using Geographic Information System (GIS) techniques by considering various factors that contribute to flash flood resilience and developing effective mitigation strategies. Key factors considered in the analysis include slope, drainage density, elevation, Curve Number, rainfall patterns, land-use/cover classes, and soil data. These variables were computed using ArcGIS software platforms, and data from the Sentinel-2 satellite image (with a 10-meter resolution) were utilized for land-use/cover classification. Additionally, slope, elevation, and drainage density data were generated from the 12.5-meter resolution of the ALOS Palsar DEM, while other relevant data were obtained from the Ethiopian Meteorological Institute. By integrating and regularizing the collected data through GIS and employing the analytic hierarchy process (AHP) technique, the study successfully delineated flash flood hazard zones (FFHs) and generated a suitable land map for urban agriculture. The FFH model identified four levels of risk in Bishoftu City: very high (2106.4 ha), high (10464.4 ha), moderate (1444.44 ha), and low (0.52 ha), accounting for 15.02%, 74.7%, 10.1%, and 0.004% of the total area, respectively. The results underscore the vulnerability of many residential areas in Bishoftu City, particularly the central areas that have been previously developed. Accurate spatial representation of flood-prone areas and potential agricultural zones is crucial for designing effective flood mitigation and agricultural production plans. The findings of this study emphasize the importance of flood risk mapping in raising public awareness, demonstrating vulnerability, strengthening financial resilience, protecting the environment, and informing policy decisions. Given the susceptibility of Bishoftu City to flash floods, it is recommended that the municipality prioritize urban agriculture adaptation, proper settlement planning, and drainage network design.

Keywords: remote sensing, flush flood hazards, Bishoftu, GIS.

Procedia PDF Downloads 33