Search results for: zero order release kinetics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14859

Search results for: zero order release kinetics

14469 Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial

Authors: Bhavana V. Mohite, Satish V. Patil

Abstract:

Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected.

Keywords: agitated culture, biopolymer, gluconoacetobacter hansenii, nanocomposite

Procedia PDF Downloads 285
14468 Upconversion Nanoparticle-Mediated Carbon Monoxide Prodrug Delivery System for Cancer Therapy

Authors: Yaw Opoku-Damoah, Run Zhang, Hang Thu Ta, Zhi Ping Xu

Abstract:

Gas therapy is still at an early stage of research and development. Even though most gasotransmitters have proven their therapeutic potential, their handling, delivery, and controlled release have been extremely challenging. This research work employs a versatile nanosystem that is capable of delivering a gasotransmitter in the form of a photo-responsive carbon monoxide-releasing molecule (CORM) for targeted cancer therapy. The therapeutic action was mediated by upconversion nanoparticles (UCNPs) designed to transfer bio-friendly low energy near-infrared (NIR) light to ultraviolet (UV) light capable of triggering carbon monoxide (CO) from a water-soluble amphiphilic manganese carbonyl complex CORM incorporated into a carefully designed lipid drug delivery system. Herein, gaseous CO that plays a role as a gasotransmitter with cytotoxic and homeostatic properties was investigated to instigate cellular apoptosis. After successfully synthesizing the drug delivery system, the ability of the system to encapsulate and mediate the sustained release of CO after light excitation was demonstrated. CO fluorescence probe (COFP) was successfully employed to determine the in vitro drug release profile upon NIR light irradiation. The uptake of nanoparticles enhanced by folates and its receptor interaction was also studied for cellular uptake purposes. The anticancer potential of the final lipid nanoparticle Lipid/UCNPs/CORM/FA (LUCF) was also determined by cell viability assay. Intracellular CO release and a subsequent therapeutic action involving ROS production, mitochondrial damage, and CO production was also evaluated. In all, this current project aims to use in vitro studies to determine the potency and efficiency of a NIR-mediated CORM prodrug delivery system.

Keywords: carbon monoxide-releasing molecule, upconversion nanoparticles, site-specific delivery, amphiphilic manganese carbonyl complex, prodrug delivery system.

Procedia PDF Downloads 93
14467 Transdermal Therapeutic System of Lercanıdipine Hydrochloride: Fabrication and in Vivo Evaluation

Authors: Jiji Jose, R. Narayanacharyulu, Molly Mathew, Jisha Prems

Abstract:

Introduction: Lercanidipine hydrochloride (LD), an effective calcium channel blocker, widely used for the treatment of chronic stable angina and hypertension seems to be potential transdermal therapeutic system candidate, mainly due to its low oral bio availability, short half life and high first-pass metabolism. Objective: To develop transdermal therapeutic systems for LD and to evaluate its in vivo performance in rabbits. Methodology: Transdermal patches of LD were formulated using the polymer blend of eudragit RL100 (ERL) and polyvinyl pyrolidone (PVP) by casting method Propylene glycol (PG) and tween 80 were used as plasticizer and permeation enhancer respectively. The pharmaco kinetic parameters of LD after the administration of transdermal patches was compared with that of oral administration. The study was carried out in a two way crossover design in male New Zealand albino rabbits. Results: The formulation with ERL: PVP ratio 1:4 with 15% w/w PG as plasticizer and 4% w/w tween 80 as permeation enhancer showed the best drug release results. The pharmacokinetic parameters such as Cmax, tmax, mean residence time (MRT) and area under the curve (AUC 0-∞) were significantly different following transdermal administration compared to oral administration. The terminal half life of transdermally administered LD was found to similar that of oral administration. A sustained drug release over a period of 24 hrs was observed after transdermal administration. Conclusion: The fabricated transdermal delivery system have the potential to provide controlled and extended drug release, better bio availability and thus, this may improve the patient compliance.

