Search results for: problem-based learning approach
14891 Effects of Unfamiliar Orthography on the Lexical Encoding of Novel Phonological Features
Authors: Asmaa Shehata
Abstract:
Prior research indicates that second language (L2) learners encounter difficulty in the distinguishing novel L2 contrasting sounds that are not contrastive in their native languages. L2 orthographic information, however, is found to play a positive role in the acquisition of non-native phoneme contrasts. While most studies have mainly involved a familiar written script (i.e., the Roman script), the influence of a foreign, unfamiliar script is still unknown. Therefore, the present study asks: Does unfamiliar L2 script play a role in creating distinct phonological representations of novel contrasting phonemes? It is predicted that subjects’ performance in the unfamiliar orthography group will outperform their counterparts’ performance in the control group. Thus, training that entails orthographic inputs can yield a significant improvement in L2 adult learners’ identification and lexical encoding of novel L2 consonant contrasts. Results are discussed in terms of their implications for the type of input introduced to L2 learners to improve their language learning.Keywords: Arabic, consonant contrasts, foreign script, lexical encoding, orthography, word learning
Procedia PDF Downloads 26114890 Mecano-Reliability Approach Applied to a Water Storage Tank Placed on Ground
Authors: Amar Aliche, Hocine Hammoum, Karima Bouzelha, Arezki Ben Abderrahmane
Abstract:
Traditionally, the dimensioning of storage tanks is conducted with a deterministic approach based on partial coefficients of safety. These coefficients are applied to take into account the uncertainties related to hazards on properties of materials used and applied loads. However, the use of these safety factors in the design process does not assure an optimal and reliable solution and can sometimes lead to a lack of robustness of the structure. The reliability theory based on a probabilistic formulation of constructions safety can respond in an adapted manner. It allows constructing a modelling in which uncertain data are represented by random variables, and therefore allows a better appreciation of safety margins with confidence indicators. The work presented in this paper consists of a mecano-reliability analysis of a concrete storage tank placed on ground. The classical method of Monte Carlo simulation is used to evaluate the failure probability of concrete tank by considering the seismic acceleration as random variable.Keywords: reliability approach, storage tanks, monte carlo simulation, seismic acceleration
Procedia PDF Downloads 31214889 Applying the View of Cognitive Linguistics on Teaching and Learning English at UFLS - UDN
Authors: Tran Thi Thuy Oanh, Nguyen Ngoc Bao Tran
Abstract:
In the view of Cognitive Linguistics (CL), knowledge and experience of things and events are used by human beings in expressing concepts, especially in their daily life. The human conceptual system is considered to be fundamentally metaphorical in nature. It is also said that the way we think, what we experience, and what we do everyday is very much a matter of language. In fact, language is an integral factor of cognition in that CL is a family of broadly compatible theoretical approaches sharing the fundamental assumption. The relationship between language and thought, of course, has been addressed by many scholars. CL, however, strongly emphasizes specific features of this relation. By experiencing, we receive knowledge of lives. The partial things are ideal domains, we make use of all aspects of this domain in metaphorically understanding abstract targets. The paper refered to applying this theory on pragmatics lessons for major English students at University of Foreign Language Studies - The University of Da Nang, Viet Nam. We conducted the study with two third – year students groups studying English pragmatics lessons. To clarify this study, the data from these two classes were collected for analyzing linguistic perspectives in the view of CL and traditional concepts. Descriptive, analytic, synthetic, comparative, and contrastive methods were employed to analyze data from 50 students undergoing English pragmatics lessons. The two groups were taught how to transfer the meanings of expressions in daily life with the view of CL and one group used the traditional view for that. The research indicated that both ways had a significant influence on students' English translating and interpreting abilities. However, the traditional way had little effect on students' understanding, but the CL view had a considerable impact. The study compared CL and traditional teaching approaches to identify benefits and challenges associated with incorporating CL into the curriculum. It seeks to extend CL concepts by analyzing metaphorical expressions in daily conversations, offering insights into how CL can enhance language learning. The findings shed light on the effectiveness of applying CL in teaching and learning English pragmatics. They highlight the advantages of using metaphorical expressions from daily life to facilitate understanding and explore how CL can enhance cognitive processes in language learning in general and teaching English pragmatics to third-year students at the UFLS - UDN, Vietnam in personal. The study contributes to the theoretical understanding of the relationship between language, cognition, and learning. By emphasizing the metaphorical nature of human conceptual systems, it offers insights into how CL can enrich language teaching practices and enhance students' comprehension of abstract concepts.Keywords: cognitive linguisitcs, lakoff and johnson, pragmatics, UFLS
