Search results for: optimization intelligence strategy
3858 Research on the Public Policy of Vehicle Restriction under Traffic Control
Authors: Wang Qian, Bian Cheng Xiang
Abstract:
In recent years, with the improvement of China's urbanization level, the number of urban motor vehicles has grown rapidly. As residents' daily commuting necessities, cars cause a lot of exhaust emissions and urban traffic congestion. In the "Fourteenth Five Year Plan" of China, it is proposed to strive to reach the peak of carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. Urban transport accounts for a high proportion of carbon emission sources. It is an important driving force for the realization of China's carbon peak strategy. Some cities have introduced and implemented the policy of "car restriction" to solve related urban problems by reducing the use of cars. This paper analyzes the implementation of the "automobile restriction" policy, evaluates the relevant effects of the automobile restriction policy, and discusses how to better optimize the "automobile restriction" policy in the process of urban governance.Keywords: carbon emission, traffic jams, vehicle restrictions, evaluate
Procedia PDF Downloads 1603857 Secure Mobile E-Business Applications
Authors: Hala A. Alrumaih
Abstract:
It is widely believed that mobile device is a promising technology for lending the opportunity for the third wave of electronic commerce. Mobile devices have changed the way companies do business. Many applications are under development or being incorporated into business processes. In this day, mobile applications are a vital component of any industry strategy. One of the greatest benefits of selling merchandise and providing services on a mobile application is that it widens a company’s customer base significantly. Mobile applications are accessible to interested customers across regional and international borders in different electronic business (e-business) area. But there is a dark side to this success story. The security risks associated with mobile devices and applications are very significant. This paper introduces a broad risk analysis for the various threats, vulnerabilities, and risks in mobile e-business applications and presents some important risk mitigation approaches. It reviews and compares two different frameworks for security assurance in mobile e-business applications. Based on the comparison, the paper suggests some recommendations for applications developers and business owners in mobile e-business application development process.Keywords: e-business, mobile applications, risk mitigations, security assurance
Procedia PDF Downloads 2953856 Model-Based Process Development for the Comparison of a Radial Riveting and Roller Burnishing Process in Mechanical Joining Technology
Authors: Tobias Beyer, Christoph Friedrich
Abstract:
Modern simulation methodology using finite element models is nowadays a recognized tool for product design/optimization. Likewise, manufacturing process design is increasingly becoming the focus of simulation methodology in order to enable sustainable results based on reduced real-life tests here as well. In this article, two process simulations -radial riveting and roller burnishing- used for mechanical joining of components are explained. In the first step, the required boundary conditions are developed and implemented in the respective simulation models. This is followed by process space validation. With the help of the validated models, the interdependencies of the input parameters are investigated and evaluated by means of sensitivity analyses. Limit case investigations are carried out and evaluated with the aid of the process simulations. Likewise, a comparison of the two joining methods to each other becomes possible.Keywords: FEM, model-based process development, process simulation, radial riveting, roller burnishing, sensitivity analysis
Procedia PDF Downloads 1083855 Application of the MOOD Technique to the Steady-State Euler Equations
Authors: Gaspar J. Machado, Stéphane Clain, Raphael Loubère
Abstract:
The goal of the present work is to numerically study steady-state nonlinear hyperbolic equations in the context of the finite volume framework. We will consider the unidimensional Burgers' equation as the reference case for the scalar situation and the unidimensional Euler equations for the vectorial situation. We consider two approaches to solve the nonlinear equations: a time marching algorithm and a direct steady-state approach. We first develop the necessary and sufficient conditions to obtain the existence and unicity of the solution. We treat regular examples and solutions with a steady shock and to provide very-high-order finite volume approximations we implement a method based on the MOOD technology (Multi-dimensional Optimal Order Detection). The main ingredient consists in using an 'a posteriori' limiting strategy to eliminate non physical oscillations deriving from the Gibbs phenomenon while keeping a high accuracy for the smooth part.Keywords: Euler equations, finite volume, MOOD, steady-state
Procedia PDF Downloads 2773854 Smart Production Planning: The Case of Aluminium Foundry
Authors: Samira Alvandi
Abstract:
In the context of the circular economy, production planning aims to eliminate waste and emissions and maximize resource efficiency. Historically production planning is challenged through arrays of uncertainty and complexity arising from the interdependence and variability of products, processes, and systems. Manufacturers worldwide are facing new challenges in tackling various environmental issues such as climate change, resource depletion, and land degradation. In managing the inherited complexity and uncertainty and yet maintaining profitability, the manufacturing sector is in need of a holistic framework that supports energy efficiency and carbon emission reduction schemes. The proposed framework addresses the current challenges and integrates simulation modeling with optimization for finding optimal machine-job allocation to maximize throughput and total energy consumption while minimizing lead time. The aluminium refinery facility in western Sydney, Australia, is used as an exemplar to validate the proposed framework.Keywords: smart production planning, simulation-optimisation, energy aware capacity planning, energy intensive industries
Procedia PDF Downloads 763853 Investigation of Comfort Properties of Knitted Fabrics
Authors: Mehmet Karahan, Nevin Karahan
Abstract:
Water and air permeability and thermal resistance of fabrics are the important attributes which strongly influence the thermo-physiological comfort properties of sportswear fabrics in different environmental conditions. In this work, terry and fleece fabrics were developed by varying the fiber content and areal density of fabrics. Further, the thermo-physical properties, including air permeability, water vapor permeability, and thermal resistance, of the developed fabrics were analyzed before and after washing. The multi-response optimization of thermo-physiological comfort properties was done by using principal component analysis (PCA) and Taguchi signal to noise ratio (PCA-S/N ratio) for optimal properties. It was found that the selected parameters resulted in a significant effect on thermo-physiological comfort properties of knitted fabrics. The PCA analysis showed that before wash, 100% cotton fabric with an aerial weight of 220 g.m⁻² gave optimum values of thermo-physiological comfort.Keywords: thermo-physiological comfort, fleece knitted fabric, air permeability, water vapor transmission, cotton/polyester
Procedia PDF Downloads 1173852 Software Verification of Systematic Resampling for Optimization of Particle Filters
Authors: Osiris Terry, Kenneth Hopkinson, Laura Humphrey
Abstract:
Systematic resampling is the most popularly used resampling method in particle filters. This paper seeks to further the understanding of systematic resampling by defining a formula made up of variables from the sampling equation and the particle weights. The formula is then verified via SPARK, a software verification language. The verified systematic resampling formula states that the minimum/maximum number of possible samples taken of a particle is equal to the floor/ceiling value of particle weight divided by the sampling interval, respectively. This allows for the creation of a randomness spectrum that each resampling method can fall within. Methods on the lower end, e.g., systematic resampling, have less randomness and, thus, are quicker to reach an estimate. Although lower randomness allows for error by having a larger bias towards the size of the weight, having this bias creates vulnerabilities to the noise in the environment, e.g., jamming. Conclusively, this is the first step in characterizing each resampling method. This will allow target-tracking engineers to pick the best resampling method for their environment instead of choosing the most popularly used one.Keywords: SPARK, software verification, resampling, systematic resampling, particle filter, tracking
Procedia PDF Downloads 843851 Data-Centric Anomaly Detection with Diffusion Models
Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu
Abstract:
Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.Keywords: diffusion models, anomaly detection, data-centric, generative AI
Procedia PDF Downloads 823850 Production Optimization through Ejector Installation at ESA Platform Offshore North West Java Field
Authors: Arii Bowo Yudhaprasetya, Ario Guritno, Agus Setiawan, Recky Tehupuring, Cosmas Supriatna
Abstract:
The offshore facilities condition of Pertamina Hulu Energi Offshore North West Java (PHE ONWJ) varies greatly from place to place, depending on the characteristics of the presently installed facilities. In some locations, such as ESA platform, gas trap is mainly caused by the occurrence of flash gas phenomenon which is known as mechanical-physical separation process of multiphase flow. Consequently, the presence of gas trap at main oil line would accumulate on certain areas result in a reduced oil stream throughout the pipeline. Any presence of discrete gaseous along continuous oil flow represents a unique flow condition under certain specific volume fraction and velocity field. From gas lift source, a benefit line is used as a motive flow for ejector which is designed to generate a syphon effect to minimize the gas trap phenomenon. Therefore, the ejector’s exhaust stream will flow to the designated point without interfering other systems.Keywords: diffuser, ejector, flow, fluent
Procedia PDF Downloads 4353849 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1583848 Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids
Authors: Sheryl Avendaño, Miguel Ospina, Hebert Montegranario
Abstract:
Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method.Keywords: seismic inversion, full wave inversion, visco acoustic wave equation, finite diffrence methods
Procedia PDF Downloads 4613847 Perception of Consumer Behavior on Mobile Banking Offered by the National and Multinational Banks in UAE with Special Reference to Emirates NBD and Citibank
Authors: Aarohi Surya
Abstract:
The number of mobile banking users continues to climb across the world due to its increasing popularity, and UAE is no exception. This type of banking is part of the core strategy of most of the financial institutions that allows its customers to conduct a range of financial transactions through mobile apps to cash in the high demand from the bankers. This study aims at evaluating service quality of online banking in Dubai, one of the swiftly growing cities of Middle East. The paper mainly compares online banking services of Multinational bank and National Bank with special reference to Citibank and Emirates NBD. A structured questionnaire survey is conducted among various target groups. The research has been focused on mainly 4 significant areas of online banking, i.e. Privacy, Responsiveness, Reliability, and Efficiency of customer data. Information was analyzed statistically on SPSS to investigate the service quality of e-banking.Keywords: customer satisfaction, service quality, responsiveness, online banking
Procedia PDF Downloads 2703846 Multi-Objective Variable Neighborhood Search Algorithm to Solving Scheduling Problem with Transportation Times
Authors: Majid Khalili
Abstract:
This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presents a new multi-objective variable neighborhood algorithm (MOVNS). A set of experimental instances are carried out to evaluate the algorithm by advanced multi-objective performance measures. The algorithm is carefully evaluated for its performance against available algorithm by means of multi-objective performance measures and statistical tools. The related results show that a variant of our proposed MOVNS provides sound performance comparing with other algorithms. Procedia PDF Downloads 4183845 Analysis of Transmedia Storytelling in Pokémon GO
Authors: Iva Nedelcheva
Abstract:
This study is part of a doctoral thesis on the topic of Hyperfiction: Past, Present and Future of Storytelling through Hypertext. It explores in depth the impact of transmedia storytelling and the role of hypertext in the realm of the currently popular social media phenomenon Pokémon GO. Storytelling is a powerful method to engage and unite people. Moreover, the technology progress adds a whole new angle to the method, with hypertext and cross-platform sharing that enhance the traditional storytelling so much that transmedia storytelling gives unlimited opportunities to affect the everyday life of people across the globe. This research aims at examining the transmedia storytelling approach in Pokémon GO, and explaining how that contributed to its establishment as a massive worldwide hit in less than a week. The social engagement is investigated in all major media platforms, including traditional and online media channels. Observation and content analyses are reported in this paper to form the conclusion that transmedia storytelling with the input of hypertext has a promising future as a method of establishing a productive and rewarding communication strategy.Keywords: communication, hypertext, Pokemon Go, storytelling, transmedia
Procedia PDF Downloads 1703844 An Efficient Process Analysis and Control Method for Tire Mixing Operation
Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park
Abstract:
Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process
Procedia PDF Downloads 2653843 Standard and Processing of Photodegradable Polyethylene
Authors: Nurul-Akidah M. Yusak, Rahmah Mohamed, Noor Zuhaira Abd Aziz
Abstract:
The introduction of degradable plastic materials into agricultural sectors has represented a promising alternative to promote green agriculture and environmental friendly of modern farming practices. Major challenges of developing degradable agricultural films are to identify the most feasible types of degradation mechanisms, composition of degradable polymers and related processing techniques. The incorrect choice of degradable mechanisms to be applied during the degradation process will cause premature losses of mechanical performance and strength. In order to achieve controlled process of agricultural film degradation, the compositions of degradable agricultural film also important in order to stimulate degradation reaction at required interval of time and to achieve sustainability of the modern agricultural practices. A set of photodegradable polyethylene based agricultural film was developed and produced, following the selective optimization of processing parameters of the agricultural film manufacturing system. Example of agricultural films application for oil palm seedlings cultivation is presented.Keywords: photodegradable polyethylene, plasticulture, processing schemes
Procedia PDF Downloads 5183842 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem
Authors: Yu T. Tsai, Jin H. Huang
Abstract:
In this paper, the specific sound transmission loss (TL) of the laminated composite plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.Keywords: sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties
Procedia PDF Downloads 3883841 Computational Fluid Dynamics-Coupled Optimisation Strategy for Aerodynamic Design
Authors: Anvar Atayev, Karl Steinborn, Aleksander Lovric, Saif Al-Ibadi, Jorg Fliege
Abstract:
In this paper, we present results obtained from optimising the aerodynamic performance of aerostructures in external ow. The optimisation method used was developed to efficiently handle multi-variable problems with numerous black-box objective functions and constraints. To demonstrate these capabilities, a series of CFD problems were considered; (1) a two-dimensional NACA aerofoil with three variables, (2) a two-dimensional morphing aerofoil with 17 variables, and (3) a three-dimensional morphing aeroplane tail with 33 variables. The objective functions considered were related to combinations of the mean aerodynamic coefficients, as well as their relative variations/oscillations. It was observed that for each CFD problem, an improved objective value was found. Notably, the scale-up in variables for the latter problems did not greatly hinder optimisation performance. This makes the method promising for scaled-up CFD problems, which require considerable computational resources.Keywords: computational fluid dynamics, optimisation algorithms, aerodynamic design, engineering design
Procedia PDF Downloads 1203840 Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique
Authors: F. C. Amadi, G. C. Enyi, G. G. Nasr
Abstract:
Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production.Keywords: hydraulic fracturing, optimisation, shale, tight reservoir
Procedia PDF Downloads 4283839 Optimization of Process Parameters for Peroxidase Production by Ensifer Species
Authors: Ayodeji O. Falade, Leonard V. Mabinya, Uchechukwu U. Nwodo, Anthony I. Okoh
Abstract:
Given the high utility of peroxidase in several industrial processes, the search for novel microorganisms with enhanced peroxidase production capacity is of keen interest. This study investigated the process conditions for optimum peroxidase production by Ensifer sp, new ligninolytic proteobacteria with peroxidase production potential. Also, some agricultural residues were valorized for peroxidase production under solid state fermentation. Peroxidase production was optimum at an initial medium pH 7, incubation temperature of 30 °C and agitation speed of 100 rpm using alkali lignin fermentation medium supplemented with guaiacol as the most effective inducer and ammonium sulphate as the best inorganic nitrogen. Optimum peroxidase production by Ensifer sp. was attained at 48 h with specific productivity of 12.76 ± 1.09 U mg⁻¹. Interestingly, probable laccase production was observed with optimum specific productivity of 12.76 ± 0.45 U mg⁻¹ at 72 h. The highest peroxidase yield was observed with sawdust as solid substrate under solid state fermentation. In conclusion, Ensifer sp. possesses the capacity for enhanced peroxidase production that can be exploited for various biotechnological applications.Keywords: catalase-peroxidase, enzyme production, peroxidase, polymerase chain reaction, proteobacteria
Procedia PDF Downloads 3073838 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile
Authors: D. Pinto, L. Castro, M. L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano
Abstract:
Flash floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work, we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.Keywords: decision support systems, early warning systems, flash flood, natural hazard
Procedia PDF Downloads 3733837 Options for Adding Benefits of Local Crop Diversity Through a Non-Breeding Approach
Authors: Kedar Nath Nepal, Tek Bahadur Thapa, David Guerena;
Abstract:
The community participation is central to the in-situ project objectives, as farming communities are key stakeholders in the on-farm conservation of agricultural bio- diversity. Besides technical means to adding benefits, the complimentary strategy includes creating market-based value adding measures by increasing users’ awareness of the value of traditional foods and nutritional values; exhibitions and improved processing; and policy incentives. This paper presents various participatory activities carried out in Nepal as options for enhancing benefits to local communities by increased utilization of local crop diversity on -the farm through non-breeding discussed, and outcomes are documented using farmers’ perception data and secondary information. The paper focuses on three major areas of public awareness, market incentives and non-market incentives that may enhance on -farm conservation and use of biodiversity.Keywords: biodiversity, in-situ, market-based, non-market
Procedia PDF Downloads 1113836 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 1553835 The Micro-Activated Organic Regeneration in Rural Construction: A Case Study of Yangdun Village in Deqing County, Zhejiang Province
Authors: Chengyuan Zhu, Zhu Wang
Abstract:
