Search results for: material wear
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7059

Search results for: material wear

2799 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System

Authors: A. Mohamed Mydeen, Pallapa Venkataram

Abstract:

The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.

Keywords: knowledge representation, pervasive computing, agent technology, ECA rules

Procedia PDF Downloads 338
2798 Overall Stability of Welded Q460GJ Steel Box Columns: Experimental Study and Numerical Simulations

Authors: Zhou Xiong, Kang Shao Bo, Yang Bo

Abstract:

To date, high-performance structural steel has been widely used for columns in construction practices due to its significant advantages over conventional steel. However, the same design approach with conventional steel columns is still adopted in the design of high-performance steel columns. As a result, its superior properties cannot be fully considered in design. This paper conducts a test and finite element analysis on the overall stability behaviour of welded Q460GJ steel box columns. In the test, four steel columns with different slenderness and width-to-thickness ratio were compressed under an axial compression testing machine. And finite element models were established in which material nonlinearity and residual stress distributions of test columns were included. Then, comparisons were made between test results and finite element result, it showed that finite element analysis results are agree well with the test result. It means that the test and finite element model are reliable. Then, we compared the test result with the design value calculated by current code, the result showed that Q460GJ steel box columns have the higher overall buckling capacity than the design value. It is necessary to update the design curves for Q460GJ steel columns so that the overall stability capacity of Q460GJ box columns can be designed appropriately.

Keywords: axial compression, box columns, global buckling, numerical simulations, Q460GJ steel

Procedia PDF Downloads 403
2797 Preparation and Characterization of Bioplastic from Sorghum Husks

Authors: Hannatu Abubakar Sani, Abubakar Umar Birnin Yauri, Aliyu Muhammad, Mujahid Salau, Aminu Musa, Hadiza Adamu Kwazo

Abstract:

The increase in the global population and advances in technology have made plastic materials to have wide applications in every aspect of life. However, the non-biodegradability of these petrochemical-based materials and their increasing accumulation in the environment has been a threat to the planet and has been a source of environmental concerns and hence, the driving force in the search for ‘green’ alternatives for which agricultural waste remains the front liner. Sorghum husk, an agricultural waste with potentials as a raw material in the production of bioplastic, was used in this research to prepare bioplastic using sulphuric acid-catalyzed acetylation process. The prepared bioplastic was characterized by X-ray diffraction and Fourier transform infrared spectroscopy (FTIR), and the structure of the prepared bioplastic was confirmed. The Fourier transform infrared spectroscopy (FTIR) spectra of the product displayed the presence of OH, C-H, C=O, and C-O absorption peaks. The bioplastic obtained is biodegradable and is affected by acid, salt, and alkali to a lesser extent. Other tests like solubility and swelling studies were carried out to ensure the commercial properties of these bioplastic materials. Therefore, this revealed that new bioplastics with better environmental and sustainable properties could be produced from agricultural waste, which may have applications in many industries.

Keywords: agricultural waste, bioplastic, characterization, Sorghum Husk

Procedia PDF Downloads 158
2796 Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes

Authors: Chandra Shekhar Maurya, Chiranjit Sarkar

Abstract:

The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off.

Keywords: magnetorheological fluid, rheological properties, shears stress, shears strain, viscosity

Procedia PDF Downloads 178
2795 Effect of Tool Geometry and Welding Parameters on Macrostructure and Weld Strength in Friction Stir Welded of High Density Polyethylene Sheets

Authors: Mustafa Kemal Bilici, Memduh Kurtulmuş, İlyas Kartal, Ahmet İrfan Yükler

Abstract:

Friction stir welding is a solid-state joining process that has gained acceptable progress in recent years. This method which was first used for welding of aluminum and its alloys is now employed for welding of other materials such as polymers and composites. The aim of the present work is to investigate the mechanical properties of butt joints produced by friction stir welding (FSW) in high density polyethylene sheets of 4 mm thickness. The effects of critical welding parameters and tool design have affected on mechanical properties, weld surface and macrostructure of friction stir welded polyethylene. Experiments were performed at tool rotational speeds of 600, 900, 1200 and 1500 r/min and traverse speeds of 30, 45 and 60 mm/min, tool diameters (d) of 4, 5, 6 mm and tool shoulder diameters (D) 20, 25, 30 mm. A strength value of 80 % of the base material was achieved at the isolated optimum welding condition. According to the tool design, the welding parameters and the mechanical properties changed to a great extent. The highest tensile strength was achieved at low feed rates, high tool rotation speeds and shoulder diameters/pin diameters ratio.

