Search results for: architectural phase
992 Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe
Authors: H. Shokouhmand, M. Tajerian
Abstract:
A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature.Keywords: micro heat pipe, electrohydrodynamic force, Nusselt number, average temperature, friction factor
Procedia PDF Downloads 272991 Tourism as Benefactor to Peace amidst the Structural Conflict: An Exploratory Case Study of Nepal
Authors: Pranil Kumar Upadhayaya
Abstract:
While peace is dividend to tourism, tourism can also be a vital force for world peace. The existing body of knowledge on a tripartite complex nexus between tourism, peace and conflict reveals that tourism is benefactor to peace and sensitive to conflict. By contextualizing the ongoing sporadic structural conflict in the transitional phase in the aftermath of a decade long (1996-2006), Maoist armed conflict in Nepal, the purpose of this study is to explore the potentials of tourism in peace-building. The outcomes of this research paper is based on the mixed methods of research (qualitative and quantitative). Though the armed conflict ended with the comprehensive peace agreement in 2006 but there is constant manifestations of non-violent structural conflicts, which continue to threaten the sustainability of tourism industry. With the persistent application of coping strategies, tourism is found resilient during the ongoing structural political conflict. The strong coping abilities of the private sector of tourism industry have also intersected with peace-building efforts with more reactive and less proactive (pro-peace) engagements. This paper ascertains about the application of the ‘theory of tourism security’ by Nepalese tourism industry while coping with conflict and reviving, and sustaining. It reveals that the multiple verities of tourism at present has heterogeneous degree of peace potentials. The opportunities of ‘peace through tourism’ can be promoted subject to its molding with responsible, sustainable and participatory characteristics. This paper comes out with pragmatic policy recommendations for strengthening the position of tourism as a true peace-builder: (a) a broad shift from mainstream conventional tourism to the community based rural with local participation and ownership to fulfill Nepal’s potentials for peace, and (b) building and applications of the managerial and operational codes of conducts for owners and workers (labor unions) at all tourism enterprises and strengthen their practices.Keywords: code of conduct, community based tourism, conflict, peace-building, tourism
Procedia PDF Downloads 265990 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb
Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim
Abstract:
Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.Keywords: Mg, texture, Pb, DRX
Procedia PDF Downloads 50989 Theoretical Prediction on the Lifetime of Sessile Evaporating Droplet in Blade Cooling
Authors: Yang Shen, Yongpan Cheng, Jinliang Xu
Abstract:
The effective blade cooling is of great significance for improving the performance of turbine. The mist cooling emerges as the promising way compared with the transitional single-phase cooling. In the mist cooling, the injected droplet will evaporate rapidly, and cool down the blade surface due to the absorbed latent heat, hence the lifetime for evaporating droplet becomes critical for design of cooling passages for the blade. So far there have been extensive studies on the droplet evaporation, but usually the isothermal model is applied for most of the studies. Actually the surface cooling effect can affect the droplet evaporation greatly, it can prolong the droplet evaporation lifetime significantly. In our study, a new theoretical model for sessile droplet evaporation with surface cooling effect is built up in toroidal coordinate. Three evaporation modes are analyzed during the evaporation lifetime, include “Constant Contact Radius”(CCR) mode、“Constant Contact Angle”(CCA) mode and “stick-slip”(SS) mode. The dimensionless number E0 is introduced to indicate the strength of the evaporative cooling, it is defined based on the thermal properties of the liquid and the atmosphere. Our model can predict accurately the lifetime of evaporation by validating with available experimental data. Then the temporal variation of droplet volume, contact angle and contact radius are presented under CCR, CCA and SS mode, the following conclusions are obtained. 1) The larger the dimensionless number E0, the longer the lifetime of three evaporation cases is; 2) The droplet volume over time still follows “2/3 power law” in the CCA mode, as in the isothermal model without the cooling effect; 3) In the “SS” mode, the large transition contact angle can reduce the evaporation time in CCR mode, and increase the time in CCA mode, the overall lifetime will be increased; 4) The correction factor for predicting instantaneous volume of the droplet is derived to predict the droplet life time accurately. These findings may be of great significance to explore the dynamics and heat transfer of sessile droplet evaporation.Keywords: blade cooling, droplet evaporation, lifetime, theoretical analysis
