Search results for: point cloud imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6721

Search results for: point cloud imaging

2461 Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations

Authors: Fatemeh Sadeghi, Peyman Sheikhzadeh

Abstract:

Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time.

Keywords: BSREM reconstruction, PET/CT imaging, noise penalization, quantification accuracy

Procedia PDF Downloads 97
2460 Evaluation of the Cytotoxicity and Cellular Uptake of a Cyclodextrin-Based Drug Delivery System for Cancer Therapy

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

Drug delivery systems are proposed for use in cancer treatment to specifically target cancer cells and deliver a therapeutic dose without affecting normal cells. For that purpose, the use of folate receptors (FR) can be considered a key strategy, since they are commonly over-expressed in cancer cells. In this study, cyclodextrins (CD) have being used as vehicles to target FR and deliver the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within their cavities. Here, β-CD has been modified using folic acid so as to specifically target the FR. Thus, this drug delivery system consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 15.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 16.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 10.5 for A549 and 132.6 µM ± 16.1 and 288.1 µM ± 26.3 for BEAS-2B. These results demonstrate that free MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug. The use of cell imaging by confocal microscopy has allowed visualisation of FR targeting in cancer cells, as well as the identification of the interlisation pathway of the drug. Hence, the cellular uptake and internalisation process of this drug delivery system is being addressed.

Keywords: cancer treatment, cyclodextrins, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 310
2459 Synthesis of Tricalcium Phosphate Substituted with Magnesium Ions for Bone Regeneration

Authors: Andreia Cucuruz, Cristina Daniela Ghitulica, Georgeta Voicu, Cristina Busuioc

Abstract:

Ceramics based on calcium phosphates have lately increased attention for tissue engineering because they can be used as substitute bones or for bone regeneration since they mimic very well the nanostructure of tough bone tissue, but also because of other advantages such as a very good biocompatibility and osseointegration. This study aims the preparation and characterization of ceramic materials on the basis of TCP (Ca₃(PO₄)₂), within which calcium ions are substituted by magnesium ions (Mg²⁺) in order to improve the regenerative properties of these materials. TCP-Mg material was synthesized by chemical precipitation method using calcium oxide (CaO) and phosphoric acid (H₃PO₄) as precursors. The objective was to obtain powders with different concentrations of Mg in order to analyze the effect of magnesium ions on the physicochemical properties of phosphate ceramics and in vitro degradation in simulated biological fluid (SBF). Ceramic powders were characterized in vitro but also from the compositional and microstructural point of view. TCP_Mg powders were prepared through wet chemical method from calcium oxide (CaO), magnesium oxide nanopowder (MgO < 50 nm particle size (BET) Sigma Aldrich), phosphoric acid (H₃PO₄ - 85 wt.% in H₂O, 99.99% trace metals basis - Sigma Aldrich). In order to determine the quantities of raw materials, calculations were performed to obtain HAp with Ca/P ratio of 1.5.

Keywords: bone regeneration, magnesium substitution, tricalcium phosphate, tissue engineering

Procedia PDF Downloads 346
2458 Seismic Hazard Study and Strong Ground Motion in Southwest Alborz, Iran

Authors: Fereshteh Pourmohammad, Mehdi Zare

Abstract:

The city of Karaj, having a population of 2.2 millions (est. 2022) is located in the South West of Alborz Mountain Belt in Northern Iran. The region is known to be a highly active seismic zone. This study is focused on the geological and seismological analyses within a radius of 200 km from the center of Karaj. There are identified five seismic zones and seven linear seismic sources. The maximum magnitude was calculated for the seismic zones. Scine tghe seismicity catalog is incomplete, we have used a parametric-historic algorithm and the Kijko and Sellevoll (1992) method was used to calculate seismicity parameters, and the return periods and the probability frequency of recurrence of the earthquake magnitude in each zone obtained for 475-years return period. According to the calculations, the highest and lowest earthquake magnitudes of 7.6 and 6.2 were respectively obtained in Zones 1 and 4. This result is a new and extremely important in view point of earthquake risk in a densely population city. The maximum strong horizontal ground motion for the 475-years return period 0.42g and for 2475-year return period 0.70g also the maximum strong vertical ground motion for 475-years return period 0.25g and 2475-years return period 0.44g was calculated using attenuation relationships. These acceleration levels are new, and are obtained to be about 25% higher than presented values in the Iranian building code.