Keywords: friction stir welding, mechanical properties, polyethylene, high density polyethylene, tool design

Procedia PDF Downloads 394
2794 Comparative Life Cycle Assessment of Roofing System for Abu Dhabi

Authors: Iyasu Eibedingil

Abstract:

The construction industry is one of the major factors responsible for causing a negative impact on the environment. It has the largest share in the use of natural resources including land use, material extraction, and greenhouse gases emissions. For this reason, it is imperative to reduce its environmental impact through the construction of sustainable buildings with less impact. These days, it is possible to measure the environmental impact by using different tools such as the life cycle assessment (LCA) approach. Given this premise, this study explored the environmental impact of two types of roofing systems through comparative life cycle assessment approach. The tiles were analyzed to select the most environmentally friendly roofing system for the villa at Khalifa City A, Abu Dhabi, United Arab Emirates. These products are available in various forms; however, in this study concrete roof tiles and clay roof tiles were considered. The results showed that concrete roof tiles have lower environmental impact. In all scenarios considered, manufacturing the roof tiles locally, using recovered fuels for firing clay tiles, and using renewable energy (electricity from PV plant) showed that the concrete roof tiles were found to be excellent in terms of its embodied carbon, embodied the energy and various other environmental performance indicators.

Keywords: clay roof tile, concrete roof tile, life cycle assessment, sensitivity analysis

Procedia PDF Downloads 392
2793 Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production

Authors: Premrudee Promdet, Fan Cui, Gi Byoung Hwang, Ka Chuen To, Sanjayan Sathasivam, Claire J. Carmalt, Ivan P. Parkin

Abstract:

A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites.

Keywords: photocatalysis, photoelectrochemical cell (PEC), aerosol-assisted chemical vapor deposition (AACVD), surface plasmon resonance (SPR)

Procedia PDF Downloads 219
2792 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method

Authors: S. A. Tabatabaei, S. Aarabi

Abstract:

Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element package

Keywords: viscoelasticity, finite element method, repeated loading, HMA

Procedia PDF Downloads 398
2791 Microwave Assisted Thermal Cracking of Castor Oil Zeolite ZSM-5 as Catalyst for Biofuel Production

Authors: Ghazi Faisal Najmuldeen, Ali Abdul Rahman–Al Ezzi, Tharmathas A/L Alagappan

Abstract:

The aim of this investigation was to produce biofuel from castor oil through microwave assisted thermal cracking with zeolite ZSM-5 as catalyst. The obtained results showed that microwave assisted thermal cracking of castor oil with Zeolite ZSM-5 as catalyst generates products consisting of alcohol, methyl esters and fatty acids. The products obtained from this experimental procedure by the cracking of castor oil are components of biodiesel. Samples of cracked castor oil containing 1, 3 and 5wt % catalyst was analyzed, however, only the sample containing the 5wt % catalyst showed significant presence of condensate. FTIR and GCMS studies show that the condensate obtained is an unsaturated fatty acid, is 9, 12-octadecadienoic acid, suitable for biofuel use. 9, 12-octadecadienoic acid is an unsaturated fatty acid with a molecular weight of 280.445 g/mol. Characterization of the sample demonstrates that functional group for the products from the three samples display a similar peak in the FTIR graph analysis at 1700 cm-1 and 3600 cm-1. The result obtained from GCMS shows that there are 16 peaks obtained from the sample. The compound with the highest peak area is 9, 12-octadecadienoic acid with a retention time of 9.941 and 24.65 peak areas. All these compounds are organic material and can be characterized as biofuel and biodiesel.

