Search results for: artificial intelligence and genetic algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5679

Search results for: artificial intelligence and genetic algorithms

1419 Ionic Polymer Actuators with Fast Response and High Power Density Based on Sulfonated Phthalocyanine/Sulfonated Polysulfone Composite Membrane

Authors: Taehoon Kwon, Hyeongrae Cho, Dirk Henkensmeier, Youngjong Kang, Chong Min Koo

Abstract:

Ionic polymer actuators have been of interest in the bio-inspired artificial muscle devices. However, the relatively slow response and low power density were the obstacles for practical applications. In this study, ionic polymer actuators are fabricated with ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA). CuPCSA is an organic filler with very high ion exchange capacity (IEC, 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane. SPAES/CuPCSA actuators show larger ionic conductivity, mechanical properties, bending deformation, exceptional faster response to electrical stimuli, and larger mechanical power density (3028 W m–3) than Nafion actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next generation transducers with high power density, which are currently developed biomimetic devices such as endoscopic surgery.

Keywords: actuation performance, composite membranes, ionic polymer actuators, organic filler

Procedia PDF Downloads 278
1418 Analysis of Saudi Breast Cancer Patients’ Primary Tumors using Array Comparative Genomic Hybridization

Authors: L. M. Al-Harbi, A. M. Shokry, J. S. M. Sabir, A. Chaudhary, J. Manikandan, K. S. Saini

Abstract:

Breast cancer is the second most common cause of cancer death worldwide and is the most common malignancy among Saudi females. During breast carcinogenesis, a wide-array of cytogenetic changes involving deletions, or amplification, or translocations, of part or whole of chromosome regions have been observed. Because of the limitations of various earlier technologies, newer tools are developed to scan for changes at the genomic level. Recently, Array Comparative Genomic Hybridization (aCGH) technique has been applied for detecting segmental genomic alterations at molecular level. In this study, aCGH was performed on twenty breast cancer tumors and their matching non-tumor (normal) counterparts using the Agilent 2x400K. Several regions were identified to be either amplified or deleted in a tumor-specific manner. Most frequent alterations were amplification of chromosome 1q, chromosome 8q, 20q, and deletions at 16q were also detected. The amplification of genetic events at 1q and 8q were further validated using FISH analysis using probes targeting 1q25 and 8q (MYC gene). The copy number changes at these loci can potentially cause a significant change in the tumor behavior, as deletions in the E-Cadherin (CDH1)-tumor suppressor gene as well as amplification of the oncogenes-Aurora Kinase A. (AURKA) and MYC could make these tumors highly metastatic. This study validates the use of aCGH in Saudi breast cancer patients and sets the foundations necessary for performing larger cohort studies searching for ethnicity-specific biomarkers and gene copy number variations.

Keywords: breast cancer, molecular biology, ecology, environment

Procedia PDF Downloads 376
1417 Proteome-Wide Convergent Evolution on Vocal Learning Birds Reveals Insight into cAMP-Based Learning Pathway

Authors: Chul Lee, Seoae Cho, Erich D. Jarvis, Heebal Kim

Abstract:

Vocal learning, the ability to imitate vocalizations based on auditory experience, is a homoplastic character state observed in different independent lineages of animals such as songbirds, parrots, hummingbirds and human. It has now become possible to perform genome-wide molecular analyses across vocal learners and vocal non-learners with the recent expansion of avian genome data. It was analyzed the whole genomes of human and 48 avian species including those belonging to the three avian vocal learning lineages, to determine if behavior and neural convergence are associated with molecular convergence in divergent species of vocal learners. Analyses of 8295 orthologous genes across bird species revealed 141 genes with amino acid substitutions specific to vocal learners. Out of these, 25 genes have vocal learner specific genetic homoplasies, and their functions were enriched for learning. Several sites in these genes are estimated under convergent evolution and positive selection. A potential role for a subset of these genes in vocal learning was supported by associations with gene expression profiles in vocal learning brain regions of songbirds and human disease that cause language dysfunctions. The key candidate gene with multiple independent lines of the evidences specific to vocal learners was DRD5. Our findings suggest cAMP-based learning pathway in avian vocal learners, indicating molecular homoplastic changes associated with a complex behavioral trait, vocal learning.