Keywords: transdermal therapeutic system, lercanidipine hydrochloride, eudragit, skinpermeation

Procedia PDF Downloads 595
14466 Optimization of Alkali Assisted Microwave Pretreatments of Sorghum Straw for Efficient Bioethanol Production

Authors: Bahiru Tsegaye, Chandrajit Balomajumder, Partha Roy

Abstract:

The limited supply and related negative environmental consequence of fossil fuels are driving researcher for finding sustainable sources of energy. Lignocellulose biomass like sorghum straw is considered as among cheap, renewable and abundantly available sources of energy. However, lignocellulose biomass conversion to bioenergy like bioethanol is hindered due to the reluctant nature of lignin in the biomass. Therefore, removal of lignin is a vital step for lignocellulose conversion to renewable energy. The aim of this study is to optimize microwave pretreatment conditions using design expert software to remove lignin and to release maximum possible polysaccharides from sorghum straw for efficient hydrolysis and fermentation process. Sodium hydroxide concentration between 0.5-1.5%, v/v, pretreatment time from 5-25 minutes and pretreatment temperature from 120-2000C were considered to depolymerize sorghum straw. The effect of pretreatment was studied by analyzing the compositional changes before and after pretreatments following renewable energy laboratory procedure. Analysis of variance (ANOVA) was used to test the significance of the model used for optimization. About 32.8%-48.27% of hemicellulose solubilization, 53% -82.62% of cellulose release, and 49.25% to 78.29% lignin solubilization were observed during microwave pretreatment. Pretreatment for 10 minutes with alkali concentration of 1.5% and temperature of 1400C released maximum cellulose and lignin. At this optimal condition, maximum of 82.62% of cellulose release and 78.29% of lignin removal was achieved. Sorghum straw at optimal pretreatment condition was subjected to enzymatic hydrolysis and fermentation. The efficiency of hydrolysis was measured by analyzing reducing sugars by 3, 5 dinitrisylicylic acid method. Reducing sugars of about 619 mg/g of sorghum straw were obtained after enzymatic hydrolysis. This study showed a significant amount of lignin removal and cellulose release at optimal condition. This enhances the yield of reducing sugars as well as ethanol yield. The study demonstrates the potential of microwave pretreatments for enhancing bioethanol yield from sorghum straw.

Keywords: cellulose, hydrolysis, lignocellulose, optimization

Procedia PDF Downloads 247
14465 5-HT2CR Deficiency Causes Affective Disorders by Impairing E/I Balance through Augmenting Hippocampal nNOS-CAPON Coupling

Authors: Hu-Jiang Shi, Li-Juan Zhu

Abstract:

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in affective behaviors is a topic of debate, and the underlying mechanisms remain largely unclear. Here, we elucidate that the interaction between hippocampal neuronal nitric oxide synthase (nNOS) and carboxy-terminal PDZ ligand of nNOS (CAPON) contributes to the disruption of hippocampal excitation-inhibition (E/I) balance, which is responsible for the anxiety- and depressive-like behaviors caused by chronic stress-related 5-HT2CR signaling deficiency. In detail, activation or inhibition of 5-HT2CR by CP809101 or SB242084 modulates nNOS-CAPON interaction by influencing intracellular Ca²⁺ release. Notably, the dissociation of nNOS-CAPON abolishes SB242084-induced anxiety- and depressive-like behaviors, as well as the reduction in extracellular signal-regulated kinase (ERK)/cAMP-response element binding protein (CREB)/synapsin signaling and SNARE complex assembly. Furthermore, nNOS-CAPON blockers restore the impairments caused by SB242084, including the reduction in SNARE assembly-mediated γ-aminobutyric acid (GABA) vesicle release and a consequent shift of the E/I balance toward excitation in CA3 pyramidal neurons. Conclusively, our findings disclose the regulatory role of 5-HT2CR in anxiety- and depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

Keywords: 5-HT2CR, anxiety, depression, nNOS-CAPON coupling, excitation-inhibition balance, neurotransmitter release

Procedia PDF Downloads 39
14464 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property

Authors: Neha Verma, Manik Rakhra

Abstract:

Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.

Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor

Procedia PDF Downloads 128
14463 Localized Treatment of Cutaneous Candidiasis through Cubosomes in vitro Evaluation

Authors: Aakanchha Jain, D. V. Kohli

Abstract:

Cubosomes are nanoparticles but instead of the solid particles, cubosomes are self-assembled liquid crystalline particles of certain surfactant with proper ratio of water with a microstructure that provides unique properties of practical interest. Cubosomes encapsulating Fluconazole were prepared by emulsification method and characterized for particle size, entrapment efficiency. The cubosomes prepared were 257.2±2.94 nm in size with drug entrapment efficiency of 66.2±2.69%. The optimized formulation characterized for shape and surface morphology by TEM and SEM analysis. SEM photograph showed the smooth surface of optimized cubosomes and TEM photograph revealed square somewhat circular intact shapes of cubosomes. MIC was determined by XTT based method and antifungal activity was determined in vitro. The cumulative percentage of Fnz from cubosomes permeated via dialysis membrane (MWCO 12-14 KD) showed a percent cumulative drug release of 76.86% while Fnz solution showed release up to 91.04% in 24 hours in PBS (pH 6.5)(p < 0.005).

Keywords: Candids albicans, cubosomes, fluconazole, topical delivery

Procedia PDF Downloads 276
14462 Drum Scrubber Performance Assessment and Improvement to Achieve the Desired Product Quality

Authors: Prateek Singh, Arun Kumar Pandey, C. Raghu Kumar, M. R. Rath, A. S. Reddy

Abstract:

Drum scrubber is widely used equipment in the washing of Iron ore. The purpose of the scrubber is to release the adhered fine clayey particles from the iron-bearing particles. Presently, the iron ore wash plants in the Eastern region of India consist of the scrubber, double deck screen followed by screw classifier as the main unit operations. Hence, scrubber performance efficiency has a huge impact on the downstream product quality. This paper illustrates the effect of scrubber feed % solids on scrubber performance and alumina distribution on downstream equipment. Further, it was established that scrubber performance efficiency could be defined as the ratio of the adhered particles (-0.15mm) released from scrubber feed during scrubbing operation with respect to the maximum possible release of -0.15mm (%) particles.

Keywords: scrubber, adhered particles, feed % solids, efficiency

Procedia PDF Downloads 119
14461 Mixed Alumina-Silicate Materials for Groundwater Remediation

Authors: Ziyad Abunada, Abir Al-tabbaa

Abstract:

The current work is investigating the effectiveness of combined mixed materials mainly modified bentonites and organoclay in treating contaminated groundwater. Sodium bentonite was manufactured with a quaternary amine surfactant, dimethyl ammonium chloride to produce organoclay (OC). Inorgano-organo bentonite (IOB) was produced by intercalating alkylbenzyd-methyl-ammonium chloride surfactant into sodium bentonite and pillared with chlorohydrol pillaring agent. The materials efficiency was tested for both TEX compounds from model-contaminated water and a mixture of organic contaminants found in groundwater samples collected from a contaminated site in the United Kingdom. The sorption data was fitted well to both Langmuir and Freundlich adsorption models reflecting the double sorption model where the correlation coefficient was greater than 0.89 for all materials. The mixed materials showed higher sorptive capacity than individual material with a preference order of X> E> T and a maximum sorptive capacity of 21.8 mg/g was reported for IOB-OC materials for o-xylene. The mixed materials showed at least two times higher affinity towards a mixture of organic contaminants in groundwater samples. Other experimental parameters such as pH and contact time were also investigated. The pseudo-second-order rate equation was able to provide the best description of adsorption kinetics.

Keywords: modified bentobite, groundwater, adsorption, contaminats

Procedia PDF Downloads 203
14460 Antimicrobial Evaluation of Polyphenon 60 and Ciprofloxacin Loaded Nano Emulsion against Uropathogenic Escherichia coli Bacteria and Its in vivo Analysis

Authors: Atinderpal Kaur, Shweta Dang

Abstract:

Our aim is to develop a nanoemulsion-based delivery system containing polyphenon 60 (P60) and ciprofloxacin (Cipro) for intravaginal delivery to treat urinary tract infection. In the present study Polyphenon 60 (P60) and ciprofloxacin (Cipro) were loaded in a single nano emulsion (NE) system via ultra-sonication technique and characterized for particle size, in vitro release and antibacterial efficacy against Bcl-2 level Escherichia coli bacteria. To determine in vivo pharmacokinetic parameters and intravaginal transportation of NE, gamma scintigraphy and biodistribution study was conducted by radiolabelling NE with technetium pertechnetate (99mTc). The preliminary antibacterial investigation showed synergy between these compounds with FICindex of 0.42. The developed formulation showed zeta potential +55.3 and particle size of 151.7 nm, with PDI of 0.196. The in vitro release percentage of P60 at the end of 7th hours was 94.8 ± 0.9 % whereas the release for Cipro was 75.1± 0.15 % in simulated vaginal media. MBC was identified and the findings demonstrated that in both ESBL (Extended Spectrum β- lactamase) and MBL (Metallo β- lactamase) cultures the P60+Cipro NE showed inhibition of growth of all the isolates at 2 mg/ml dilutions. The percentage per gram of radiolabelled drug was found (3.50±0.26) and (3.81±0.30) in kidney and urinary bladder, respectively at 3 h. From the findings, it was concluded that the developed P60+Cipro NE was transported efficiently throughout the target organs, had long duration of action and high biocompatibility via intravaginal administration as compared to oral administration.