Keywords: seismic zones, ground motion, return period, hazard analysis

Procedia PDF Downloads 97
2457 Gis Based Flash Flood Runoff Simulation Model of Upper Teesta River Besin - Using Aster Dem and Meteorological Data

Authors: Abhisek Chakrabarty, Subhraprakash Mandal

Abstract:

Flash flood is one of the catastrophic natural hazards in the mountainous region of India. The recent flood in the Mandakini River in Kedarnath (14-17th June, 2013) is a classic example of flash floods that devastated Uttarakhand by killing thousands of people.The disaster was an integrated effect of high intensityrainfall, sudden breach of Chorabari Lake and very steep topography. Every year in Himalayan Region flash flood occur due to intense rainfall over a short period of time, cloud burst, glacial lake outburst and collapse of artificial check dam that cause high flow of river water. In Sikkim-Derjeeling Himalaya one of the probable flash flood occurrence zone is Teesta Watershed. The Teesta River is a right tributary of the Brahmaputra with draining mountain area of approximately 8600 Sq. km. It originates in the Pauhunri massif (7127 m). The total length of the mountain section of the river amounts to 182 km. The Teesta is characterized by a complex hydrological regime. The river is fed not only by precipitation, but also by melting glaciers and snow as well as groundwater. The present study describes an attempt to model surface runoff in upper Teesta basin, which is directly related to catastrophic flood events, by creating a system based on GIS technology. The main object was to construct a direct unit hydrograph for an excess rainfall by estimating the stream flow response at the outlet of a watershed. Specifically, the methodology was based on the creation of a spatial database in GIS environment and on data editing. Moreover, rainfall time-series data collected from Indian Meteorological Department and they were processed in order to calculate flow time and the runoff volume. Apart from the meteorological data, background data such as topography, drainage network, land cover and geological data were also collected. Clipping the watershed from the entire area and the streamline generation for Teesta watershed were done and cross-sectional profiles plotted across the river at various locations from Aster DEM data using the ERDAS IMAGINE 9.0 and Arc GIS 10.0 software. The analysis of different hydraulic model to detect flash flood probability ware done using HEC-RAS, Flow-2D, HEC-HMS Software, which were of great importance in order to achieve the final result. With an input rainfall intensity above 400 mm per day for three days the flood runoff simulation models shows outbursts of lakes and check dam individually or in combination with run-off causing severe damage to the downstream settlements. Model output shows that 313 Sq. km area were found to be most vulnerable to flash flood includes Melli, Jourthang, Chungthang, and Lachung and 655sq. km. as moderately vulnerable includes Rangpo,Yathang, Dambung,Bardang, Singtam, Teesta Bazarand Thangu Valley. The model was validated by inserting the rain fall data of a flood event took place in August 1968, and 78% of the actual area flooded reflected in the output of the model. Lastly preventive and curative measures were suggested to reduce the losses by probable flash flood event.

Keywords: flash flood, GIS, runoff, simulation model, Teesta river basin

Procedia PDF Downloads 317
2456 Music Education for Blacks (Africans) in Apartheid and Post-Apartheid South Africa

Authors: Bernett Nkwayi Mulungo

Abstract:

There are vast community music projects in South African townships, and their courses range from music theory aural practical individual and ensemble lessons on orchestral instruments and recorders – these instruments being primarily “Western”. Despite this relative success – indeed one of the few in the realm of arts in post-apartheid South Africa – what remains troubling is the dominance of western thought (as music theory) and modes of teaching music that maintain the idea of music study as alien in black communities. This identified problem speaks to a significant theme, namely: Arts education for community development, which is my area of interest. Primarily for, it is a timely platform to firmly entrench appreciation, understanding, and, most undoubtedly, the value(s) of the arts to the youth. Drawing on one’s experience as a lecturer in (and graduate from) a South African tertiary institution and as a teacher in a community project, this research will interrogate the content of some of the program(s): from the theoretical material taught in music theory classes to the practical repertoire taught and/or performed. The focal point of this research is on how this content informs or speaks to its intended “beneficiaries” – the African youth. Through these and other considerations, the paper aims to sketch the potentially radical consequences that transformed music education at community and earlier levels will have for higher education music studies in South Africa.