Keywords: castor oil, biofuel, biodiesel, thermal cracking, microwave

Procedia PDF Downloads 233
2790 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 117
2789 Impact of Natural Degradation of Low Density Polyethylene on Its Morphology

Authors: Meryem Imane Babaghayou, Asma Abdelhafidi, Salem Fouad Chabira, Mohammed Sebaa

Abstract:

A challenge of plastics industries is the realization of materials that resist the degradation in its application environment, and that to guarantee a longer life time therefore an optimal time of use. Blown extruded films of low-density polyethylene (LDPE) supplied by SABIC SAUDI ARABIA blown and extruded in SOFIPLAST company in Setif ALGERIA , have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. Samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques after prescribed amounts of time up to 8 months. It has been shown via these two techniques the impact of UV irradiation on the morphological development of a plastic material, especially the crystallinity degree which increases with exposure time. The reason of these morphological changes is related to photooxidative reactions leading to cross linking in the beginning and to chain scissions for an advanced stage of ageing this last ones are the first responsible. The crystallinity degree change is essentially controlled by the secondary crystallization of the amorphous chains whose mobility is enhanced by the chain scission processes. The diffusion of these short segments integrates the surface of the lamellae increasing in this way their thicknesses. The results presented highlight the complexity of the involved phenomena.

Keywords: Low Density poly (Ethylene), crystallinity, ageing, XRD, DSC

Procedia PDF Downloads 408
2788 Investigation of the Inhibition Effect of 2,3-Diaminopyridine on Mild Steel Corrosion in Solution Simulating Water of Pores Concrete in Absence and Presence of Chloride Ions

Authors: Fatiha Benghanem, Mokhtar Berarma, Saida Keraghel, Ali Ourari

Abstract:

Corrosion is the result of the reaction between a material and its environment. Steel in concrete is protected from corrosion by a passive film promoted by concrete alkalinity. For the initiation of corrosion, this protective film must be destroyed and this can be mainly done in two ways: by the attack of chlorides on the steel or by carbonation of the cover concrete due the reaction with carbon dioxide, which causes reduction in the alkalinity of concrete. The literature reports several ways to decrease or to prevent reinforcement corrosion. Among them, the use of corrosion inhibitors has been an envisaged solution. Two approaches are generally used to evaluate the efficiency of inhibitors for concrete application; one uses simulated pore solution testing , and the other uses actual concrete or mortar specimens. Both methods are some times used in conjunction. The aim of this study is to investigate the use of 2,3-diaminopyridine as a corrosion inhibitors of steel in alkaline media which simulate the electrolyte in the concrete pores. The effectiveness of this compound as corrosion inhibitor was investigated by measuring the corrosion potentials, the polarization curves and the corrosion current densities of steel with and without chlorides. The study of corrosion inhibition by this compound led to the conclusion that he has low rates of inhibition in the absence of aggressive ions and high rates in their presence. This type of organic compounds are promoting for the protection of armatures in concrete.

Keywords: corrosion, inhibitors, mild steel, conjunction

Procedia PDF Downloads 442
2787 The Influence of Social Media to Trends Design at Restaurant in Urban Area of Yogyakarta Province, Indonesia

Authors: Suparwoko, M. Hardyan Prastyanto, Aisah Azhari Marwangi

Abstract:

Today, we face with some paradoxical tendencies. In the field of culture, on the one hand, we are witnessing the emergence of ethnic and religious fervor that is becoming stronger, but on the other hand, we are also witnessing a new ideology that characterized the flow of transnationalism, globalism, and secularism. Through social media, the globalization movement is accommodated to spread all over the world. Globalization also requires the commercialization of many fields, including architecture. In the architecture of commercial buildings, the appeal of the building is an important aspect for the function of the building. That theory is the basis for research of this study. This study aimed to know the influence of social media on the changing trends in the design of restaurant in urban areas of Yogyakarta Province. This study is using observation (survey) method to restaurants in Yogyakarta and surrounding areas to collect data, then the assessment of data by using the theory of the social media Path and Instagram that provide trend information from interior and building facades of the restaurant. By using social media Path and Instagram based survey methods, it can be seen that the intensity of social media users who publish or promote restaurant that has been chosen. Generally, conventional character of the restaurant have changed into a material and visually conceptual restaurant.