Procedia PDF Downloads 143988 Load Transfer of Steel Pipe Piles in Warming Permafrost
Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani
Abstract:
As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost
Procedia PDF Downloads 111987 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach
Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri
Abstract:
In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications
Procedia PDF Downloads 61986 Individual Differences and Paired Learning in Virtual Environments
Authors: Patricia M. Boechler, Heather M. Gautreau
Abstract:
In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.Keywords: avatar-based, virtual environment, paired learning, individual differences
Procedia PDF Downloads 117985 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies
Authors: Amira Abdelrasoul
Abstract:
This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.Keywords: biomimetic, membrane, synchrotron, permeability, morphology
Procedia PDF Downloads 102984 The Labyrinth - Circular Choral Chant of Dithyramb in the 7th BC, Mirroring the Conjuction of the Planets and the Milky Way Circle
Authors: Kleopatra Chatzigiosi
Abstract:
The paper delves into the spatial and mythological examination of the choral chant of Dithyramb in the 7th BC, its connections to Dionysus, and its role in the origin of drama, exploring harmonious and symbolic aspects of early Greek culture. The primary aim is to analyze the development of Dithyramb in relation to harmonic systems and early musical scales, linking them to circular time and celestial movements. Additionally, the study seeks to unveil the mythological ties of Dithyramb with ancient rituals worshipping Mother Earth Cybele. The methodology involves researching etymology and mythology related to Dithyramb based on Pindar's works and proposing a harmonious design for the performance space of Dithyramb through harmonic spirals inspired by ancient practices. Ιt is also included a comparative study with similar choral traditions from other ancient cultures, providing a broader context for the findings of the work. The research uncovers the symbolic significance of Dithyramb as a dramatized representation of harmonic phenomena, leading to human deification within a context of Sacred Architecture, highlighting the intricate connections between music, rituals, and divine worship in ancient Greek culture. The study enriches understanding of the harmonic and symbolic underpinnings of ancient Greek choral traditions, shedding light on the complex interplay between music, mythology, and ritual practices in the development of early theatrical performances. Data was collected through an in-depth analysis of ancient texts, specifically Pindar's Dithyrambs, to trace the etymology and mythological origins of Dithyramb and its associated symbolism. The analysis involved scrutinizing ancient sources to draw connections between Dithyramb, harmonic systems, celestial movements, and mythological narratives, culminating in a comprehensive exploration of the cultural and symbolic significance of this choral tradition. The study addresses how the choral chant of Dithyramb evolved harmoniously within the ancient Greek cultural framework, its connections to celestial phenomena and ritual practices, and the symbolic implications of its mythological associations within a sacred architectural context. The research illuminates the profound cultural, symbolic, and harmonic dimensions of the choral chant of Dithyramb, offering valuable insights into the intersections between music, mythology, and ritual in ancient Greece, enriching scholarly understanding of early theatrical traditions.Keywords: circular choral chant of dithyramb, “exarchon”( leader), great “eniautos” (year), harmony labyrinth
Procedia PDF Downloads 24983 Willingness to Adopt "Green Steel" Products: A Case Study from the Automotive Sector
Authors: Hasan Muslemani, Jeffrey Wilson, Xi Liang, Francisco Ascui, Katharina Kaesehage
Abstract:
This paper aims to examine consumer behaviour towards, and the willingness to adopt, green steel use in the automotive sector, in order to identify potential barriers and opportunities for its widespread adoption. Semi-structured interviews were held with experts from global, regional and country-specific industry associations and automakers. The analysis shows there is a new shift towards lifecycle thinking in the sector, although these efforts have been voluntary and driven by customer and employee pressures rather than regulation. The paper further appraises possible demand for green steel within different vehicle types (based on size and powertrain), and shows that manufacturers of electric heavy-duty vehicles are most likely to adopt green steel in the first instance, given the amount of incorporated steel in the vehicles and the fact that lifecycle emissions lie predominantly in their manufacturing phase. A case for green advanced higher-strength steels (AHSS) can also be made in light-duty passenger vehicles, which may mitigate competition from light-weight alternative materials in terms of cost and greenness (depending on source and utilisation zones). This work builds on a wide sustainability-related literature in the automotive sector and highlights areas in need of urgent action if the sector as a whole were to meet its Paris Agreement climate targets, in particular a need to revisit current CO2 performance regulations to include Scope 1 and Scope 2 emissions, engage in educational green marketing campaigns, and explore innovative market-based mechanisms to bridge the gap between relatively-low carbon abatement costs of steelmaking and high abatement costs of vehicle manufacturing.Keywords: Green steel, Consumer behaviour, Automotive industry, Environmental sustainability