Keywords: ciprofloxacin, gamma scintigraphy, intravaginal drug delivery, Polyphenon 60

Procedia PDF Downloads 291
14459 Hyaluronan and Hyaluronan-Associated Genes in Human CD8 T Cells

Authors: Emily Schlebes, Christian Hundhausen, Jens W. Fischer

Abstract:

The glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix, typically produced by fibroblasts of the connective tissue but also by immune cells. Here, we investigated the capacity of human peripheral blood CD8 T cells from healthy donors to produce HA and to express HA receptors as well as HA degrading enzymes. Further, we evaluated the effect of pharmacological HA inhibition on CD8 T cell function. Using immunocytochemistry together with quantitative PCR analysis, we found that HA synthesis is rapidly induced upon antibody-induced T cell receptor (TCR) activation and almost exclusively mediated by HA synthase 3 (HAS3). TCR activation also resulted in the upregulation of HA receptors CD44, hyaluronan-mediated motility receptor (HMMR), and layilin (LAYN), although kinetics and strength of expression varied greatly between subjects. The HA-degrading enzymes HYAL1 and HYAL2 were detected at low levels and induced by cell activation in some individuals. Interestingly, expression of HAS3, HA receptors, and hyaluronidases were modulated by the proinflammatory cytokines IL-6 and IL-1bβ in most subjects. To assess the functional role of HA in CD8 T cells, we performed carboxyfluorescein succinimidyl ester (CFSE) based proliferation assays and cytokine analysis in the presence of the HA inhibitor 4- Methylumbelliferone (4-MU). Despite significant inter-individual variation with regard to the effective dose, 4-MU resulted in the inhibition of CD8 T cell proliferation and reduced release of TNF-α and IFN-γ. Collectively, these data demonstrate that human CD8 T cells respond to TCR stimulation with a synthesis of HA and expression of HA-related genes. They further suggest that HA inhibition may be helpful in interfering with pathogenic T cell activation in human disease.

Keywords: CD8 T cells, extracellular matrix, hyaluronan, hyaluronan synthase 3

Procedia PDF Downloads 72
14458 Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment

Authors: M. R. Phadatare, J. V. Meshram, S. H. Pawar

Abstract:

Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.

Keywords: magnetic nanoparticles, surface functionalization of magnetic nanoparticles, magnetic fluid hyperthermia, specific absorption rate

Procedia PDF Downloads 297
14457 Flow-Through Supercritical Installation for Producing Biodiesel Fuel

Authors: Y. A. Shapovalov, F. M. Gumerov, M. K. Nauryzbaev, S. V. Mazanov, R. A. Usmanov, A. V. Klinov, L. K. Safiullina, S. A. Soshin

Abstract:

A flow-through installation was created and manufactured for the transesterification of triglycerides of fatty acids and production of biodiesel fuel under supercritical fluid conditions. Transesterification of rapeseed oil with ethanol was carried out according to two parameters: temperature and the ratio of alcohol/oil mixture at the constant pressure of 19 MPa. The kinetics of the yield of fatty acids ethyl esters (FAEE) was determined in the temperature range of 320-380 °C at the alcohol/oil molar ratio of 6:1-20:1. The content of the formed FAEE was determined by the method of correlation of the resulting biodiesel fuel by its kinematic viscosity. The maximum FAEE yield (about 90%) was obtained within 30 min at the ethanol/oil molar ratio of 12:1 and a temperature of 380 °C. When studying of transesterification of triglycerides, a kinetic model of an isothermal flow reactor was used. The reaction order implemented in the flow reactor has been determined. The first order of the reaction was confirmed by data on the conversion of FAEE during the reaction at different temperatures and the molar ratios of the initial reagents (ethanol/oil). Using the Arrhenius equation, the values of the effective constants of the transesterification reaction rate were calculated at different reaction temperatures. In addition, based on the experimental data, the activation energy and the pre-exponential factor of the transesterification reaction were determined.