Keywords: influence, social media, changes, architecture trend

Procedia PDF Downloads 319
2786 Thermal Diffusion of Photovoltaic Organic Semiconductors Determined by Scanning Photothermal Deflection Technique

Authors: K.L. Chiu, Johnny K. W. Ho, M. H. Chan, S. H. Cheung, K. H. Chan, S.K. So

Abstract:

Thermal diffusivity is an important quantity in heat conduction. It measures the rate of heat transfer from the hot side to the cold side of a material. In solid-state materials, thermal diffusivity reveals information related to morphologies and solid quality, as thermal diffusivity can be affected by microstructures. However, thermal diffusivity studies on organic semiconductors are very limited. In this study, scanning photothermal deflection (SPD) technique is used to study the thermal diffusivities of different classes of semiconducting polymers. The reliability of the technique was confirmed by crossing-checking our SPD derived experimental values of different reference materials with their known diffusivities from the literature. To show that thermal diffusivity determination is a potential tool for revealing microscopic properties of organic photovoltaic semiconductors, SPD measurements were applied to various organic semiconducting films with different crystallinities. It is observed that organic photovoltaic semiconductors possess low thermal diffusivity, with values in the range of 0.3mm²/s to 1mm²/s. It is also discovered that polymeric photovoltaic semiconductors with greater molecular planarity, stronger stacking and higher crystallinity would possess greater thermal diffusivities. Correlations between thermal, charge transport properties will be discussed.

Keywords: polymer crystallinity, photovoltaic organic semiconductors, photothermal deflection technique, thermal diffusion

Procedia PDF Downloads 143
2785 Oxidative Stress Markers in Sports Related to Training

Authors: V. Antevska, B. Dejanova, L. Todorovska, J. Pluncevic, E. Sivevska, S. Petrovska, S. Mancevska, I. Karagjozova

Abstract:

Introduction: The aim of this study was to optimise the laboratory oxidative stress (OS) markers in soccer players. Material and methods: In a number of 37 soccer players (21±3 years old) and 25 control subjects (sedenters), plasma samples were taken for d-ROMs (reactive oxygen metabolites) and NO (nitric oxide) determination. The d-ROMs test was performed by measurement of hydroperoxide levels (Diacron, Italy). For NO determination the method of nitrate enzyme reduction with the Greiss reagent was used (OXIS, USA). The parameters were taken after the training of the soccer players and were compared with the control group. Training was considered as maximal exercise treadmill test. The criteria of maximum loading for each subject was established as >95% maximal heart rate. Results: The level of d-ROMs was found to be increased in the soccer players vs. control group but no significant difference was noticed. After the training d-ROMs in soccer players showed increased value of 299±44 UCarr (p<0.05). NO showed increased level in all soccer players vs. controls but significant difference was found after the training 102±29 μmol (p<0.05). Conclusion: Due to these results we may suggest that the measuring these OS markers in sport medicine may be useful for better estimation and evaluation of the training program. More oxidative stress should be used to clarify optimization of the training intensity program.

Keywords: oxidative stress markers, soccer players, training, sport

Procedia PDF Downloads 447
2784 A Cross-Sectional Study on Smartphone Addiction, Sleep Hygiene, and Perceived Stress

Authors: Kriti Singh, Saurabh Tripathi, Pankaj Chaudhary, Abid Ali Ansari, Seema Nigam

Abstract:

Introduction: The introduction of android and iOS has changed our lives dramatically over the past few years. The new generation is more dependent on their mobile phones for carrying out their daily pursuits. Smartphones have revolutionized our lives. The cutdown in rates of mobile network services has been affecting us drastically. A new type of dependence is seen among the people for Smartphones. A cross-sectional study was conducted to determine the state of addiction among the group of medical students, along with its association with sleep hygiene and anxiety. Material and Method: Study included 50 individuals in the age group of 18-35 years. Smartphone Addiction Scale Short Version, Sleep Hygiene Index, and Perceived Stress Scales were used conducting the study. Results: Mean age of 22 years (12%). The majority of subjects were 20-year olds (15 out of 50), the majority were males with few females. Mean Smartphone addiction score 39 (very severe), Mean Sleep Hygiene Index score 26.76 (moderate maladaptive hygiene and Mean Perceived Stress score of 19.92 (moderate stress). Conclusion: In majority students were found to have a very severe Smartphone Addiction with moderate sleep hygiene and a moderate level of perceived stress. The Smartphone was being used was for surfing social media applications.