Procedia PDF Downloads 164982 Biostimulant and Abiotic Plant Stress Interactions in Malting Barley: A Glasshouse Study
Authors: Conor Blunt, Mariluz del Pino-de Elias, Grace Cott, Saoirse Tracy, Rainer Melzer
Abstract:
The European Green Deal announced in 2021 details agricultural chemical pesticide use and synthetic fertilizer application to be reduced by 50% and 20% by 2030. Increasing and maintaining expected yields under these ambitious goals has strained the agricultural sector. This intergovernmental plan has identified plant biostimulants as one potential input to facilitate this new phase of sustainable agriculture; these products are defined as microorganisms or substances that can stimulate soil and plant functioning to enhance crop nutrient use efficiency, quality and tolerance to abiotic stresses. Spring barley is Ireland’s most widely sown tillage crop, and grain destined for malting commands the most significant market price. Heavy erratic rainfall is forecasted in Ireland’s climate future, and barley is particularly susceptible to waterlogging. Recent findings suggest that plant receptivity to biostimulants may depend on the level of stress inflicted on crops to elicit an assisted plant response. In this study, three biostimulants of different genesis (seaweed, protein hydrolysate and bacteria) are applied to ‘RGT Planet’ malting barley fertilized at three different rates (0 kg/ha, 40 kg/ha, 75 kg/ha) of calcium ammonium nitrogen (27% N) under non-stressed and waterlogged conditions. This 4x3x2 factorial trial design was planted in a completed randomized block with one plant per experimental unit. Leaf gas exchange data and key agronomic and grain quality parameters were analyzed via ANOVA. No penalty on productivity was evident on plants receiving 40 kg/ha of N and bio stimulant compared to 75 kg/ha of N treatments. The main effects of nitrogen application and waterlogging provided the most significant variation in the dataset.Keywords: biostimulant, Barley, malting, NUE, waterlogging
Procedia PDF Downloads 76981 Moral Reasoning among Croatian Adolescents with Different Levels of Education
Authors: Nataša Šimić, Ljiljana Gregov, Matilda Nikolić, Andrea Tokić, Ana Proroković
Abstract:
Moral development takes place in six phases which can be divided in a pre-conventional, conventional and post-conventional level. Moral reasoning, as a key concept of moral development theories, involves a process of discernment/inference in doubtful situations. In research to date, education has proved to be a significant predictor of moral reasoning. The aim of this study was to investigate differences in moral reasoning and Kohlberg's phases of moral development between Croatian adolescents with different levels of education. In Study 1 comparisons between the group of secondary school students aged 17-18 (N=192) and the group of university students aged 21-25 (N=383) were made. Study 2 included comparison between university students group (N=69) and non-students group (N=43) aged from 21 to 24 (these two groups did not differ in age). In both studies, the Croatian Test of Moral Reasoning by Proroković was applied. As a measure of moral reasoning, the Index of Moral Reasoning (IMR) was calculated. This measure has some advantages compared to other measures of moral reasoning, and includes individual assessments of deviations from the ‘optimal profile’. Results of the Study 1 did not show differences in the IMR between secondary school students and university students. Both groups gave higher assessments to the arguments that correspond to higher phases of moral development. However, group differences were found for pre-conventional and conventional phases. As expected, secondary school students gave significantly higher assessments to the arguments that correspond to lower phases of moral development. Results of the Study 2 showed that university students, in relation to non-students, have higher IMR. Respecting to phases of moral development, both groups of participants gave higher assessments to the arguments that correspond to the post-conventional phase. Consistent with expectations and previous findings, results of both studies did not confirm gender differences in moral reasoning.Keywords: education, index of moral reasoning, Kohlberg's theory of moral development, moral reasoning
Procedia PDF Downloads 252980 Recovery of Selenium from Scrubber Sludge in Copper Process
Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu
Abstract:
The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂
Procedia PDF Downloads 206979 Exposure Assessment to Heavy Metals and Flame Retardants Among Moroccan Children and Their Impact on the Epigenetic Profile
Authors: Kaoutar Chbihi, Aziza Menouni, Emilie Hardy, Matteo Creta, Nathalie Grova, An Van Nieuwenhuyse, Lode Godderis, Samir El Jaafari, Radu-Corneliu Duca
Abstract:
Industrial products and materials are often treated with additional compounds like brominated flame retardants (BFRs) and heavy metals in order to prevent their ignition, increase their functionality and improve their performance like electrical conductivity. Consequently, this could potentially expose children to harmful chemicals through indoor dust and through hand-to-mouth or toy-chewing behaviors. The aim of this study was to assess the exposure of Moroccan children aged 5-11 years to BFRs and heavy metal elements and investigate their impacts on the epigenetic profile, namely through global DNA methylation modifications. First, parents were asked to answer a questionnaire on children’s lifestyle, then blood and urine samples were collected from (n= 93) children, following the ethical guidelines, for biomonitoring and DNA methylation analysis, using a set of solid phase extraction (SPE), LC-MS/MS, GC-MS/MS and ICP/MS techniques. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL), while metal elements were detected in more than 90% of samples. No association was found between BFRs and global DNA methylation, unlike metal element levels that showed significant variations with global DNA methylation biomarkers, namely 5-mdC, 5-OH-mdC and N⁶-mA levels. To conclude, Moroccan children could be significantly exposed to flame retardant compounds and heavy metal elements through several routes, such as dust or equipment usage and are therefore susceptible to the adverse health effects that could be linked with such chemicals. Further research is required to assess the exposure to environmental pollutants among the Moroccan population in order to protect Moroccan health and prevent the incidence of diseases.Keywords: biomonitoring, children, DNA methylation, epigenetics, flame retardants, heavy metals, Morocco
Procedia PDF Downloads 99978 Thermodynamic Properties of Calcium-Containing DPPA and DPPC Liposomes
Authors: Tamaz Mdzinarashvili, Mariam Khvedelidze, Eka Shekiladze, Salome Chinchaladze, Mariam Mdzinarashvili
Abstract:
The work is about the preparation of calcium-containing 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) and their calorimetric study. In order to prepare these complex liposomes, for the first stage it is necessary for ligands and lipids to directly interact, followed by the addition of pH-buffered water or solvent at temperatures slightly above the liposome phase transition temperature. The resulting mixture is briefly but vigorously shaken and then transformed into liposomes of the desired size using an extruder. Particle sizing and calorimetry were used to evaluate liposome formation. We determined the possible structure of calcium-containing liposomes made by our new technology and determined their thermostability. The paper provides calculations showing how many phospholipid molecules are required to make a 200 nm diameter liposome. Calculations showed that 33x10³ lipid molecules are needed to prepare one DPPA and DPPC liposome. Based on the calorimetric experiments, we determined that the structure of uncomplexed DPPA liposomes is unilaminar (one double layer), while DPPC liposome is a nanoparticle with a multilaminar (multilayer) structure. This was determined by the cooperativity of the heat absorption peak. Calorimetric studies of calcium liposomes made by our technology showed that calcium ions are placed in the multilaminar structure of the DPPC liposome. Calcium ions also formed a complex in the DPPA liposome structure, moreover, calcium made the DPPA liposome multilaminar, since the cooperative narrow heat absorption peak was transformed into a three-peak heat absorption peak. Since both types of liposomes in complex with calcium ions present a multilaminar structure, where the number of lipid heads in one particle is large, the number of calcium ions in one particle will also be increased. That makes it possible to use these nanoparticles as transporters of a large amount of calcium ions in a living organism.Keywords: calcium, liposomes, thermodynamic parameters, calorimetry
Procedia PDF Downloads 49977 Study of Nanoclay Blends Based on PET/PEN Prepared by Reactive Extrusion
Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour
Abstract:
A new route of preparation of compatible blends, based on poly(ethylene terephthalate)(PET)/poly(ethylenenaphthalene2,6-dicarboxylate) (PEN)/clay nanocomposites has been successfully performed in one step by reactive melt extrusion. To achieve this, untreated clay was first purified and functionalized “in situ” with a compound based on an organic peroxide/sulfur mixture and (tetra methyl thiuram disulfide) TMTD as accelerator or activator for sulfur. The PET and PEN materials were first mixed separately in the melt state with different amounts of functionalized clay. It was observed that the compositions PET/4 wt% clay and PEN/7.5 wt% clay showed total exfoliation. These completely exfoliated compositions, called nPET and nPEN, respectively, were used to prepare new nPET/nPEN nanoblends in the same mixing batch. The nPET/nPEN nanoblends were compared to neat blends of PET/PEN. The blends and the nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. The results of the WAXS measurements study showed that the exfoliation of tetrahedral nanolayers of clay was complete and the octahedral structure disappeared totally. From the different WAXS patterns, it is seen that all samples are amorphous phase. The thermal study showed that there are only one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This indicated that both PET/PEN blends and nPET/nPEN blends were compatible in the entire range of compositions. In addition, nPET/nPEN blends present lower Tc values and higher Tm values than the corresponding neat PET/PEN blends. The obtained results indicate that nPET/nPEN blends are somewhat different from the pure ones in nanostructure and behavior, thus showing the additional effect of nanolayers. The present study allowed establishing good correlations between the different measured properties.Keywords: PET, PEN, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing
Procedia PDF Downloads 299976 Design and Optimization of Spoke Rotor Type Brushless Direct Current Motor for Electric Vehicles Using Different Flux Barriers
Authors: Ismail Kurt, Necibe Fusun Oyman Serteller
Abstract:
Today, with the reduction in semiconductor system costs, Brushless Direct Current (BLDC) motors have become widely preferred. Based on rotor architecture, BLDC structures are divided into internal permanent magnet (IPM) and surface permanent magnet (SPM). However, permanent magnet (PM) motors in electric vehicles (EVs) are still predominantly based on interior permanent magnet (IPM) motors, as the rotors do not require sleeves, the PMs are better protected by the rotor cores, and the air-gap lengths can be much smaller. This study discusses the IPM rotor structure in detail, highlighting its higher torque levels, reluctance torque, wide speed range operation, and production advantages. IPM rotor structures are particularly preferred in EVs due to their high-speed capabilities, torque density and field weakening (FW) features. In FW applications, the motor becomes more suitable for operation at torques lower than the rated torque but at speeds above the rated speed. Although V-type and triangular IPM rotor structures are generally preferred in EV applications, the spoke-type rotor structure offers distinct advantages, making it a competitive option for these systems. The flux barriers in the rotor significantly affect motor performance, providing notable benefits in both motor efficiency and cost. This study utilizes ANSYS/Maxwell simulation software to analyze the spoke-type IPM motor and examine its key design parameters. Through analytical and 2D analysis, preliminary motor design and parameter optimization have been carried out. During the parameter optimization phase, torque ripple a common issue, especially for IPM motors has been investigated, along with the associated changes in motor parameters.Keywords: electric vehicle, field weakening, flux barrier, spoke rotor.
Procedia PDF Downloads 12975 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach
Authors: Helen L. Hein, Joachim Schwarte
Abstract:
As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.Keywords: aerogel-based, insulating material, early development phase, interval arithmetic
Procedia PDF Downloads 144974 Synthesis and Gas Transport Properties of Polynorbornene Dicarboximides Bearing Trifluoromethyl Isomer Moieties
Authors: Jorge A. Cruz-Morales, Joel Vargas, Arlette A. Santiago, Mikhail A. Tlenkopatchev
Abstract:
In industrial processes such as oil extraction and refining, products are handled or generated in the gas phase, which represents a challenge in terms of treatment and purification. During the past three decades, new scientific findings and technological advances in separation based on the use of membranes have led to simpler and more efficient gas separation processes, optimizing the use of energy and generating less pollution. This work reports the synthesis and ring-opening metathesis polymerization (ROMP) of new structural isomers based on norbornene dicarboximides bearing trifluoromethyl moieties, specifically N-2-trifluoromethylphenyl-exo,endo-norbornene-5,6-dicarboximide (2a) and N-3-trifluoromethylphenyl-exo,endo-norbornene-5,6-dicarboximide (2b), using tricyclohexylphosphine [1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene][benzylidene] ruthenium dichloride (I), bis(tricyclohexylphosphine) benzylidene ruthenium (IV) dichloride (II), and bis(tricyclohexylphosphine) p-fluorophenylvinylidene ruthenium (II) dichloride (III). It was observed that the -CF3 moiety attached at the ortho position of the aromatic ring increases thermal and