Keywords: decolonization, Africanization, indigenous knowledge, community engagement

Procedia PDF Downloads 80
2455 Analysis of Stall Angle Delay in Airfoil Coupled with Spinning Cylinder

Authors: N. Kiran, S. A. Vikas, Yatish Chandra, S. Srinivasan

Abstract:

Several Centuries ago, the aerodynamic studies on rotating cylinders and spheres have started. From the observation, the rotation of a cylinder has a remarkable effect on the aerodynamic characteristics is noticed. In case of airfoils as the angle of attack increases, the drag increases with reduction in lift i.e at the critical angle of attack. If at this point a strong impulse is imparted to the boundary layer by means of a spinning cylinder, the re-energisation of boundary layer is achieved and hence delaying the boundary layer separation and stalling characteristics. Analysis of aerodynamic effects spinning cylinder either at leading edge or at trailing edge of the airfoil is carried in the past, the positioning of cylinder close to trailing edge and its effects in delaying the stall are yet to be analyzed in depth. This paper aim is to understand the combined aerodynamic effects of coupling the spinning cylinder with the airfoil closer to the Trailing edge, by considering different spin ratio of the cylinder, its location and geometrical parameters in relation to the chord of the airfoil. From the analysis, it was observed that the spinning cylinder speed of rotation and location had a impact on stalling characteristics for a prescribed free stream condition. The results predicted through CFD analysis and experimental analysis showed a raise in aerodynamic efficiency and as the spin ratio increases, increase in stalling angle of attack is noticed when compared to the airfoil without spinning cylinder.

Keywords: aerodynamics, airfoil, spinning cylinder, stalling

Procedia PDF Downloads 440
2454 Numerical Homogenization of Nacre

Authors: M. Arunachalam, M. Pandey

Abstract:

Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.

Keywords: finite element, homogenization, inelastic deformation, staggered arrangement

Procedia PDF Downloads 318
2453 Relaxor Ferroelectric Lead-Free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ Ceramic: Giant Electromechanical Response with Intrinsic Polarization and Resistive Leakage Analyses

Authors: Abid Hussain, Binay Kumar

Abstract:

Environment-friendly lead-free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ (NKLNTS) ceramic was synthesized by solid-state reaction method in search of a potential candidate to replace lead-based ceramics such as PbZrO₃-PbTiO₃ (PZT), Pb(Mg₁/₃Nb₂/₃)O₃-PbTiO₃ (PMN-PT) etc., for various applications. The ceramic was calcined at temperature 850 ᵒC and sintered at 1090 ᵒC. The powder X-Ray Diffraction (XRD) pattern revealed the formation of pure perovskite phase having tetragonal symmetry with space group P4mm of the synthesized ceramic. The surface morphology of the ceramic was studied using Field Emission Scanning Electron Microscopy (FESEM) technique. The well-defined grains with homogeneous microstructure were observed. The average grain size was found to be ~ 0.6 µm. A very large value of piezoelectric charge coefficient (d₃₃ ~ 754 pm/V) was obtained for the synthesized ceramic which indicated its potential for use in transducers and actuators. In dielectric measurements, a high value of ferroelectric to paraelectric phase transition temperature (Tm~305 ᵒC), a high value of maximum dielectric permittivity ~ 2110 (at 1 kHz) and a very small value of dielectric loss ( < 0.6) were obtained which suggested the utility of NKLNTS ceramic in high-temperature ferroelectric devices. Also, the degree of diffuseness (γ) was found to be 1.61 which confirmed a relaxor ferroelectric behavior in NKLNTS ceramic. P-E hysteresis loop was traced and the value of spontaneous polarization was found to be ~11μC/cm² at room temperature. The pyroelectric coefficient was obtained to be very high (p ∼ 1870 μCm⁻² ᵒC⁻¹) for the present case indicating its applicability in pyroelectric detector applications including fire and burglar alarms, infrared imaging, etc. NKLNTS ceramic showed fatigue free behavior over 107 switching cycles. Remanent hysteresis task was performed to determine the true-remanent (or intrinsic) polarization of NKLNTS ceramic by eliminating non-switchable components which showed that a major portion (83.10 %) of the remanent polarization (Pr) is switchable in the sample which makes NKLNTS ceramic a suitable material for memory switching devices applications. Time-Dependent Compensated (TDC) hysteresis task was carried out which revealed resistive leakage free nature of the ceramic. The performance of NKLNTS ceramic was found to be superior to many lead based piezoceramics and hence can effectively replace them for use in piezoelectric, pyroelectric and long duration ferroelectric applications.

Keywords: dielectric properties, ferroelectric properties , lead free ceramic, piezoelectric property, solid state reaction, true-remanent polarization

Procedia PDF Downloads 136
2452 Oman’s Position in U.S. Tourists’ Mind: The Use of Importance-Performance Analysis on Destination Attributes

Authors: Mohammed Gamil Montasser, Angelo Battaglia

Abstract:

Tourism is making its presence felt across the Sultanate of Oman. The story is one of the most recognized phenomena as a sustainable solid growth and is considered a remarkable outcome for any destination. The competitive situation and challenges within the tourism industry worldwide entail a better understanding of the destination position and its image to achieve Oman’s aspiration to retain its international reputation as one of the most desirable destinations in the Middle East. To access general perceptions of Oman’s attributes, their importance and their influences among U.S. tourists, an online survey was conducted with 522 American travelers who have traveled internationally, including non-visitors, virtual-visitors and visitors to Oman. This research involved a total of 36 attributes in the survey. Participants were asked to rate their agreement on how each attribute represented Oman and how important each attribute was for selecting destinations on 5- point Likert Scale. They also indicated if each attribute has a positive, neutral or negative influence on their destination selection. Descriptive statistics and importance performance analysis (IPA) were conducted. IPA illustrated U.S. tourists’ perceptions of Oman’s destination attributes and their importance in destination selection on a matrix with four quadrants, divided by actual mean value in each grid for importance (M=3.51) and performance (M=3.57). Oman tourism organizations and destination managers may use these research findings for future marketing and management efforts toward the U.S. travel market.

Keywords: analysis of importance, performance, destination attributes, Oman's position, U.S. tourists

Procedia PDF Downloads 306
2451 The Use of Water Resources Yield Model at Kleinfontein Dam

Authors: Lungile Maliba, O. I. Nkwonta, E Onyari

Abstract:

Water resources development and management are regarded as crucial for poverty reduction in many developing countries and sustainable economic growth such as South Africa. The contribution of large hydraulic infrastructure and management of it, particularly reservoirs, to development remains controversial. This controversy stems from the fact that from a historical point of view construction of reservoirs has brought fewer benefits than envisaged and has resulted in significant environmental and social costs. A further complexity in reservoir management is the variety of stakeholders involved, all with different objectives, including domestic and industrial water use, flood control, irrigation and hydropower generation. The objective was to evaluate technical adaptation options for kleinfontein Dam’s current operating rule curves. To achieve this objective, the current operating rules curves being used in the sub-basin were analysed. An objective methodology was implemented in other to get the operating rules with regards to the target storage curves. These were derived using the Water Resources Yield/Planning Model (WRY/PM), with the aim of maximising of releases to demand zones. The result showed that the system is over allocated and in addition the demands exceed the long-term yield that is available for the system. It was concluded that the current operating rules in the system do not produce the optimum operation such as target storage curves to avoid supply failures in the system.

Keywords: infrastructure, Kleinfontein dam, operating rule curve, water resources yield and planning model

Procedia PDF Downloads 139
2450 Comparison between Deterministic and Probabilistic Stability Analysis, Featuring Consequent Risk Assessment

Authors: Isabela Moreira Queiroz

Abstract:

Slope stability analyses are largely carried out by deterministic methods and evaluated through a single security factor. Although it is known that the geotechnical parameters can present great dispersal, such analyses are considered fixed and known. The probabilistic methods, in turn, incorporate the variability of input key parameters (random variables), resulting in a range of values of safety factors, thus enabling the determination of the probability of failure, which is an essential parameter in the calculation of the risk (probability multiplied by the consequence of the event). Among the probabilistic methods, there are three frequently used methods in geotechnical society: FOSM (First-Order, Second-Moment), Rosenblueth (Point Estimates) and Monte Carlo. This paper presents a comparison between the results from deterministic and probabilistic analyses (FOSM method, Monte Carlo and Rosenblueth) applied to a hypothetical slope. The end was held to evaluate the behavior of the slope and consequent risk analysis, which is used to calculate the risk and analyze their mitigation and control solutions. It can be observed that the results obtained by the three probabilistic methods were quite close. It should be noticed that the calculation of the risk makes it possible to list the priority to the implementation of mitigation measures. Therefore, it is recommended to do a good assessment of the geological-geotechnical model incorporating the uncertainty in viability, design, construction, operation and closure by means of risk management. 

Keywords: probabilistic methods, risk assessment, risk management, slope stability

Procedia PDF Downloads 391
2449 Wind Turbines Optimization: Shield Structure for a High Wind Speed Conditions

Authors: Daniyar Seitenov, Nazim Mir-Nasiri

Abstract:

Optimization of horizontal axis semi-exposed wind turbine has been performed using a shield protection that automatically protects the generator shaft at extreme wind speeds from over speeding, mechanical damage and continues generating electricity during the high wind speed conditions. A semi-exposed to wind generator has been designed and its structure has been described in this paper. The simplified point-force dynamic load model on the blades has been derived for normal and extreme wind conditions with and without shield involvement. Numerical simulation has been conducted at different values of wind speed to study the efficiency of shield application. The obtained results show that the maximum power generated by the wind turbine with shield does not exceed approximately the rated value of the generator, where shield serves as an automatic break for extreme wind speed values of 15 m/sec and above. Meantime the wind turbine without shield produced a power that is much larger than the rated value. The optimized horizontal axis semi-exposed wind turbine with shield protection is suitable for low and medium power generation when installed on the roofs of high rise buildings for harvesting wind energy. Wind shield works automatically with no power consumption. The structure of the generator with the protection, math simulation of kinematics and dynamics of power generation has been described in details in this paper.