Procedia PDF Downloads 4014888 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 4914887 Immersed in Design: Using an Immersive Teaching Space to Visualize Design Solutions
Authors: Lisa Chandler, Alistair Ward
Abstract:
A significant component of design pedagogy is the need to foster design thinking in various contexts and to support students in understanding links between educational exercises and their potential application in professional design practice. It is also important that educators provide opportunities for students to engage with new technologies and encourage them to imagine applying their design skills for a range of outcomes. Problem solving is central to design so it is also essential that students understand that there can be multiple solutions to a design brief, and are supported in undertaking creative experimentation to generate imaginative outcomes. This paper presents a case study examining some innovative approaches to addressing these elements of design pedagogy. It investigates the effectiveness of the Immerse Lab, a three wall projection room at the University of the Sunshine Coast, Australia, as a learning context for design practice, for generating ideas and for supporting learning involving the comparative display of design outcomes. The project required first year design students to create a simple graphic design derived from an ordinary object and to incorporate specific design criteria. Utilizing custom-designed software, the students’ solutions were projected together onto the Immerse walls to create a large-scale, immersive grid of images, which was used to compare and contrast various responses to the same problem. The software also enabled individual student designs to be transformed, multiplied and enlarged in multiple ways and prompted discussions around the applicability of the designs in real world contexts. Teams of students interacted with their projected designs, brainstorming imaginative applications for their outcomes. Analysis of 77 anonymous student surveys revealed that the majority of students found: learning in the Immerse Lab to be beneficial; comparative review more effective than in standard tutorial rooms; that the activity generated new ideas; it encouraged students to think differently about their designs; it inspired students to develop their existing designs or create new ones. The project demonstrates that curricula involving immersive spaces can be effective in supporting engaging and relevant design pedagogy and might be utilized in other disciplinary areas.Keywords: design pedagogy, immersive education, technology-enhanced learning, visualization
Procedia PDF Downloads 26114886 Balancing Security and Human Rights: A Comprehensive Approach to Security and Defense Policy
Authors: Babatunde Osabiya
Abstract:
Cybersecurity has emerged as a pressing policy problem in recent years, affecting individuals, businesses, and governments worldwide. This research paper aims to critically review the literature on cybersecurity policy and apply policy theory to propose a policy approach that balances the freedom to access and use technology with the human rights risks and threats posed by cyber. Drawing on various credible sources, the paper examines the scale and seriousness of cyber threats, highlighting the growing threat posed by cybercriminals, hackers, and nation-states. The paper also identifies the key challenges facing policymakers, including the need for more significant investment in cybersecurity research and development and the importance of balancing the benefits of technological innovation with the risks to privacy, security, and human rights. To address these challenges, the paper proposes a policy approach emphasizing investing in cybersecurity research and development to maintain a technological edge over potential adversaries. This approach also highlights the need for greater collaboration between government, industry, and civil society to develop effective cybersecurity policies and practices that protect the rights and freedoms of people while mitigating the risks posed by cyber threats. This paper will contribute to the growing body of literature on cybersecurity policy and offers a policy framework for addressing this critical policy challenge.Keywords: security risk, legal framework, cyber security and policy, national security
Procedia PDF Downloads 9414885 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 16614884 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data
Authors: Salihah Alghamdi, Surajit Ray
Abstract:
Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray
Procedia PDF Downloads 14414883 Problems of Boolean Reasoning Based Biclustering Parallelization
Authors: Marcin Michalak
Abstract:
Biclustering is the way of two-dimensional data analysis. For several years it became possible to express such issue in terms of Boolean reasoning, for processing continuous, discrete and binary data. The mathematical backgrounds of such approach — proved ability of induction of exact and inclusion–maximal biclusters fulfilling assumed criteria — are strong advantages of the method. Unfortunately, the core of the method has quite high computational complexity. In the paper the basics of Boolean reasoning approach for biclustering are presented. In such context the problems of computation parallelization are risen.Keywords: Boolean reasoning, biclustering, parallelization, prime implicant