mechanical properties of the polymer, whereas meta substitution has the opposite effect. A comparative study of gas transportation in membranes, based on these fluorinated polynorbornenes, showed that -CF3 ortho substitution increases permeability of the polymer membrane as a consequence of the increase in both gas solubility and gas diffusion. In contrast, gas permeability coefficients of the meta-substituted polymer membrane are rather similar to those of that which is non-fluorinated; this can be attributed to a lower fractional free volume. The meta-substituted polymer membrane, besides showing the largest permselectivity coefficients of all the isomers studied here, was also found to have one of the largest permselectivity coefficients for separating H2/C3H6 into glassy polynorbornene dicarboximides.Keywords: gas transport membranes, polynorbornene dicarboximide, ROMP, structural isomers
Procedia PDF Downloads 256973 Design and Synthesis of Some Pyrimidine Derivatives as Bruton’s Tyrosine Kinase Inhibitors for Hematologic Malignancies
Authors: Ibrahim M. Labouta, Gina N. Tageldin, Salwa M. Fahmy, Hayam M. Ashour, Mounir A. Khalil, Tamer M. Ibrahim, Nefertiti A. El-Nikhely
Abstract:
Bruton’s tyrosine kinase (BTK) is a critical effector molecule in B cell antigen receptor (BCR) signaling transduction. It regulates B cell proliferation, development and survival. Since BTK is widely expressed in many B cell leukaemias and lymphomas, targeting BTK by small molecules inhibitors became an attractive idea as new treatment modalities for B cell mediated hematologic malignancies. Ibrutinib is the 1st generation BTK inhibitor, approved by FDA for treatment of relapsed mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). It binds irreversibly to the unique cysteine (Cys481) within the ATP-binding pocket of BTK. Besides ibrutinib, many irreversible covalent BTK inhibitors comprising pyrimidine nucleus such as spebrutinib (phase IIb) showed high selectivity and potency when compared to it. In this study, the designed compounds were based on 5-cyano-2-methylsulfanyl pyrimidine core and decorated with electrophilic warheads which are essential for the optimal activity for targeted covalent inhibition (TCI). However, modifications at pyrimidine C4 or C6 were made by introduction of substituted amines which are provided to behave differently. The synthesized derivatives were evaluated for their anticancer activity in leukemia cell lines (e.g. THP-1). Results showed that, some derivatives exhibited antiproliferative activity with IC50 ranged from 5-50 μM, The in vitro enzymatic inhibitory assay for these compounds against BTK is still under investigation. Nevertheless, we could conclude from the initial biological screening that, the synthesized 4 or 6-subsitituted aminopyrimidines represent promising and novel antileukemic agents. Meanwhile, further studies are still needed to attribute this activity through targeting BTK enzyme and inhibition of BCR signaling pathway.Keywords: BTK inhibitors, hematologic malignancies, structure based drug design (SBDD), targeted covalent inhibitors (TCI)
Procedia PDF Downloads 148972 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines
Authors: Chandra Shekhar Verma, Umesh Chandra Mishra
Abstract:
Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter
Procedia PDF Downloads 173971 Enhancing Environmental Impact Assessment for Natural Gas Pipeline Systems: Lessons in Water and Wastewater Management
Authors: Kittipon Chittanukul, Chayut Bureethan, Chutimon Piromyaporn
Abstract:
In Thailand, the natural gas pipeline system requires the preparation of an Environmental Impact Assessment (EIA) report for approval by the relevant agency, the Office of Natural Resources and Environmental Policy and Planning (ONEP), in the pre-construction stage. As of December 2022, PTT has a lot of gas pipeline system spanning around the country. Our experience has shown that the EIA is a significant part of the project plan. In 2011, There was a catastrophic flood in multiple areas of Thailand. It destroyed lives and properties. This event is still in Thai people’s mind. Furthermore, rainfall has been increasing for three consecutive years (2020-2022). Moreover, municipalities are situated in low land river basin and tropical rainfall zone. So many areas still suffer from flooding. Especially in 2022, there will be a 60% increase in water demand compared to the previous year. Therefore, all activities will take into account the quality of the receiving water. The above information emphasizes water and wastewater management are significant in EIA report. PTT has accumulated a large number of lessons learned in water and wastewater management. Our pipeline system execution is composed of EIA stage, construction stage, and operation and maintenance phase. We provide practical Information on water and wastewater management to enhance the EIA process for the pipeline system. The examples of lessons learned in water and wastewater management include techniques to address water and wastewater impact throughout the overall pipelines systems, mitigation measures and monitoring results of these measures. This practical information will alleviate the anxiety of the ONEP committee when approving the EIA report and will build trust among stakeholders in the vicinity of the gas pipeline system area.Keywords: environmental impact assessment, gas pipeline system, low land basin, high risk flooding area, mitigation measure