Keywords: biodiesel, fatty acid esters, supercritical fluid technology, transesterification

Procedia PDF Downloads 85
14456 Adsorption of Congo Red on MgO Nanoparticles Prepared by Molten Salt Method

Authors: Shahbaa F. Bdewi, Bakhtyar K. Aziz, Ayad A. R. Mutar

Abstract:

Nano-materials show different surface properties due to their high surface area and active sites. This study investigates the feasibility of using nano-MgO (NMO) for removing Congo red (CR) dye from wastewater. NMO was prepared by molten salt method. Equilibrium experiments show the equilibrium was reached after 120 minutes and maximum adsorption efficiency was obtained in acidic media up to pH 6. Isotherm studies revealed the favorability of the adsorption process. The overall adsorption process was spontaneous and endothermic in nature with a maximum adsorption capacity of 1100 mg g-1 at 40°C as estimated from Langmuir isotherm. The adsorption kinetics was found to follow pseudo second-order rate equation. Relatively high activation energy (180.7 kJ mol-1) was obtained which is consistent with chemisorption mechanism for the adsorption process.

Keywords: adsorption, congo red, magnesium oxide, nanoparticles

Procedia PDF Downloads 190
14455 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption

Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad

Abstract:

Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.

Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly

Procedia PDF Downloads 41
14454 Formulation of Film Forming Transdermal Spray Containing Fluconazole Using Full Factorial Design

Authors: Paresh M. Patel, Amit A. Patel, R. H. Parikh

Abstract:

The present investigation was undertaken to fabricate modified transport fluconazole that belongs to BCS class II and have a poor applicability on topical infection. So to improve topical application, transdermal spray could play a vital role by using ethyl cellulose and Eudragit® S100 as film-forming polymers. Concentration of Eudragit® S100, ethyl cellulose and permeation enhancer (camphor and menthol) were selected as independent variables, whereas drying time, viscosity and in-vitro drug release were selected as dependent variables in factorial design. The viscosity, drying time and in-vitro drug release of the optimize batch B15 was 40.1 cps, 47 sec. and 90.79% respectively. The film of optimized batch was flexible and dermal-adhesive.

Keywords: Eudragit, ethyl cellulose, fluconazole, transdermal spray

Procedia PDF Downloads 431
14453 Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic

Authors: Larbi Hammadi, N. Boudjenane, N. Benhallou, R. Houjedje, R. Reffis, M. Belhadri

Abstract:

Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant.

Keywords: ceramic, clays, structural kinetic model, thixotropy, viscosity

Procedia PDF Downloads 387
14452 Characteristics of Bio-hybrid Hydrogel Materials with Prolonged Release of the Model Active Substance as Potential Wound Dressings

Authors: Katarzyna Bialik-Wąs, Klaudia Pluta, Dagmara Malina, Małgorzata Miastkowska

Abstract:

In recent years, biocompatible hydrogels have been used more and more in medical applications, especially as modern dressings and drug delivery systems. The main goal of this research was the characteristics of bio-hybrid hydrogel materials incorporated with the nanocarrier-drug system, which enable the release in a gradual and prolonged manner, up to 7 days. Therefore, the use of such a combination will provide protection against mechanical damage and adequate hydration. The proposed bio-hybrid hydrogels are characterized by: transparency, biocompatibility, good mechanical strength, and the dual release system, which allows for gradual delivery of the active substance, even up to 7 days. Bio-hybrid hydrogels based on sodium alginate (SA), poly(vinyl alcohol) (PVA), glycerine, and Aloe vera solution (AV) were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate as a crosslinking agent. Additionally, a nanocarrier-drug system was incorporated into SA/PVA/AV hydrogel matrix. Here, studies were focused on the release profiles of active substances from bio-hybrid hydrogels using the USP4 method (DZF II Flow-Through System, Erweka GmbH, Langen, Germany). The equipment incorporated seven in-line flow-through diffusion cells. The membrane was placed over support with an orifice of 1,5 cm in diameter (diffusional area, 1.766 cm²). All the cells were placed in a cell warmer connected with the Erweka heater DH 2000i and the Erweka piston pump HKP 720. The piston pump transports the receptor fluid via seven channels to the flow-through cells and automatically adapts the setting of the flow rate. All volumes were measured by gravimetric methods by filling the chambers with Milli-Q water and assuming a density of 1 g/ml. All the determinations were made in triplicate for each cell. The release study of the model active substance was carried out using a regenerated cellulose membrane Spectra/Por®Dialysis Membrane MWCO 6-8,000 Carl Roth® Company. These tests were conducted in buffer solutions – PBS at pH 7.4. A flow rate of receptor fluid of about 4 ml /1 min was selected. The experiments were carried out for 7 days at a temperature of 37°C. The released concentration of the model drug in the receptor solution was analyzed using UV-Vis spectroscopy (Perkin Elmer Company). Additionally, the following properties of the modified materials were studied: physicochemical, structural (FT-IR analysis), morphological (SEM analysis). Finally, the cytotoxicity tests using in vitro method were conducted. The obtained results exhibited that the dual release system allows for the gradual and prolonged delivery of the active substances, even up to 7 days.

Keywords: wound dressings, SA/PVA hydrogels, nanocarrier-drug system, USP4 method

Procedia PDF Downloads 123
14451 Optimization of Bio-Diesel Production from Rubber Seed Oils

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

Rubber seed oil is an attractive alternative feedstock for biodiesel production because it is not related to food-chain plant. Rubber seed oil contains large amount of free fatty acids, which causes problem in biodiesel production. Free fatty acids can react with alkaline catalyst in biodiesel production. Acid esterification is used as pre-treatment to convert unwanted compound to desirable biodiesel. Phase separation of oil and methanol occurs at low ratio of methanol to oil and causes low reaction rate and conversion. Acid esterification requires large excess of methanol in order to increase the miscibility of methanol in oil and accordingly, it is a more expensive separation process. In this work, the kinetics of esterification of rubber seed oil with methanol is developed from available experimental results. Reactive distillation process was designed by using Aspen Plus program. The effects of operating parameters such as feed ratio, molar reflux ratio, feed temperature, and feed stage are investigated in order to find the optimum conditions. Results show that the reactive distillation process is proved to be better than conventional process. It consumes less feed methanol and less energy while yielding higher product purity than the conventional process. This work can be used as a guideline for further development to industrial scale of biodiesel production using reactive distillation.

Keywords: biodiesel, reactive distillation, rubber seed oil, transesterification

Procedia PDF Downloads 322
14450 Bayesian Optimization for Reaction Parameter Tuning: An Exploratory Study of Parameter Optimization in Oxidative Desulfurization of Thiophene

Authors: Aman Sharma, Sonali Sengupta

Abstract:

The study explores the utility of Bayesian optimization in tuning the physical and chemical parameters of reactions in an offline experimental setup. A comparative analysis of the influence of the acquisition function on the optimization performance is also studied. For proxy first and second-order reactions, the results are indifferent to the acquisition function used, whereas, while studying the parameters for oxidative desulphurization of thiophene in an offline setup, upper confidence bound (UCB) provides faster convergence along with a marginal trade-off in the maximum conversion achieved. The work also demarcates the critical number of independent parameters and input observations required for both sequential and offline reaction setups to yield tangible results.

Keywords: acquisition function, Bayesian optimization, desulfurization, kinetics, thiophene

Procedia PDF Downloads 155
14449 Chloride Ion Channels Play a Role in Mediating Immune Response during Pseudomonas aeruginosa Infection

Authors: Hani M. Alothaid, Louise Robson, Richmond Muimo

Abstract:

Cystic fibrosis (CF) is a disease that affects respiratory function and in EU it affects about 1 in 2,500 live births with an average 40-year life expectancy. This disease caused by mutations within the gene encoding the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) chloride channel leading to dysregulation of epithelial fluid transport and chronic lung inflammation, suggesting functional alterations of immune cells. In airways, CFTR been found to form a functional complex with S100A10 and AnxA2 in a cAMP/PKA dependent manner. The multiprotein complex of AnxA2-S100A10 and CFTR is also regulated by calcineurin. The aim of this study was i) to investigate whether chloride ion (Cl−) channels are activated by Pseudomonas aeruginosa lipopolysaccharide (LPS from PA), ii) if this activation is regulated by cAMP/PKA/calcineurin pathway and iii) to investigate the role of LPS-activated Cl− channels in the release of pro-inflammatory cytokines by immune cells. Human peripheral blood monocytes were used in the study. Whole-cell patch records showed that LPS from PA can activate Cl− channels, including CFTR and outwardly-rectifying Cl− channel (ORCC). This activation appears to require an intact PKA/calcineurin signalling pathway. The Gout in the presence of LPS was significantly inhibited by diisothiocyanatostilbene-disulfonic acid (DIDS), an ORCC blocker (p<0.001). The Gout was further suppressed by CFTR(inh)-172, a specific inhibitor for CFTR channels (p<0.001). Monocytes pre-incubated with PKA inhibitor or calcineurin inhibitor before stimulated with LPS from PA that were resulted in DIDS and CFTR(inh)-172 insensitive currents. Activation of both ORCC and CFTR was however, observed in response to monocytes exposure to LPS. Additionally, ELISA showed that the CFTR and ORCC play a role in mediating the release of pro-inflammatory cytokines such as IL-1β upon exposure of monocytes to LPS. However, this secretion was significantly inhibited due to CFTR and ORCC inhibition. However, Cl− may play a role in IL-1β release independent of cAMP/PKA/calcineurin signalling due to the enhancement of IL-1β secretion even when cAMP/PKA/calcineurin pathway was inhibited. In conclusion, our data confirmed that LPS from PA activates Cl− channels in human peripheral blood monocytes. Our data also confirmed that Cl− channels were involved in IL-1β release in monocytes upon exposure to LPS. However, it has been found that PKA and calcineurin does not seem to influence the Cl− dependent cytokine release.

Keywords: cystic fibrosis, CFTR, Annexin A2, S100A10, PP2B, PKA, outwardly-rectifying Cl− channel, Pseudomonas aeruginosa

Procedia PDF Downloads 152
14448 A Dynamic Model for Circularity Assessment of Nutrient Recovery from Domestic Sewage

Authors: Anurag Bhambhani, Jan Peter Van Der Hoek, Zoran Kapelan

Abstract:

The food system depends on the availability of Phosphorus (P) and Nitrogen (N). Growing population, depleting Phosphorus reserves and energy-intensive industrial nitrogen fixation are threats to their future availability. Recovering P and N from domestic sewage water offers a solution. Recovered P and N can be applied to agricultural land, replacing virgin P and N. Thus, recovery from sewage water offers a solution befitting a circular economy. To ensure minimum waste and maximum resource efficiency a circularity assessment method is crucial to optimize nutrient flows and minimize losses. Material Circularity Indicator (MCI) is a useful method to quantify the circularity of materials. It was developed for materials that remain within the market and recently extended to include biotic materials that may be composted or used for energy recovery after end-of-use. However, MCI has not been used in the context of nutrient recovery. Besides, MCI is time-static, i.e., it cannot account for dynamic systems such as the terrestrial nutrient cycles. Nutrient application to agricultural land is a highly dynamic process wherein flows and stocks change with time. The rate of recycling of nutrients in nature can depend on numerous factors such as prevailing soil conditions, local hydrology, the presence of animals, etc. Therefore, a dynamic model of nutrient flows with indicators is needed for the circularity assessment. A simple substance flow model of P and N will be developed with the help of flow equations and transfer coefficients that incorporate the nutrient recovery step along with the agricultural application, the volatilization and leaching processes, plant uptake and subsequent animal and human uptake. The model is then used for calculating the proportions of linear and restorative flows (coming from reused/recycled sources). The model will simulate the adsorption process based on the quantity of adsorbent and nutrient concentration in the water. Thereafter, the application of the adsorbed nutrients to agricultural land will be simulated based on adsorbate release kinetics, local soil conditions, hydrology, vegetation, etc. Based on the model, the restorative nutrient flow (returning to the sewage plant following human consumption) will be calculated. The developed methodology will be applied to a case study of resource recovery from wastewater. In the aforementioned case study located in Italy, biochar or zeolite is to be used for recovery of P and N from domestic sewage through adsorption and thereafter, used as a slow-release fertilizer in agriculture. Using this model, information regarding the efficiency of nutrient recovery and application can be generated. This can help to optimize the recovery process and application of the nutrients. Consequently, this will help to optimize nutrient recovery and application and reduce the dependence of the food system on the virgin extraction of P and N.