Keywords: addiction perceived stress, sleep hygiene index, smartphone

Procedia PDF Downloads 137
2783 Photocatalytic Degradation of Naproxen in Water under Solar Irradiation over NiFe₂O₄ Nanoparticle System

Authors: H. Boucheloukh, S. Rouissa, N. Aoun, M. Beloucifa, T. Sehili, F. Parrino, V. Loddo

Abstract:

To optimize water purification and wastewater treatment by heterogeneous photocatalysis, we used NiFe₂O₄ as a catalyst and solar irradiation as a source of energy. In this concept, an organic substance present in many industrial effluents was chosen: naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid or 2-(6-methoxynaphthalenyl) propanoic), a non-steroidal anti-inflammatory drug. The main objective of this study is to degrade naproxen by an iron and nickel catalyst, the degradation of this organic pollutant by nickel ferrite has been studied in a heterogeneous aqueous medium, with the study of the various factors influencing photocatalysis such as the concentration of matter and the acidity of the medium. The photocatalytic activity was followed by HPLC-UV andUV-Vis spectroscopy. A first-order kinetic model appropriately fitted the experimental data. The degradation of naproxen was also studied in the presence of H₂O₂ as well as in an aqueous solution. The new hetero-system NiFe₂O₄/oxalic acid is also discussed. The fastest naproxen degradation was obtained with NiFe₂O₄/H₂O₂. In a first-place, we detailed the characteristics of the material NiFe₂O₄, which was synthesized by the sol-gel methods, using various analytical techniques: visible UV spectrophotometry, X-ray diffraction, FTIR, cyclic voltammetry, luminescent discharge optical emission spectroscopy.

Keywords: naproxen, nickelate, photocatalysis, oxalic acid

Procedia PDF Downloads 210
2782 First Principle Studies on the Structural, Electronic and Magnetic Properties of Some BaMn-Based Double Perovskites

Authors: Amel Souidi, S. Bentata, B. Bouadjemi, T. Lantri, Z. Aziz

Abstract:

Perovskite materials which include magnetic elements have relevance due to the technological perspectives in the spintronics industry. In this work, we have investigated the structural, electronic and magnetic properties of double perovskites Ba2MnXO6 with X= Mo and W by using the full-potential linearized augmented plane wave (FP-LAPW) method based on Density Functional Theory (DFT) [1, 2] as implemented in the WIEN2K [3] code. The interchange-correlation potential was included through the generalized gradient approximation (GGA) [4] as well as taking into account the on-site coulomb repulsive interaction in (GGA+U) approach. We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. The results show that the materials crystallize in the 225 space group (Fm-3m) and have a lattice parameter of about 7.97 Å and 7.95 Å for Ba2MnMoO6 and Ba2MnWO6, respectively. The band structures reveal a metallic ferromagnetic (FM) ground state in Ba2MnMoO6 and half-metallic (HM) ferromagnetic (FM) ground state in the Ba2MnWO6 compound, with total magnetic moment equal 2.9951μB (Ba2MnMoO6 ) and 4.0001μB (Ba2MnWO6 ). The GGA+U calculations predict an energy gap in the spin-up bands in Ba2MnWO6. So we estimate that this material with HM-FM nature implies a promising application in spin-electronics technology.