Procedia PDF Downloads 66970 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications
Authors: Wahab Ali Shah, Junjia He
Abstract:
Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.Keywords: coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency
Procedia PDF Downloads 250969 Investigation of the Factors Influencing the Construction Planning Process Using Participant Observation Method
Authors: Ashokkumar Subbiah
Abstract:
This study investigates the impact of factors that influenced the success of construction planning for a major construction project in Qatar. An approach of participant observation is adopted which is informed by the principles of ethnography: one that reports the participants’ view of their world rather than imposing an artificial theoretical framework upon it. As participant observant, key factors were observed and identified that had an impact on the management and execution of the construction planning. It is found that a ‘shadow culture’ exists between the project participants which, it is argued, is only observable from the perspective of an embedded participant observer. The shadow culture acts to enable the management of the planning process, and its efficacy relates to the ‘quality’ of human inter-relationships amongst immediate stakeholders. Whilst this study uses the concept of shadow culture, it is treated as both a methodological stance and one of the findings of this research in the context of the major construction project in Qatar. The concept of shadow culture is not imposed upon the findings, but instead is used as a research tool: respondents report their own worldview and this is reported from the view of a participant observant in a manner that is understandable and useful to those who are not part of the construction project. The findings of this study identify similar factors influencing the planning process of the Qatar project, but the shadow culture predominantly influences these factors towards the failure of planning process. The research concludes by questioning the assumption that construction planning is a mechanistic process that has to be conducted solely by the planning team. Instead, it is a highly social phenomenon in which the seemingly mechanistic process is made workable by the quality of relationships that exist in the project. Drawing on this the final section provides a series of recommendations that may be helpful in enhancing the efficacy of project planning; these include better training/education at the pre-construction phase; recognition of the importance of shadow processes at management levels, and better appreciation of the impact of contract type and chosen procurement route.Keywords: construction planning, participant observation, project participants, shadow culture
Procedia PDF Downloads 300968 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate
Authors: Beenish Saba, Ann D. Christy
Abstract:
Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.Keywords: microbial fuel cell, landfill leachate, power generation, MFC
Procedia PDF Downloads 318967 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing
Authors: Paramvir Singh
Abstract:
The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles
Procedia PDF Downloads 91966 Numerical Study on Jatropha Oil Pool Fire Behavior in a Compartment
Authors: Avinash Chaudhary, Akhilesh Gupta, Surendra Kumar, Ravi Kumar
Abstract:
This paper presents the numerical study on Jatropha oil pool fire in a compartment. A fire experiment with jatropha oil was conducted in a compartment of size 4 m x 4 m x m to study the fire development and temperature distribution. Fuel is burned in the center of the compartment in a pool diameter of 0.5 m with an initial fuel depth of 0.045 m. Corner temperature in the compartment, doorway temperature and hot gas layer temperature at various locations are measured. Numerical simulations were carried out using Fire Dynamics Simulator (FDS) software at grid size of 0.05 m, 0.12 m and for performing simulation heat release rate of jatropha oil measured using mass loss method were inputted into FDS. Experimental results shows that like other fuel fires, the whole combustion process can be divided into four stages: initial stage, growth stage, steady profile or developed phase and decay stage. The fire behavior shows two zone profile where upper zone consists of mainly hot gases while lower zone is relatively at colder side. In this study, predicted temperatures from simulation are in good agreement in upper zone of compartment. Near the interface of hot and cold zone, deviations were reported between the simulated and experimental results which is probably due to the difference between the predictions of smoke layer height by FDS. Also, changing the grid size from 0.12 m to 0.05 m does not show any effect in temperatures at upper zone while in lower zone, grid size of 0.05 m showed satisfactory agreement with experimental results. Numerical results showed that calculated temperatures at various locations matched well with the experimental results. On the whole, an effective method is provided with reasonable results to study the burning characteristics of jatropha oil with numerical simulations.Keywords: jatropha oil, compartment fire, heat release rate, FDS (fire dynamics simulator), numerical simulation