Keywords: amino acid substitutions, convergent evolution, positive selection, vocal learning

Procedia PDF Downloads 341
1416 Modeling Anisotropic Damage Algorithms of Metallic Structures

Authors: Bahar Ayhan

Abstract:

The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature.

Keywords: anisotropic damage, finite element method, plasticity, coupling

Procedia PDF Downloads 206
1415 Technological Innovation and Efficiency of Production of the Greek Aquaculture Industry

Authors: C. Nathanailides, S. Anastasiou, A. Dimitroglou, P. Logothetis, G. Kanlis

Abstract:

In the present work we reviewed historical data of the Greek Marine aquaculture industry including adoption of new methods and technological innovation. The results indicate that the industry exhibited a rapid rise in production efficiency, employment and adoption of new technologies which reduced outbreaks of diseases, reduced production risk and the price of the farmed fish. The improvements of total quality practices and technological input on the Greek Aquaculture industry include improved survival, growth and body shape of farmed fish, which resulted from development of new aquaculture feeds and the genetic selection of the bloodstock. Also improvements in the quality of the final product were achieved via technological input in the methods and technology applied during harvesting, packaging, and transportation-preservation of farmed fish ensuring high quality of the product from the fish farm to the plate of the consumers. These parameters (health management, nutrition, genetics, harvesting and post-harvesting methods and technology) changed significantly over the last twenty years and the results of these improvements are reflected in the production efficiency of the Aquaculture industry and the quality of the final product. It is concluded that the Greek aquaculture industry exhibited a rapid growth, adoption of technologies and supply was stabilized after the global financial crisis, nevertheless, the development of the Greek aquaculture industry is currently limited by international trade sanctions, credit crunch, and increased taxation and not by limited technology or resources.

Keywords: innovation, aquaculture, total quality, management

Procedia PDF Downloads 372
1414 Method and Apparatus for Optimized Job Scheduling in the High-Performance Computing Cloud Environment

Authors: Subodh Kumar, Amit Varde

Abstract:

Typical on-premises high-performance computing (HPC) environments consist of a fixed number and a fixed set of computing hardware. During the design of the HPC environment, the hardware components, including but not limited to CPU, Memory, GPU, and networking, are carefully chosen from select vendors for optimal performance. High capital cost for building the environment is a prime factor influencing the design environment. A class of software called “Job Schedulers” are critical to maximizing these resources and running multiple workloads to extract the maximum value for the high capital cost. In principle, schedulers work by preventing workloads and users from monopolizing the finite hardware resources by queuing jobs in a workload. A cloud-based HPC environment does not have the limitations of fixed (type of and quantity of) hardware resources. In theory, users and workloads could spin up any number and type of hardware resource. This paper discusses the limitations of using traditional scheduling algorithms for cloud-based HPC workloads. It proposes a new set of features, called “HPC optimizers,” for maximizing the benefits of the elasticity and scalability of the cloud with the goal of cost-performance optimization of the workload.

Keywords: high performance computing, HPC, cloud computing, optimization, schedulers

Procedia PDF Downloads 93
1413 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS

Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang

Abstract:

Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.

Keywords: air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF

Procedia PDF Downloads 166
1412 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 456
1411 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 112
1410 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques

Authors: Ved Kulkarni, Karthik Kini

Abstract:

This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.

Keywords: data mining, language processing, artificial neural networks, sentiment analysis

Procedia PDF Downloads 17
1409 Identification of Superior Cowpea Mutant Genotypes, Their Adaptability, and Stability Under South African Conditions

Authors: M. Ntswane, N. Mbuma, M. Labuschagne, A. Mofokeng, M. Rantso

Abstract:

Cowpea is an essential legume for the nutrition and health of millions of people in different regions. The production and productivity of the crop are very limited in South Africa due to a lack of adapted and stable genotypes. The improvement of nutritional quality is made possible by manipulating the genes of diverse cowpea genotypes available around the world. Assessing the adaptability and stability of the cowpea mutant genotypes for yield and nutritional quality requires examining them in different environments. The objective of the study was to determine the adaptability and stability of cowpea mutant genotypes under South African conditions and to identify the superior genotypes that combine grain yield components, antioxidants, and nutritional quality. Thirty-one cowpea genotypes were obtained from the Agricultural Research Council grain crops (ARC-GC) and were planted in Glen, Mafikeng, Polokwane, Potchefstroom, Taung, and Vaalharts during the 2021/22 summer cropping season. Significant genotype by location interactions indicated the possibility of genetic improvement of these traits. The genotype plus genotype by environment indicated broad adaptability and stability of mutant genotypes. The principal component analysis identified the association of the genotypes with the traits. Phenotypic correlation analysis showed that Zn and protein content were significant and positively correlated and suggested the possibility of indirect selection of these traits. Results from this study could be used to help plant breeders in making informed decisions and developing nutritionally improved cowpea genotypes with the aim of addressing the challenges of poor nutritional quality.