With the strategy of Rural Rejuvenation proposed in China, the rural has become the focus of all works today. In addition to the support of industry and policy, the rural planning and construction which is the space dependence of Rural Rejuvenation are also very crucial. Based on an analysis of the case of Yangdun Village in Deqing County, this paper summarizes village existing resources and construction status quo. It tries to illuminate the micro-activated organic renewal strategies and methods, based on ecological landscape, history context, industry development and living life requirements. It takes advantage of industrial linkage and then asks for the coordination of both spatial and industrial planning, the revival and remodeling of the rural image can be achieved through shaping the of architectural and landscape nodes as well as the activation of street space.Keywords: rural construction, rural human settlements, micro-activation, organic renewal
Procedia PDF Downloads 2313834 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design
Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler
Abstract:
When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing
Procedia PDF Downloads 793833 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.Keywords: multiclass classification, convolution neural network, OpenCV
Procedia PDF Downloads 1763832 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance
Authors: Ammar Alali, Mahmoud Abughaban
Abstract:
Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe
Procedia PDF Downloads 2293831 Toxic Activity of Biopesticide Metarhizium anisopliae var acridium ‘Green Muscle’ on the Cuticle of the Desert Locust Schistocerca gegaria (Forskål, 1775)
Authors: F. Haddadj, F. Acheuk, S. Hamdi, S. Zenia, A. Smai, H. Saadi, B. Doumandji-Mitiche
Abstract:
Locust is causing significant losses in agricultural production in the countries concerned by the invasion. Up to the present control strategy has consisted only of the spreaders chemicals; they have proven harmful to the environment and taking a conscience prompted researchers and institutions to lean towards the biological control based mostly by using microorganism. It is in that sense is we've made our contribution by the use of a biopesticide which is entomopathogenic fungus Metarhizium anisopliae var acridium ‘Green Muscle’ on part of the cuticle the larval of fifth instar locust Schistocerca gregaria. Preliminary test on the study of the pathogenicity of the bio-control agent, was conducted in the laboratory on L5 S. gregaria, on which we inoculated treatment by direct spraying of the cuticle, 5 days after treatment individuals are sacrificed. Microscopic observation revealed alterations in the architecture of the cuticle which leads to disorganization of cell layers.Keywords: biopesticide, cuticle, desert locust, effect
Procedia PDF Downloads 4153830 Defence Diplomacy and Collective Security in Africa: Case of Rwanda Defence Forces
Authors: Emmanuel Mugiraneza
Abstract:
Rwanda uses defence diplomacy to pursue international collective security through different mechanisms. This paper shows that with an intent of promoting international collective security, Rwanda has constituted its defense diplomacy policy in three standpoints. First, Rwanda has formed strategic cooperation alliances with state actors, regional and international Organizations that enables her to participate in and promote international collective peace, security and cooperation. Secondary, Rwanda uses defence diplomacy to foster cooperation in to pre-empt, minimize and neutralize potential triggers that would lead to the outbreak of international conflict. Thirdly, Rwanda implements defence diplomacy policy strategy through internationally recognized operational and tactical standards while dispelling hostilities, assisting the friendly nation’s forces and or building and maintaining public confidence and trust in the areas where Rwanda Defence Force deploys for peacekeeping missions in Sudan, South Sudan, Central African Republic and Mozambique for a counterterrorism mission.Keywords: defence diplomacy, collective security, Rwanda, Peacekeeping
Procedia PDF Downloads 1233829 A Computational Study of N–H…O Hydrogen Bonding to Investigate Cooperative Effects
Authors: Setareh Shekarsaraei, Marjan Moridi, Nasser L. Hadipour
Abstract:
In this study, nuclear magnetic resonance spectroscopy and nuclear quadrupole resonance spectroscopy parameters of 14N (Nitrogen in imidazole ring) in N–H…O hydrogen bonding for Histidine hydrochloride monohydrate were calculated via density functional theory. We considered a five-molecule model system of Histidine hydrochloride monohydrate. Also, we examined the trends of environmental effect on hydrogen bonds as well as cooperativity. The functional used in this research is M06-2X which is a good functional and the obtained results have shown good agreement with experimental data. This functional was applied to calculate the NMR and NQR parameters. Some correlations among NBO parameters, NMR, and NQR parameters have been studied which have shown the existence of strong correlations among them. Furthermore, the geometry optimization has been performed using M062X/6-31++G(d,p) method. In addition, in order to study cooperativity and changes in structural parameters, along with increase in cluster size, natural bond orbitals have been employed.Keywords: hydrogen bonding, density functional theory (DFT), natural bond orbitals (NBO), cooperativity effect
Procedia PDF Downloads 456