Procedia PDF Downloads 257965 Comparison Methyl Orange and Malachite Green Dyes Removal by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH as Adsorbents
Authors: Omid Moradi, Mostafa Rajabi
Abstract:
Graphene oxide (GO), reduced graphene oxide (rGO), multi-walled carbon nanotubes MWCNT), multi-walled carbon nanotube functionalized carboxyl (MWCNT-COOH), and multi-walled carbon nanotube functionalized thiol (MWCNT-SH) were used as efficient adsorbents for the rapid removal two dyes methyl orange (MO) and malachite green (MG) from the aqueous phase. The impact of several influential parameters such as initial dye concentrations, contact time, temperature, and initial solution pH was well studied and optimized. The optimize time for adsorption process of methyl orange dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 25, and 60 min, respectively and The optimize time for adsorption process of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 15, and 60 min, respectively. The maximum removal efficiency for methyl orange dye by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were occurred at optimized pH 3, 3, 6, 2, and 6 of aqueous solutions, respectively and for malachite green dye were occurred at optimized pH 3, 3, 6, 9, and 6 of aqueous solutions, respectively. The effect of temperature showed that adsorption process of malachite green dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic and for adsorption process of methyl orange dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic but while adsorption of methyl orange and malachite green dyes on MWCNT-COOH surface were exothermic.On increasing the initial concentration of methyl orange dye adsorption capacity on GO surface was decreased and on rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased and with increasing the initial concentration of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased.Keywords: adsorption, graphene oxide, reduced graphene oxide, multi-walled carbon nanotubes, methyl orange, malachite green, removal
Procedia PDF Downloads 382964 Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders
Authors: Akim Borbuev, Francisco de León
Abstract:
Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.Keywords: DC power systems, distribution feeders, distribution networks, power transfer capacity
Procedia PDF Downloads 129963 The Relationship between Size of Normal and Cystic Bovine Ovarian Follicles with Follicular Fluid Levels of Nitric Oxide and Estradiol
Authors: Hamidreza Khodaei, Behnaz Mahdavi, Leila Karshenas
Abstract:
Nitric oxide (NO) is a small fast acting neurotransmitter, which is synthesized From L-arginine by nitric oxide synthase. Studies show that NO affects a wide range of reproductive functions. Steroidal hormones synthesis, LH surge during ovulation, follicular growth and ovulation are all affected by NO. Therefore, the objective of this study was to evaluate the relationship between NO and estradiol (E2) production in ovarian follicles and cysts in bovines. Two experiment groups were formed and serum and follicular fluid levels Of NO and estradiol (E2) was measured. In the first group, follicular fluids were obtained from 30 slaughtered cows. Follicles were divided into three groups according to follicular diameter: Small follicles, <5 mm, medium-sized follicles, 5 to 10 mm, and large follicles, >10 mm. 30 follicles were randomly selected within each group. Blood samples were obtained via jugular vein. NO concentrations in blood and ovarian follicular fluids were measured by Griess reaction method and radio-immunoassay respectively. In the second group: 12 cows in follicular phase and with cystic follicles were selected and a cystic follicle was obtained from each. NO and E2 levels were measured as done for the first experiment group. The data were analyzed by SAS software using ANOVA and Duncan’s test. NO concentrations of follicular fluids from large follicles were significantly higher than those of the medium and small-sized ones. There were significant differences in the concentrations of nitrite and nitrate (Stable metabolites of NO) between large and cystic follicles, with extremely low NO and high E2 levels in cystic follicles (p<0.01).The results suggest that paracrine effects of NO may play an important role in the control of ovarian follicle growth and development of cystic follicles in bovines. It seems that NO dictates its effects through inhibition of ovarian steroidal synthesis.Keywords: nitric oxide, estradiol, cystic follicle, cow, oogenesis, oocyte maturation, follicular fluid
Procedia PDF Downloads 234