Procedia PDF Downloads 12614882 Attention-Based ResNet for Breast Cancer Classification
Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga
Abstract:
Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.Keywords: residual neural network, attention mechanism, positive weight, data augmentation
Procedia PDF Downloads 11114881 Impact of Instructional Mode and Medium of Instruction on the Learning Outcomes of Secondary Level School Children
Authors: Dipti Parida, Atasi Mohanty
Abstract:
The focus of this research is to examine the interaction effect of flipped teaching and traditional teaching mode across two different medium (English and Odia) of instructional groups. Both Science and History subjects were taken to be taught in the Class- VIII in two different instructional mode/s. In total, 180 students of Class-VIII of both Odia and English medium schools were taken as the samples of this study; 90 participants (each group) were from both English and Odia medium schools ; 45 participants of each of these two groups were again assigned either to flip or traditional teaching method. We have two independent variables and each independent variable with two levels. Medium and mode of instruction are the two independent variables. Medium of instruction has two levels of Odia medium and English medium groups. The mode of instruction has also two levels of flip and traditional teaching method. Here we get 4 different groups, such as Odia medium students with traditional mode of teaching (O.M.T), Odia medium students with flipped mode of teaching (O.M.F), English medium students with traditional mode of teaching (E.M.T) and English medium students with flipped mode of teaching (E.M.F). Before the instructional administration, these four groups were given a test on the concerned topic to be taught. Based on this result, a one-way ANOVA was computed and the obtained result showed that these four groups don’t differ significantly from each other at the beginning. Then they were taught the concerned topic either in traditional or flip mode of teaching method. After that a 2×2×2 repeated measures ANOVA was done to analyze the group differences as well as the learning outcome before and after the teaching. The result table also shows that in post-test the learning outcome is highest in case of English medium students with flip mode of instruction. From the statistical analysis it is clear that the flipped mode of teaching is as effective for Odia medium students as it is for English medium students.Keywords: medium of instruction, mode of instruction, test mode, vernacular medium
Procedia PDF Downloads 35614880 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 42914879 Emerging Issues in Early Childhood Care and Development in Nigeria
Authors: Evelyn Fabian
Abstract:
The focus of this discussion centres on the emerging issues in Early Childhood Care and development in Nigeria. Early childhood care is the bedrock of Nigeria’s educational system. However, there are critical issues that had not been addressed and it is frustrating the entire educational process. Thus, this paper will show the inter-connectedness between these issues such as poor funding, trained skillful teachers that would supervise the learning process of the kids, unconducive learning environment and lack of relevant facilities. For a clear grasp of these issues, the researcher visited 36 early childhood centres distributed across the 36 spates of Nigeria. The findings which were expressed in simple percentages revealed a near total absence or government neglect of these critical areas. The findings equally showed a misplaced priority in the government allocation of funds to early child care education and development. The study concludes that this mismatch in the training of these categories of pupils, government should expedite action in addressing these emerging issues in early childhood care and development in Nigeria.Keywords: early childhood, ECCE, education, emerging issues
Procedia PDF Downloads 53914878 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach
Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick
Abstract:
Different terms of the statistical process control (SPC) has sketch in the fuzzy environment. However, measurement system analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.Keywords: measurement, SPC, MSA, gauge capability (Cg and Cgk)
Procedia PDF Downloads 65714877 Towards Natively Context-Aware Web Services
Authors: Hajer Taktak, Faouzi Moussa
Abstract:
With the ubiquitous computing’s emergence and the evolution of enterprises’ needs, one of the main challenges is to build context-aware applications based on Web services. These applications have become particularly relevant in the pervasive computing domain. In this paper, we introduce our approach that optimizes the use of Web services with context notions when dealing with contextual environments. We focus particularly on making Web services autonomous and natively context-aware. We implement and evaluate the proposed approach with a pedagogical example of a context-aware Web service treating temperature values.Keywords: context-aware, CXF framework, ubiquitous computing, web service