Keywords: double perovskites, electronic structure, first-principles, semiconductors

Procedia PDF Downloads 368
2781 Development of Filling Material in 3D Printer with the Aid of Computer Software for Supported with Natural Zeolite for the Removal of Nitrogen and Phosphorus

Authors: Luís Fernando Cusioli, Leticia Nishi, Lucas Bairros, Gabriel Xavier Jorge, Sandro Rogério Lautenschalager, Celso Varutu Nakamura, Rosângela Bergamasco

Abstract:

Focusing on the elimination of nitrogen and phosphorus from sewage, the study proposes to face the challenges of eutrophication and to optimize the effectiveness of sewage treatment through biofilms and filling produced by a 3D printer, seeking to identify the most effective Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS). The study also proposes to evaluate the nitrification process in a Submerged Aerated Biological Filter (FBAS) on a pilot plant scale, quantifying the removal of nitrogen and phosphorus. The experiment will consist of two distinct phases, namely, a bench stage and the implementation of a pilot plant. During the bench stage, samples will be collected at five points to characterize the microbiota. Samples will be collected, and the microbiota will be investigated using Fluorescence In Situ Hybridization (FISH), deepening the understanding of the performance of biofilms in the face of multiple variables. In this context, the study contributes to the search for effective solutions to mitigate eutrophication and, thus, strengthen initiatives to improve effluent treatment.

Keywords: eutrophication, sewage treatment, biofilms, nitrogen and phosphorus removal, 3d printer, environmental efficiency

Procedia PDF Downloads 89
2780 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability

Procedia PDF Downloads 250
2779 Gypsum Composites with CDW as Raw Material

Authors: R. Santos Jiménez, A. San-Antonio-González, M. del Río Merino, M. González Cortina, C. Viñas Arrebola

Abstract:

On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained.

Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum

Procedia PDF Downloads 510
2778 Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile

Authors: Z. Younsi, L. Koufi, H. Gidik, D. Lahem, W. Wim Thielemans

Abstract:

This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising.

Keywords: benzene, C₆H₆, efficiency, photocatalytic degradation, textile fabrics, titanium dioxide, TiO₂, toluene, C₇H₈, visible light

Procedia PDF Downloads 174
2777 The Prevalence of Coronary Artery Disease and Its Risk Factors in Rural and Urban Areas of Pakistan

Authors: Muhammad Kamran Hanif Khan, Fahad Mushtaq

Abstract:

Background: In both developed and underdeveloped countries, coronary artery disease (CAD) is a serious cause of death and disability. Cardiovascular disease (CVD) is becoming more prevalent in emerging countries like Pakistan due to the spread and acceptance of Western lifestyles. Material and Methods: An observational cross-sectional investigation was conducted, and data collection relied on a random cluster sampling method. The sample size for this cross-sectional study was calculated using the following factors: estimated true proportion of 17.5%, desired precision of 2%, and confidence interval of 95%. The data for this study was collected from a sample of 1387 adults. Results: The average age of those living in rural areas is 55.24 years, compared to 52.60 years for those living in urban areas. The mean fasting blood glucose of the urban participants is 105.28 mg/dL, which is higher than the mean fasting blood glucose of the rural participants, which is 102.06 mg/dL. The mean total cholesterol of the urban participants is 192.20 mg/dL, which is slightly higher than the mean total cholesterol of the rural participants, which is 191.97 mg/dL. CAD prevalence is greater in urban areas than in rural areas. ECG abnormalities prevalence is 16.1% in females compared to 12.5% in men. Conclusion: The prevalence of CAD is more common in urban areas than in rural ones for all of the measures of CAD used in the study.

Keywords: CVD prevalence, CVD risk factors, rural area, urban area

Procedia PDF Downloads 79
2776 Computational Study on the Crystal Structure, Electronic and Optical Properties of Perovskites a2bx6 for Photovoltaic Applications

Authors: Harmel Meriem

Abstract:

The optoelectronic properties and high power conversion efficiency make lead halide perovskites ideal material for solar cell applications. However, the toxic nature of lead and the instability of organic cation are the two key challenges in the emerging perovskite solar cells. To overcome these challenges, we present our study about finding potential alternatives to lead in the form of A2BX6 perovskite using the first principles DFT-based calculations. The highly accurate modified Becke Johnson (mBJ) and hybrid functional (HSE06) have been used to investigate the Main Document Click here to view linked References to optoelectronic and thermoelectric properties of A2PdBr6 (A = K, Rb, and Cs) perovskite. The results indicate that different A-cations in A2PdBr6 can significantly alter their electronic and optical properties. Calculated band structures indicate semiconducting nature, with band gap values of 1.84, 1.53, and 1.54 eV for K2PdBr6, Rb2PdBr6, and Cs2PdBr6, respectively. We find strong optical absorption in the visible region with small effective masses for A2PdBr6. The ideal band gap and optimum light absorption suggest Rb2PdBr6 and Cs2PdBr6 potential candidates for the light absorption layer in perovskite solar cells. Additionally.