Keywords: renewable energy, wind turbine, wind turbine optimization, high wind speed

Procedia PDF Downloads 179
2448 Continuous Improvement as an Organizational Capability in the Industry 4.0 Era

Authors: Lodgaard Eirin, Myklebust Odd, Eleftheriadis Ragnhild

Abstract:

Continuous improvement is becoming increasingly a prerequisite for manufacturing companies to remain competitive in a global market. In addition, future survival and success will depend on the ability to manage the forthcoming digitalization transformation in the industry 4.0 era. Industry 4.0 promises substantially increased operational effectiveness, were all equipment are equipped with integrated processing and communication capabilities. Subsequently, the interplay of human and technology will evolve and influence the range of worker tasks and demands. Taking into account these changes, the concept of continuous improvement must evolve accordingly. Based on a case study from manufacturing industry, the purpose of this paper is to point out what the concept of continuous improvement will meet and has to take into considering when entering the 4th industrial revolution. In the past, continuous improvement has the focus on a culture of sustained improvement targeting the elimination of waste in all systems and processes of an organization by involving everyone. Today, it has to be evolved into the forthcoming digital transformation and the increased interplay of human and digital communication system to reach its full potential. One main findings of this study, is how digital communication systems will act as an enabler to strengthen the continuous improvement process, by moving from collaboration within individual teams to interconnection of teams along the product value chain. For academics and practitioners, it will help them to identify and prioritize their steps towards an industry 4.0 implementation integrated with focus on continuous improvement.

Keywords: continuous improvement, digital communication system, human-machine-interaction, industry 4.0, team perfomance

Procedia PDF Downloads 204
2447 Starting Order Eight Method Accurately for the Solution of First Order Initial Value Problems of Ordinary Differential Equations

Authors: James Adewale, Joshua Sunday

Abstract:

In this paper, we developed a linear multistep method, which is implemented in predictor corrector-method. The corrector is developed by method of collocation and interpretation of power series approximate solutions at some selected grid points, to give a continuous linear multistep method, which is evaluated at some selected grid points to give a discrete linear multistep method. The predictors were also developed by method of collocation and interpolation of power series approximate solution, to give a continuous linear multistep method. The continuous linear multistep method is then solved for the independent solution to give a continuous block formula, which is evaluated at some selected grid point to give discrete block method. Basic properties of the corrector were investigated and found to be zero stable, consistent and convergent. The efficiency of the method was tested on some linear, non-learn, oscillatory and stiff problems of first order, initial value problems of ordinary differential equations. The results were found to be better in terms of computer time and error bound when compared with the existing methods.

Keywords: predictor, corrector, collocation, interpolation, approximate solution, independent solution, zero stable, consistent, convergent

Procedia PDF Downloads 501
2446 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method

Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.

Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image

Procedia PDF Downloads 314
2445 Development of Lectin-Based Biosensor for Glycoprofiling of Clinical Samples: Focus on Prostate Cancer

Authors: Dominika Pihikova, Stefan Belicky, Tomas Bertok, Roman Sokol, Petra Kubanikova, Jan Tkac

Abstract:

Since aberrant glycosylation is frequently accompanied by both physiological and pathological processes in a human body (cancer, AIDS, inflammatory diseases, etc.), the analysis of tumor-associated glycan patterns have a great potential for the development of novel diagnostic approaches. Moreover, altered glycoforms may assist as a suitable tool for the specificity and sensitivity enhancement in early-stage prostate cancer diagnosis. In this paper we discuss the construction and optimization of ultrasensitive sandwich biosensor platform employing lectin as glycan-binding protein. We focus on the immunoassay development, reduction of non-specific interactions and final glycoprofiling of human serum samples including both prostate cancer (PCa) patients and healthy controls. The fabricated biosensor was measured by label-free electrochemical impedance spectroscopy (EIS) with further lectin microarray verification. Furthermore, we analyzed different biosensor interfaces with atomic force microscopy (AFM) in nanomechanical mapping mode showing a significant differences in the altitude. These preliminary results revealing an elevated content of α-2,3 linked sialic acid in PCa patients comparing with healthy controls. All these experiments are important step towards development of point-of-care devices and discovery of novel glyco-biomarkers applicable in cancer diagnosis.