Procedia PDF Downloads 36514876 Academic Staff Recruitment in Islamic University: A Proposed Holistic Model
Authors: Syahruddin Sumardi, Indra Fajar Alamsyah, Junaidah Hashim
Abstract:
This study attempts to explore and presents a proposed recruitment model in Islamic university which aligned with holistic role. It is a conceptual paper in nature. In turn, this study is designed to utilize exploratory approach. Literature and document review that related to this topic are used as the methods to analyse the content found. Recruitment for any organization is fundamental to achieve its goal effectively. Staffing in universities is vital due to the importance role of lecturers. Currently, Islamic universities still adopt the common process of recruitment for their academic staffs. Whereas, they have own characteristics which are embedded in their institutions. Furthermore, the FCWC (Foundation, Capability, Worldview and Commitment) model of recruitment proposes to suit the holistic character of Islamic university. Further studies are required to empirically validate the concept through systematic investigations. Additionally, measuring this model by a designed means is appreciated. The model provides the map and alternative tool of recruitment for Islamic universities to determine the process of recruitment which can appropriate their institutions. In addition, it also allows stakeholders and policy makers to consider regarding Islamic values that should inculcate in the Islamic higher learning institutions. This study initiates a foundational contribution for an early sequence of research.Keywords: academic staff, Islamic values, recruitment model, university
Procedia PDF Downloads 17114875 Method for Evaluating the Monetary Value of a Customized Version of the Digital Twin for the Additive Manufacturing
Authors: Fabio Oettl, Sebastian Hoerbrand, Tobias Wittmeir, Johannes Schilp
Abstract:
By combining the additive manufacturing (AM)- process with digital concepts, like the digital twin (DT) or the downsized and basing concept of the digital part file (DPF), the competitiveness of additive manufacturing is enhanced and new use cases like decentral production are enabled. But in literature, one can´t find any quantitative approach for valuing the usage of a DT or DPF in AM. Out of this fact, such an approach will be developed within this paper in order to further promote or dissuade the usage of these concepts. The focus is set on the production as an early lifecycle phase, which means that the AM-production process gets analyzed regarding the potential advantages of using DPF in AM. These advantages are transferred to a monetary value with this approach. By calculating the costs of the DPF, an overall monetary value is a result. Thereon a tool, based on a simulation environment is constructed, where the algorithms are transformed into a program. The results of applying this tool show that an overall value of 20,81 € for the DPF can be realized for one special use case. For the future application of the DPF there is the recommendation to integrate especially sustainable information because out of this, a higher value of the DPF can be expected.Keywords: additive manufacturing, digital concept costs, digital part file, digital twin, monetary value estimation
Procedia PDF Downloads 20514874 Teaching How to Speak ‘Correct’ English in No Time: An Assessment of the ‘Success’ of Professor Higgins’ Motivation in George Bernard Shaw’s Pygmalion
Authors: Armel Mbon
Abstract:
This paper examines the ‘success’ of George Bernard Shaw's main character Professor Higgins' motivation in teaching Eliza Doolittle, a young Cockney flower girl, how to speak 'correct' English in no time in Pygmalion. Notice should be given that Shaw in whose writings, language issues feature prominently, does not believe there is such a thing as perfectly correct English, but believes in the varieties of spoken English as a source of its richness. Indeed, along with his fellow phonetician Colonel Pickering, Henry Higgins succeeds in teaching Eliza that he first judges unfairly, the dialect of the upper classes and Received Pronunciation, to facilitate her social advancement. So, after six months of rigorous learning, Eliza's speech and manners are transformed, and she is able to pass herself off as a lady. Such is the success of Professor Higgins’ motivation in linguistically transforming his learner in record time. On the other side, his motivation is unsuccessful since, by the end of the play, he cannot have Eliza he believes he has shaped to his so-called good image, for wife. So, this paper aims to show, in support of the psychological approach, that in motivation, feelings, pride and prejudice cannot be combined, and that one has not to pre-judge someone’s attitude based purely on how well they speak English.Keywords: teaching, speak, in no time, success
Procedia PDF Downloads 7514873 An Evaluation of Rational Approach to Management by Objectives in Construction Contracting Organisation
Authors: Zakir H. Shaik, Punam L. Vartak
Abstract:
Management By Objectives (MBO) is a management technique in which objectives of an organisation are conveyed to the employees to establish the individual goals. These objectives and goals are then monitored and assessed jointly by management and the employee time to time. This tool can be used for planning, monitoring as well as for performance appraisal. The success of an organisation is largely dependent on its’s Vision. Thus, it is of paramount importance to achieve the realm of vision through a mission which is well crafted within the organisation to address the objectives. The success of the mission depends upon how realistic and action oriented philosophical approach, an organisation caters to; and how the individual goals are set to track and meet the objectives. Thus, focused and passionate efforts of the team, assigned for the mission, are an absolute obligation for achieving the vision of any organisation. Any construction site is generally a controlled disorder having huge investments, resources and logistics involved. The Construction progression is time-consuming with many isolated as well as interconnected activities. Traditional MBO approach can be unsuccessful if planning and control is non-realistic and inflexible. Moreover, the Construction Industry is far behind understanding these concepts. It is important to address the employee engagement in defining and creating awareness to achieve the targets. Besides, current economic environment and competitive world demands refined management tools to achieve profit, growth and survival of the business. Therefore, the necessity of rational MBO becomes vital part towards the success of an organisation. This paper details about the philosophical assumptions to develop the grounded theory in lieu of achieving objectives through RATIONAL MBO approach in Construction Contracting Organisations. The goals and objectives of the Construction Contracting Organisations can be achieved efficiently by adopting this RATIONAL MBO approach, as those are based on realistic, logical and balanced assumptions.Keywords: growth, leadership, management by objectives, Management By Objectives (MBO), profit, rational
Procedia PDF Downloads 15714872 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 12214871 Learner Awareness Levels Questionnaire: Development and Preliminary Validation of the English and Malay Versions to Measure How and Why Students Learn
Authors: S. Chee Choy, Pauline Swee Choo Goh, Yow Lin Liew
Abstract:
The purpose of this study is to evaluate the English version and a Malay translation of the 21-item Learner Awareness Questionnaire for its application to assess student learning in higher education. The Learner Awareness Questionnaire, originally written in English, is a quantitative measure of how and why students learn. The questionnaire gives an indication of the process and motives to learn using four scales: survival, establishing stability, approval, and loving to learn. Data in the present study came from 680 university students enrolled in various programs in Malaysia. The Malay version of the questionnaire supported a similar four-factor structure and internal consistency to the English version. The four factors of the Malay version also showed moderate to strong correlations with those of the English versions. The results suggest that the Malay version of the questionnaire is similar to the English version. However, further refinement for the questions is needed to strengthen the correlations between the two questionnaires.Keywords: student learning, learner awareness, questionnaire development, instrument validation
Procedia PDF Downloads 43414870 Education in Personality Development and Grooming for Airline Business Program's Students of International College, Suan Sunandha Rajabhat University
Authors: Taksina Bunbut
Abstract:
Personality and grooming are vital for creating professionalism and safety image for all staffs in the airline industry. Airline Business Program also has an aim to educate students through the subject Personality Development and Grooming in order to elevate the quality of students to meet standard requirements of the airline industry. However, students agree that there are many difficulties that cause unsuccessful learning experience in this subject. The research is to study problems that can afflict students from getting good results in the classroom. Furthermore, exploring possible solutions to overcome challenges are also included in this study. The research sample consists of 140 students who attended the class of Personality Development and Grooming. The employed research instrument is a questionnaire. Statistic for data analysis is t-test and Multiple Regression Analysis. The result found that although students are satisfied with teaching and learning of this subject, they considered that teaching in English and teaching topics in social etiquette in different cultures are difficult for them to understand.Keywords: personality development, grooming, Airline Business Program, soft skill
Procedia PDF Downloads 24214869 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization
Authors: Subhajit Das, Nirjhar Dhang
Abstract:
Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization
Procedia PDF Downloads 21714868 Affects Associations Analysis in Emergency Situations
Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko
Abstract:
Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.Keywords: data mining, emergency phone calls, emotional profiles, rules
Procedia PDF Downloads 41014867 Enhancing French Vocabulary Acquisition: The Impact of Explicit Instruction on Productive Non-Cognate Suffixes for Beginner Learners
Authors: Deborah Idowu