Keywords: soler cell, double perovskite, optoelectronic properties, ab-inotio study

Procedia PDF Downloads 128
2775 Children and Parents Left behind in Transnational Families: The Problem of Care Deficit

Authors: Joanna Bielecka-Prus

Abstract:

In the view of increasing number of labour migrations associated with broadly understood economic crisis, many families experience migration separation. Currently, in the era of globalization, migration movements include an increasing number of families, more and more frequently a new type of family, a transnational family. Accordingly, the functions of the family, family practice of care, and the relationships between members of the group change especially in the case of female migration. Sociologists highlight the emotional aspects of migrants’ family lives: managing emotions, coping with guilt, loneliness and rejection. Not without significance is the fact that today's public discourse often represents migrant women in a negative light. On the one hand, consumption and expanding material resources are assessed positively, on the other hand, deficits emotional and devastation of family life in the transnational families appear. Opinions expressed by different environments: the media, the political environment, etc. do not always take into account the context of mobility and their different effects on family life. The paper will present the analysis of qualitative studies of Polish female migrants’ families left-behind (children, parents, caregivers N = 100) and their coping strategies in different situations in the event of migration separation. The main area of care deficit will be defined and it will be showed who and how help to solve the problems.

Keywords: care, children left behind, female migration, parents left behind

Procedia PDF Downloads 395
2774 Online Assessment in the Ligh of Resiliance

Authors: Renáta Nagy, Alexandra Csongor, Vilmos Warta

Abstract:

The presentation aims at eliciting insight into the results of ongoing research regarding evolving trends and attitudes towards online assessment of English and other languages. The focus pinpoints online as one of the most trending forms available during the global pandemic. The study was first initiated in 2019 in which its main target was to reveal the intriguing question of students’ and assessors’ attitudes towards online assessment. The research questions the attitudes towards the latest trends, possible online task types, and their advantages and disadvantages through an in-depth experimental process currently undergoing implementation. Material and methods include surveys, needs and wants analysis, and thorough investigations regarding candidates’ and assessors’ attitudes towards online tests in the field of languages. Over 400 respondents from more than 28 countries participated in the survey, which gives us an international and intercultural insight into how students with different cultural and educational background deal with the evolving online world. The results show the pandemic’s impact, which brought the slumbering online world of assessing roaring alive, fully operational, and now bears phenomenal relevance in today’s global education. Undeniably, the results can be used as a perspective in a vast array of contents. The survey hypothesized the generation of the 21st century expect everything readily available online, however, questions whether they are ready for this challenge are lurking in the background.

Keywords: assessment, english, intercultural, international, online, testing

Procedia PDF Downloads 79
2773 The Adoption of Technological Innovations in a B2C Context: An Empirical Study on the Higher Education Industry in Egypt

Authors: Maha Mourad, Rania Samir

Abstract:

This paper seeks to explain the adoption of technological innovations in a business to consumer context. Specifically, the use of web based technology (WEBCT/blackboard) in the delivery of educational material and communication with students at universities in Egypt is the focus of this study. The analysis draws on existing research in a B2C context which highlights the importance of internal organization characteristics, perceived attributes of the innovation as well as consumer based factors as the main drivers of adoption. A distinctive B2C model is developed drawing on Roger’s innovation adoption model, as well as theoretical and empirical foundations in previous innovation adoption literature to study the adoption of technological innovations in higher education in Egypt. The model proposes that the adoption decision is dependent on a combination of perceived attributes of the innovation, inter-organization factors and consumer factors. The model is testified drawing on the results of empirical work in the form of a large survey conducted on students in three different universities in Egypt (one public, one private and one international). In addition to the attributes of the innovation, specific organization factors (such as university resources) as well as consumer factors were identified as likely to have an important influence on the adoption of technological innovations in higher education.