Keywords: biosensor, glycan, lectin, prostate cancer

Procedia PDF Downloads 372
2444 Delayed Contralateral Prophylactic Mastectomy (CPM): Reasons and Rationale for Patients with Unilateral Breast Cancer

Authors: C. Soh, S. Muktar, C. M. Malata, J. R. Benson

Abstract:

Introduction Reasons for requesting CPM include prevention of recurrence, peace of mind and moving on after breast cancer. Some women seek CPM as a delayed procedure but factors influencing this are poorly understood. Methods A retrospective analysis examined patients undergoing CPM as either an immediate or delayed procedure with or without breast reconstruction (BR) between January 2009 and December 2019. A cross-sectional survey based on validated questionnaires (5 point Likert scale) explored patients’ decision-making process in terms of timing of CPM and any BR. Results A total of 123 patients with unilateral breast cancer underwent CPM with 39 (32.5%) delayed procedures with or without BR. The response rate amongst patients receiving questionnaires (n=33) was 22/33 (66%). Within this delayed CPM cohort were three reconstructive scenarios 1) unilateral immediate BR with CPM (n=12); 2) delayed CPM with concomitant bilateral BR (n=22); 3) delayed bilateral BR after delayed CPM (n=3). Two patients had delayed CPM without BR. The most common reason for delayed CPM was to complete all cancer treatments (including radiotherapy) before surgery on the unaffected breast (score 2.91). The second reason was unavailability of genetic test results at the time of therapeutic mastectomy (score 2.64) whilst the third most cited reason was a subsequent change in family cancer history. Conclusion Factors for delayed CPM are patient-driven with few women spontaneously changing their mind having initially decided against immediate CPM for reasons also including surgical duration. CPM should be offered as a potentially delayed option with informed discussion of risks and benefits.

Keywords: Breast Cancer, CPM, Prophylactic, Rationale

Procedia PDF Downloads 112
2443 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI

Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz

Abstract:

Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.

Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI

Procedia PDF Downloads 520
2442 Monstrous Beauty: Disability and Illness in Contemporary Pop Culture

Authors: Grzegorz Kubinski

Abstract:

In the proposed paper, we would like to present the phenomenon of disease and disability as an element of discourse redefining the contemporary canons of beauty and the category of normativity. In widely understood media, and above all in social media and fashion industry, the use of the disease as an aesthetic category has long been observed. There is an interesting case of promoting and maintaining a certain, ideal pattern of physical beauty, while at the same time very clear exploitation of various types of illnesses. The categories of disease and disabled body are shown as an element of the expression of the individuality and originality of one's own identity, while at the same time the disabled person is still experiencing social exclusion. Illness or body abnormality as an aesthetic category also functions as an ethical-political category. The analysis of the interrelations of these discourses will be presented on the example of selected projects present in social media, like Instagram or Facebook. We would like to present how old forms of 'curiosities' or 'abnormalities' turned into mainstream forms of a new aesthetic. For marginalized disabled people, there is a new form of expression and built their identity. But, there is an interesting point: are this contemporary forms of using disability and illness really new? Or maybe this is just another form of Wunderkammer or even cabinets of curiosities? We propose to analyze contemporary cultural and social context in order to clarify this issue. On the other hand, we would like to present some examples from personal interviews with disabled internet influencers and statements disabled persons concerning the role of the different body in society (e.g. #bodypositive, #perfeclyflawed).

Keywords: disability, new media, defect, fashion

Procedia PDF Downloads 188
2441 The Effects of the War between Russia and Ukraine on Qatar’s Fossil and Renewable Energy Policies

Authors: Rahmat Hajimineh, Ebrahim Rezaei Rad

Abstract:

The war between Russia and Ukraine is considered a very important event in international relations, especially after the end of the Cold War, a war that has had wide dimensions since its beginning. Dimensions that, in addition to political issues, have especially affected the world economy and especially the two countries. The most important issue in the field of the economy that was affected by the war between Russia and Ukraine was the issue of energy. Russia is one of the largest producers and suppliers of natural gas for European countries, and 40% of European gas is supplied by Russia. For this reason, it is natural that European countries have problems in this regard. On the other hand, Ukraine is considered the gateway to Europe for Russia regarding the export of natural gas. The war in Ukraine has had severe effects on gas and energy in Europe. From this point of view, European countries are looking to diversify their energy path by switching to renewable energies, and they are also looking at other energy-producing countries like Qatar to meet their energy needs. In this article, we are trying to investigate the impact of the war between Russia and Ukraine on Qatar's policies in the field of fossil and renewable energy. The descriptive-analytical method and the theoretical framework of energy security have been used to review this article. Based on this, the article examines the situation of fossil and renewable energies in Qatar and, on the other hand, the effects of the war in Ukraine on both energies in Qatar. The findings of this article also indicate that Qatar has made changes in its energy policies after the war in Ukraine, which seems to be possible due to its high potential, especially in the field of renewable and fossil energy. There is an export of surplus production of this country to other countries, especially European countries.