Abstract:
This research delves into the effectiveness of explicitly teaching productive non-cognate French suffixes to English beginner learners of the French language. It is widely accepted that cognates, especially orthographic ones, can be inferred by learners from their first language (in this case, English). The same is the case for derived French words with cognate suffixes, provided the learner is familiar with the lemma, which can either be cognate or non-cognate. However, the same cannot be said for derived French words with non-cognate suffixes. These suffixes often pose challenges to learners, even when the base word is familiar to them. The primary goal of this research is to enhance the vocabulary comprehension and expansion of English-speaking beginners in French by focusing on the recognition of derived French words that may not align with their L1 knowledge. The methodology employed in this study of derivational morphology involves an experimental group receiving explicit instruction on productive non-cognate suffixes, while a control group does not. By utilizing confidence ratings and other analytical tools, the analysis aims to measure the impact of this targeted instruction on the learners' ability to understand and incorporate non-cognate suffixes into their French vocabulary. Through this experimental approach, the research seeks to provide valuable insights into how explicit instruction on non-cognate suffixes can benefit beginner French learners, ultimately aiding them in navigating the intricacies of French derivational morphology. The objectives of this research are as follows: i. to investigate the impact of explicitly teaching productive non-cognate suffixes on the vocabulary comprehension and expansion of beginner learners of the French language; ii. to assess the effectiveness of targeted instruction on non-cognate suffixes in aiding English-speaking learners in recognizing and understanding derived French words that may not align with their native language knowledge, iii. to compare the vocabulary acquisition and retention of beginner French learners who receive explicit instruction on non-cognate suffixes with those who do not to determine the effectiveness of this instructional approach, iv. to analyze the confidence ratings and other analytical methods to gauge the learners' ability to integrate non-cognate suffixes into their French vocabulary and comprehend the meaning of derived words more effectively, v. to contribute insights into how explicit instruction on non-cognate suffixes can enhance the overall language learning experience for beginner learners of French, particularly in the area of French derivational morphology.Keywords: suffixes, derivational morphology, non-cognates, vocabulary acquisition, French language learners
Procedia PDF Downloads 4314866 Virtual Reality and Avatars in Education
Authors: Michael Brazley
Abstract:
Virtual Reality (VR) and 3D videos are the most current generation of learning technology today. Virtual Reality and 3D videos are being used in professional offices and Schools now for marketing and education. Technology in the field of design has progress from two dimensional drawings to 3D models, using computers and sophisticated software. Virtual Reality is being used as collaborative means to allow designers and others to meet and communicate inside models or VR platforms using avatars. This research proposes to teach students from different backgrounds how to take a digital model into a 3D video, then into VR, and finally VR with multiple avatars communicating with each other in real time. The next step would be to develop the model where people from three or more different locations can meet as avatars in real time, in the same model and talk to each other. This research is longitudinal, studying the use of 3D videos in graduate design and Virtual Reality in XR (Extended Reality) courses. The research methodology is a combination of quantitative and qualitative methods. The qualitative methods begin with the literature review and case studies. The quantitative methods come by way of student’s 3D videos, survey, and Extended Reality (XR) course work. The end product is to develop a VR platform with multiple avatars being able to communicate in real time. This research is important because it will allow multiple users to remotely enter your model or VR platform from any location in the world and effectively communicate in real time. This research will lead to improved learning and training using Virtual Reality and Avatars; and is generalizable because most Colleges, Universities, and many citizens own VR equipment and computer labs. This research did produce a VR platform with multiple avatars having the ability to move and speak to each other in real time. Major implications of the research include but not limited to improved: learning, teaching, communication, marketing, designing, planning, etc. Both hardware and software played a major role in project success.Keywords: virtual reality, avatars, education, XR
Procedia PDF Downloads 10114865 Post Apartheid Language Positionality and Policy: Student Teachers' Narratives from Teaching Practicum
Authors: Thelma Mort
Abstract:
This empirical, qualitative research uses interviews of four intermediate phase English language student teachers at one university in South Africa and is an exploration of student teacher learning on their teaching practicum in their penultimate year of the initial teacher education course. The country’s post-apartheid language in education policy provides a context to this study in that children move from mother tongue language of instruction in foundation phase to English as a language of instruction in Intermediate phase. There is another layer of context informing this study which is the school context; the student teachers’ reflections are from their teaching practicum in resource constrained schools, which make up more than 75% of schools in South Africa. The findings were that in these schools, deep biases existed to local languages, that language was being used as a proxy for social class, and that conditions necessary for language acquisition were absent. The student teachers’ attitudes were in contrast to those found in the schools, namely that they had various pragmatic approaches to overcoming obstacles and that they saw language as enabling interdisciplinary work. This study describes language issues, tensions created by policy in South African schools and also supplies a regional account of learning to teach in resource constrained schools in Cape Town, where such language tensions are more inflated. The central findings in this research illuminate attitudes to language and language education in these teaching practicum schools and the complexity of learning to be a language teacher in these contexts. This study is one of the few local empirical studies regarding language teaching in the classroom and language teacher education; as such it offers some background to the country’s poor performance in both international and national literacy assessments.Keywords: language teaching, narrative, post apartheid, South Africa, student teacher
Procedia PDF Downloads 15214864 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 10014863 Barrier to Implementing Public-Private Mix Approach for Tuberculosis Case Management in Nepal
Authors: R. K. Yadav, S. Baral, H. R. Paudel, R. Basnet
Abstract:
The Public-Private Mix (PPM) approach is a strategic initiative that involves engaging all private and public healthcare providers in the fight against tuberculosis using international healthcare standards. For tuberculosis control in Nepal, the PPM approach could be a milestone. This study aimed to explore the barriers to a public-private mix approach in the management of tuberculosis cases in Nepal. A total of 20 respondents participated in the study. Barriers to PPM were identified in the following three themes: 1) Obstacles related to TB case detection, 2) Obstacles related to patients, and 3) Obstacles related to the healthcare system. PPM implementation was challenged by following subthemes that included staff turnover, low private sector participation in workshops, a lack of training, poor recording and reporting, insufficient joint monitoring and supervision, poor financial benefit, lack of coordination and collaboration, and non-supportive TB-related policies and strategies. The study concludes that numerous barriers exist in the way of effective implementation of the PPM approach, including TB cases detection barriers such as knowledge of TB diagnosis and treatment, HW attitude, workload, patient-related barriers such as knowledge of TB, self-medication practice, stigma and discrimination, financial status, and health system-related barriers such as staff turnover and poor engagement of the private sector in workshops, training, recording, and re-evaluation. Government stakeholders must work together with private sector stakeholders to perform joint monitoring and supervision. Private practitioners should receive training and orientation, and presumptive TB patients should be given adequate time and counseling as well as motivation to visit a government health facility.Keywords: barrier, tuberculosis, case finding, PPM, nepal
Procedia PDF Downloads 11314862 The Influence of Transformational Leadership on Knowledge Sharing in Iraq’s Public and Private Higher Education: A Comparison Study
Authors: Sawsan J. Al-Husseini
Abstract:
Transformational leadership (TL) has been found to have an important influence on knowledge and knowledge management (KM). It can contribute to organizational learning, employees’ creativity, encourage followers to participate in educational programs and develop the skills needed to achieve exceptional performance. This research sought to examine the impact of TL on knowledge donating and collecting and the differences between these impacts in public and private higher education institutes (HEIs) in Iraq. A mixed method approach was taken and 580 valid responses were collected to test the causal relationships between the factors, then 12 interviews were conducted with the leaders of HEIs to give more insight of the findings from quantitative stage. Employing structural equation modelling with AMOS v.24, the research found that TL would be ideal in an educational context, promoting knowledge sharing activities in both sectors. The interviews revealed differences between public and private HEIs in terms of the effects relationships. Guidelines are developed for academics as well as leaders and provided evidence to support the use of TL to encourage knowledge sharing activities within higher education in developing countries particularly Iraq.Keywords: transformational leadership, knowledge sharing, higher education, multi-group
Procedia PDF Downloads 156