Keywords: innovation, WEBCT, higher education, adoption, Egypt

Procedia PDF Downloads 547
2772 Final Costs of Civil Claims

Authors: Behnam Habibi Dargah

Abstract:

The economics of cost-benefit theory seeks to monitor claims and determine their final price. The cost of litigation is important because it is a measure of the efficiency of the justice system. From an economic point of view, the cost of litigation is considered to be the point of equilibrium of litigation, whereby litigation is regarded as a high-risk investment and is initiated when the costs are less than the probable and expected benefits. Costs are economically separated into private and social costs. Private cost includes material (direct and indirect) and spiritual costs. The social costs of litigation are also subsidized-centric due to the public and governmental nature of litigation and cover both types of bureaucratic bureaucracy and the costs of judicial misconduct. Macroeconomic policy in the economics of justice is the reverse engineering of controlling the social costs of litigation by employing selective litigation and working on the judicial culture to achieve rationality in the monopoly system. Procedures for controlling and managing court costs are also circumscribed to economic patterns in the field. Rational cost allocation model and cost transfer model. The rational allocation model deals with cost-tolerance systems, and the transfer model also considers three models of transferability, including legal, judicial and contractual transferability, which will be described and explored in the present article in a comparative manner.

Keywords: cost of litigation, economics of litigation, private cost, social cost, cost of litigation

Procedia PDF Downloads 129
2771 Settlement of the Foundation on the Improved Soil: A Case Study

Authors: Morteza Karami, Soheila Dayani

Abstract:

Deep Soil Mixing (DSM) is a soil improvement technique that involves mechanically mixing the soil with a binder material to improve its strength, stiffness, and durability. This technique is typically used in geotechnical engineering applications where weak or unstable soil conditions exist, such as in building foundations, embankment support, or ground improvement projects. In this study, the settlement of the foundation on the improved soil using the wet DSM technique has been analyzed for a case study. Before DSM production, the initial soil mixture has been determined based on the laboratory tests and then, the proper mix designs have been optimized based on the pilot scale tests. The results show that the spacing and depth of the DSM columns depend on the soil properties, the intended loading conditions, and other factors such as the available space and equipment limitations. Moreover, monitoring instruments installed in the pilot area verify that the settlement of the foundation has been placed in an acceptable range to ensure that the soil mixture is providing the required strength and stiffness to support the structure or load. As an important result, if the DSM columns touch or penetrate into the stiff soil layer, the settlement of the foundation can be significantly decreased. Furthermore, the DSM columns should be allowed to cure sufficiently before placing any significant loads on the structure to prevent excessive deformation or settlement.

Keywords: deep soil mixing, soil mixture, settlement, instrumentation, curing age

Procedia PDF Downloads 85
2770 Application of ATP7B Gene Mutation Analysis in Prenatal Diagnosis of Wilson’s Disease

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Chi V. Phan, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le

Abstract:

Wilson’s disease is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper- transporting P-type ATPase (ATP7B). The mechanism of this disease is a failure of hepatic excretion of copper to the bile, and it leads to copper deposits in the liver and other organs. Most clinical symptoms of Wilson’s disease can present as liver disease and/or neurologic disease. Objective: The goal of the study is prenatal diagnosis for pregnant women at high risk of Wilson’s disease in Northern Vietnam. Material and method: Three probands with clinically diagnosed liver disease were detected in the mutations of 21 exons and exon-intron boundaries of the ATP7B gene by direct Sanger-sequencing. Prenatal diagnoses were performed by amniotic fluid sampling from pregnant women in the 16th-18th weeks of pregnancy after the genotypes of parents with the probands were identified. Result: A total of three different mutations of the probands, including of S105*, P1052L, P1273G, were detected. Among three fetuses which underwent prenatal genetic testing, one fetus was homozygote; two fetuses were carriers. Conclusion: Genetic testing provided a useful method for prenatal diagnosis, and is a basis for genetic counseling.

Keywords: ATP7B gene, genetic testing, prenatal diagnosis, pedigree, Wilson disease

Procedia PDF Downloads 455