Keywords: Ukraine War, fossil fuels, renewable energy, energy security, Qatar

Procedia PDF Downloads 99
2440 Comparative Study between Inertial Navigation System and GPS in Flight Management System Application

Authors: Othman Maklouf, Matouk Elamari, M. Rgeai, Fateh Alej

Abstract:

In modern avionics the main fundamental component is the flight management system (FMS). An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. The main function of the FMS is in-flight management of the flight plan using various sensors such as Global Positioning System (GPS) and Inertial Navigation System (INS) to determine the aircraft's position and guide the aircraft along the flight plan. GPS which is satellite based navigation system, and INS which generally consists of inertial sensors (accelerometers and gyroscopes). GPS is used to locate positions anywhere on earth, it consists of satellites, control stations, and receivers. GPS receivers take information transmitted from the satellites and uses triangulation to calculate a user’s exact location. The basic principle of an INS is based on the integration of accelerations observed by the accelerometers on board the moving platform, the system will accomplish this task through appropriate processing of the data obtained from the specific force and angular velocity measurements. Thus, an appropriately initialized inertial navigation system is capable of continuous determination of vehicle position, velocity and attitude without the use of the external information. The main objective of article is to introduce a comparative study between the two systems under different conditions and scenarios using MATLAB with SIMULINK software.

Keywords: flight management system, GPS, IMU, inertial navigation system

Procedia PDF Downloads 299
2439 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 143
2438 In vitro Cytotoxicity Study on Silver Powders Synthesized via Different Routes

Authors: Otilia Ruxandra Vasile, Ecaterina Andronescu, Cristina Daniela Ghitulica, Bogdan Stefan Vasile, Roxana Trusca, Eugeniu Vasile, Alina Maria Holban, Carmen Mariana Chifiriuc, Florin Iordache, Horia Maniu

Abstract:

Engineered powders offer great promise in several applications, but little information is known about cytotoxicity effects. The aim of the current study was the synthesis and cytotoxicity examination of silver powders using pyrosol method at temperatures of 600°C, 650°C and 700°C, respectively sol-gel method and calcinations at 500°C, 600°C, 700°C and 800°C. We have chosen to synthesize and examine silver particles cytotoxicity due to its use in biological applications. The synthesized Ag powders were characterized from the structural, compositional and morphological point of view by using XRD, SEM, and TEM with SAED. In order to determine the influence of the synthesis route on Ag particles cytotoxicity, different sizes of micro and nanosilver synthesized powders were evaluated for their potential toxicity. For the study of their cytotoxicity, cell cycle and apoptosis have been done analysis through flow cytometry on human colon carcinoma cells and mesenchymal stem cells and through the MTT assay, while the viability and the morphological changes of the cells have been evaluated by using cloning studies. The results showed that the synthesized silver nanoparticles have displayed significant cytotoxicity effects on cell cultures. Our synthesized silver powders were found to present toxicity in a synthesis route and time-dependent manners for pyrosol synthesized nanoparticles; whereas a lower cytotoxicity has been measured after cells were treated with silver nanoparticles synthesized through sol-gel method.

Keywords: Ag, cytotoxicity, pyrosol method, sol-gel method

Procedia PDF Downloads 594
2437 Modeling Slow Crack Growth under Thermal and Chemical Effects for Fitness Predictions of High-Density Polyethylene Material

Authors: Luis Marquez, Ge Zhu, Vikas Srivastava

Abstract:

High-density polyethylene (HDPE) is one of the most commonly used thermoplastic polymer materials for water and gas pipelines. Slow crack growth failure is a well-known phenomenon in high-density polyethylene material and causes brittle failure well below the yield point with no obvious sign. The failure of transportation pipelines can cause catastrophic environmental and economic consequences. Using the non-destructive testing method to predict slow crack growth failure behavior is the primary preventative measurement employed by the pipeline industry but is often costly and time-consuming. Phenomenological slow crack growth models are useful to predict the slow crack growth behavior in the polymer material due to their ability to evaluate slow crack growth under different temperature and loading conditions. We developed a quantitative method to assess the slow crack growth behavior in the high-density polyethylene pipeline material under different thermal conditions based on existing physics-based phenomenological models. We are also working on developing an experimental protocol and quantitative model that can address slow crack growth behavior under different chemical exposure conditions to improve the safety, reliability, and resilience of HDPE-based pipeline infrastructure.