Keywords: cowpea seeds, adaptability, stability, mineral elements, protein content

Procedia PDF Downloads 112
1408 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
1407 Artificial Neurons Based on Memristors for Spiking Neural Networks

Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi

Abstract:

Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.

Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity

Procedia PDF Downloads 134
1406 Using Closed Frequent Itemsets for Hierarchical Document Clustering

Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu

Abstract:

Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.

Keywords: FIHC, documents clustering, ontology, closed frequent itemset

Procedia PDF Downloads 399
1405 Surveillance of Hepatitis C Virus Genotype Circulating in North India

Authors: Shantanu Prakash, Suruchi Shukla, Amita Jain

Abstract:

Introduction: The hepatitis C virus (HCV) is a major public health problem and a leading cause of chronic liver disease. Injection drug use and individuals receiving blood and blood products are the primary modes of HCV transmission. Our study aims to establish the prevalent genotypes/ subtypes of HCV circulating in Uttar Pradesh, North India, as reported from a tertiary care hospital. Methods: It is a retrospective observational analysis of consecutive 404 HCV RNA positive cases referred to our hospital during September 2014 to April 2017. The study was approved by an institutional ethics committee. Written informed consent was taken from each participant. Clinical and demographic details of these patients were recorded using predesigned questionnaires. All the laboratory testing was carried on stored serum sample of enrolled cases. Genotyping of all 404 strains was done by Sanger’s sequencing of the core region. The phylogenetic analysis of 179 HCV strains with high -quality sequencing data was performed. Results: The distribution of prevalent genotypes/ subtypes as noted in the present study was; Genotype (GT)1a [n-101(25%)], GT1b [n-12(2.9%)], GT1c [1(0.25%)], GT3a [275(68.07%)], GT3b [9(2.2%)], GT3g [2(0.49%)], GT3i [3(0.74%)], and GT4a [1(0.24%)]. HCV genotypes GT2, GT5 and GT6 were not detected from our region. Sequence analysis showed high genotypic variability in HCV GT3. Phylogenetic analysis showed that HCV GT3 and GT1 circulating in our region were related to Indian strains reported earlier. Conclusions: HCV genotypes 3a and 1a are commonest circulating genotypes in Uttar Pradesh (UP), India.

Keywords: Hepatitis C virus, genetic variation, bioinformatics, genotype, HCV

Procedia PDF Downloads 159
1404 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 226
1403 Influence of Optical Fluence Distribution on Photoacoustic Imaging

Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim

Abstract:

Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.

Keywords: finite element method, fluence distribution, Monte Carlo method, photoacoustic imaging

Procedia PDF Downloads 378
1402 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology

Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah

Abstract:

The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.

Keywords: information, technology, virtual reality, education

Procedia PDF Downloads 290
1401 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller

Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni

Abstract:

With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.

Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning

Procedia PDF Downloads 228
1400 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

Authors: Abdullah A. Al Qurashi, Hattan A. Hassani, Bader K. Alaslap

Abstract:

Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.

Keywords: arrhythmogenic right ventricular dysplasia, cardiac disease, interventional cardiology, cardiac electrophysiology

Procedia PDF Downloads 58
1399 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances

Authors: Violeta Damjanovic-Behrendt

Abstract:

This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.

Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning

Procedia PDF Downloads 354
1398 Investigation of Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection: The Modified Voltammetry Technique

Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behaviour of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP, which was only applied on two of the three coupons at the protection potential -0.8 V vs Cu/CuSO₄ for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP, while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from the ohmic drop. Voltammetry was finally performed on the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduced the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect from the decreased potential and an induced effect associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy

Procedia PDF Downloads 63
1397 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 409
1396 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN

Procedia PDF Downloads 131
1395 Stack Overflow Detection and Prevention on Operating Systems Using Machine Learning and Control-Flow Enforcement Technology

Authors: Cao Jiayu, Lan Ximing, Huang Jingjia, Burra Venkata Durga Kumar

Abstract:

The first virus to attack personal computers was born in early 1986, called C-Brain, written by a pair of Pakistani brothers. In those days, people still used dos systems, manipulating computers with the most basic command lines. In the 21st century today, computer performance has grown geometrically. But computer viruses are also evolving and escalating. We never stop fighting against security problems. Stack overflow is one of the most common security vulnerabilities in operating systems. It may result in serious security issues for an operating system if a program in it has a vulnerability with administrator privileges. Certain viruses change the value of specific memory through a stack overflow, allowing computers to run harmful programs. This study developed a mechanism to detect and respond to time whenever a stack overflow occurs. We demonstrate the effectiveness of standard machine learning algorithms and control flow enforcement techniques in predicting computer OS security using generating suspicious vulnerability functions (SVFS) and associated suspect areas (SAS). The method can minimize the possibility of stack overflow attacks occurring.

Keywords: operating system, security, stack overflow, buffer overflow, machine learning, control-flow enforcement technology

Procedia PDF Downloads 115
1394 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar

Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola

Abstract:

This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.

Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index

Procedia PDF Downloads 154
1393 The Orthodontic Management of Multiple Tooth Agenesis with Macroglossia in Adult Patient: Case Report

Authors: Yanuarti Retnaningrum, Cendrawasih A. Farmasyanti, Kuswahyuning

Abstract:

Orthodontists find challenges in treating patients who have cases of macroglossia and multiple tooth agenesis because difficulties in determining the causes, formulating a diagnosis and the potential for relapse after treatment. Definition of macroglossia is a tongue enlargement due to muscle hypertrophy, tumor or an endocrine disturbance. Macroglossia may cause many problems such as anterior proclination of upper and lower incisors, development of general diastema and anterior and/ or posterior open bite. Treatment for such patients with multiple tooth agenesis and macroglossia can be complex and must consider orthodontic and/or surgical interventions. This article discusses an orthodontic non surgical approach to a patient with a general diastema in both maxilla and mandible associated with multiple tooth agenesis and macroglossia. Fixed orthodontic therapy with straightwire appliance was used for space closure in anterior region of maxilla and mandible, also to create a space suitable for future prosthetic restoration. After 12 months treatment, stable and functional occlusal relationships was achieved, although still have edentulous area in both maxilla and mandible. At the end of the orthodontic treatment was obtained with correct overbite and overjet values. After removal of the brackets, a maxillary and mandibular removable retainer combine with artificial tooth were placed for retention.

Keywords: general diastema, macroglossia, space closure, tooth agenesis

Procedia PDF Downloads 177
1392 Teachers' Emphatic Concern for Their Learners

Authors: Prakash Singh

Abstract:

The focus of this exploratory study is on whether teachers demonstrate emphatic concern for their learners in planning, implementing and assessing learning outcomes in their regular classrooms. Empathy must be shown to all learners equally and not only for high-risk learners at the expense of other ability learners. Empathy demonstrated by teachers allows them to build a stronger bond with all their learners. This bond based on trust leads to positive outcomes for learners to be able to excel in their work. Empathic teachers must make every effort to simplify the subject matter for high risk learners so that these learners not only enjoy their learning activities but are also successful like their more able peers. A total of 87.5% of the participants agreed that empathy allows teachers to demonstrate humanistic values in their choice of learning materials for learners of different abilities. It is therefore important for teachers to select content and instructional materials that will contribute to the learners’ success in the mainstream of education. It is also imperative for teachers to demonstrate empathic skills and consequently, to be attuned to the emotions and emotional needs of their learners. Schools need to be reformed, not by simply lengthening the school day or by simply adding more content in the curriculum, but by making school more satisfying to learners. This must be consistent with their diverse learning needs and interests so that they gain a sense of power, fulfillment, and importance in their regular classrooms. Hence, teacher - pupil relationships based on empathic concern for the latter’s educational needs lays the foundation for quality education to be offered.

Keywords: emotional intelligence, empathy, learners’ emotional needs, teachers’ empathic skills

Procedia PDF Downloads 436
1391 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 126
1390 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128