Keywords: mechanics of materials, physics-based modeling, civil engineering, fracture mechanics

Procedia PDF Downloads 205
2436 Control System Design for a Simulated Microbial Electrolysis Cell

Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen

Abstract:

Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.

Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller

Procedia PDF Downloads 247
2435 Global Health, Humanitarian Medical Aid, and the Ethics of Rationing

Authors: N. W. Paul, S. Michl

Abstract:

In our globalized world we need to appreciate the fact that questions of health and justice need to be addressed on a global scale, too. The way in which diverse governmental and non-governmental initiatives are trying to answer the need for humanitarian medical aid has long since been a visible result of globalized responsibility. While the intention of humanitarian medical aids seems to be evident, the allocation of resources has become more and more an ethical and societal challenge. With a rising number and growing dimension of humanitarian catastrophes around the globe the search for ethically justifiable ways to decide who might benefit from limited resources has become a pressing question. Rooted in theories of justice (Rawls) and concepts of social welfare (Sen) we developed and implemented a model for an ethically sound distribution of a limited annual budget for humanitarian care in one of the largest medical universities of Germany. Based on our long lasting experience with civil casualties of war (Afghanistan) and civil war (Libya) as well as with under- and uninsured and/or stateless patients we are now facing the on-going refugee crisis as our most recent challenge in terms of global health and justice. Against this background, the paper strives to a) explain key issues of humanitarian medical aid in the 21st century, b) explore the problem of rationing from an ethical point of view, c) suggest a tool for the rational allocation of scarce resources in humanitarian medical aid, d) present actual cases of humanitarian care that have been managed with our toolbox, and e) discuss the international applicability of our model beyond local contexts.

Keywords: humanitarian care, medical ethics, allocation, rationing

Procedia PDF Downloads 397
2434 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 250
2433 Experimental and Computational Analysis of Glass Fiber Reinforced Plastic Beams with Piezoelectric Fibers

Authors: Selin Kunc, Srinivas Koushik Gundimeda, John A. Gallagher, Roselita Fragoudakis

Abstract:

This study investigates the behavior of Glass Fiber Reinforced Plastic (GFRP) laminated beams additionally reinforced with piezoelectric fibers. The electromechanical behavior of piezoelectric materials coupled with high strength/low weight GFRP laminated beams can have significant application in a wide range of industries. Energy scavenging through mechanical vibrations is the focus of this study, and possible applications can be seen in the automotive industry. This study examines the behavior of such composite laminates using Classical Lamination Theory (CLT) under three-point bending conditions. Fiber orientation is optimized for the desired stiffness and deflection that yield maximum energy output. Finite element models using ABAQUS/CAE are verified through experimental testing. The optimum stacking sequences examined are [0o]s, [ 0/45o]s, and [45/-45o]s. Results show the superiority of the stacking sequence [0/45o]s, providing higher strength at a lower weight, and maximum energy output. Furthermore, laminated GFRP beams additionally reinforced with piezoelectric fibers can be used under bending to not only replace metallic component while providing similar strength at a lower weight but also provide an energy output.

Keywords: classical lamination theory (CLT), energy scavenging, glass fiber reinforced plastics (GFRP), piezoelectric fibers

Procedia PDF Downloads 306
2432 Veering Pattern in Human Walking in Sighted and Blindfolded Conditions

Authors: Triloki Prasad, Subhankar Ghosh, Asis Goswami

Abstract:

The information received from visual organ plays an important role in human locomotion and human beings generally veer from the straight line in the absence of visual cue. Since in case of visually impaired persons this support is unavailable they are expected to have a different type of locomotion behaviour than the sighted persons. Higher degree of veering can result in accident or injury during indoor and outdoor activities. Hence, it is important to know the degree of veering that may happen in case of a sighted individual loosing the visual input. The present study was conducted on fifty three volunteers who walked with open and closed eyes, at their comfortable pace, in a grid marked area of 17m by 10m space. The volunteers had to walk in a straight line from a central starting point during three trials and their walking path was marked with a pair of sponge absorbed with three different colours. All volunteers had walked expectedly in straight line during open eye condition but had varied degree of veering during closed eye state. The correlation between the first step side and the side of deviation was not significant in closed eye condition. The number of steps taken in open eye and closed eye condition were significantly different while travelling similar distances. This study reveals that sighted persons become cautious during walking if the visual cue is not available and they reduce the step length so there is increase in step number.

Keywords: Closed eye, Open eye, Footprint, Veering

Procedia PDF Downloads 203