Keywords: circular economy, dynamic substance flow, nutrient cycles, resource recovery from water

Procedia PDF Downloads 175
14447 Floating Oral in Situ Gelling System of Anticancer Drug

Authors: Umme Hani, Mohammed Rahmatulla, Mohammed Ghazwani, Ali Alqahtani, Yahya Alhamhoom

Abstract:

Background and introduction: Neratinib is a potent anticancer drug used for the treatment of breast cancer. It is poorly soluble at higher pH, which tends to minimize the therapeutic effects in the lower gastrointestinal tract (GIT) leading to poor bioavailability. An attempt has been made to prepare and develop a gastro-retentive system of Neratinib to improve the drug bioavailability in the GIT by enhancing the gastric retention time. Materials and methods: In the present study a three-factor at two-level (23) factorial design based optimization was used to inspect the effects of three independent variables (factors) such as sodium alginate (A), sodium bicarbonate (B) and sodium citrate (C) on the dependent variables like in vitro gelation, in vitro floating, water uptake and percentage drug release. Results: All the formulations showed pH in the range 6.7 ±0.25 to 7.4 ±0.24, percentage drug content was observed to be 96.3±0.27 to 99.5 ±0.28%, in vitro gelation observed as gelation immediate remains for an extended period. Percentage of water uptake was in the range between 9.01±0.15 to 31.01±0.25%, floating lag time was estimated form 7±0.39 to 57±0.36 sec. F4 and F5 showed floating even after 12hrs. All formulations showed a release of around 90% drug release within 12hr. It was observed that the selected independent variables affect the dependent variables. Conclusion: The developed system may be a promising and alternative approach to augment gastric retention of drugs and enhances the therapeutic efficacy of the drug.

Keywords: neratinib, 2³ factorial design, sodium alginate, floating, in situ gelling system

Procedia PDF Downloads 128
14446 Inhibitory Effect on TNF-Alpha Release of Dioscorea membranacea and Its Compounds

Authors: Arunporn Itharat, Srisopa Ruangnoo, Pakakrong Thongdeeying

Abstract:

The rhizomes of Dioscorea membranacea (DM) has long been used in Thai Traditional medicine to treat cancer and inflammatory conditions such as rheumatism. The objective of this study was to investigate anti-inflammatory activity by determining the inhibitory effect on LPS-induced TNF-α from RAW264.7 cells of crude extracts and pure isolated compounds from DM. Three known dihydrophenantrene compounds were isolated by a bioassay guided isolation method from DM ethanolic extract [2,4 dimethoxy-5,6-dihydroxy-9,10-dihydrophenanthrene (1) and 5-hydroxy-2,4,6-trimethoxy-9,10-dihydrophenanthrene(2) and 5,6,2 -trihydroxy 3,4-methoxy, 9,10- dihydrophenanthrene (3)]. 1 showed the highest inhibitory effect on PGE2, followed by 3 and 1 (IC50 = 2.26, 4.97 and >20 μg/ml or 8.31,17.25 and > 20 µM respectively). These findings suggest that this plant showed anti-inflamatory effects by displaying an inhibitory effect on TNF-α release, hence, this result supports the usage of Thai traditional medicine to treat inflammation related diseases.

Keywords: Dioscorea membranacea, anti-inflammatory activity, TNF-Alpha , dihidrophenantrene compound

Procedia PDF Downloads 482
14445 X-Ray Dynamical Diffraction 'Third Order Nonlinear Renninger Effect'

Authors: Minas Balyan

Abstract:

Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically.

Keywords: Bragg diffraction, nonlinear Takagi’s equations, nonlinear Renninger effect, third order nonlinearity

Procedia PDF Downloads 361
14444 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients

Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska

Abstract:

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).

Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers

Procedia PDF Downloads 154
14443 Sustainable Composites for Aircraft Cabin Interior Applications

Authors: Fiorenzo Lenzi, Doris Abt, Besnik Bytyqi

Abstract:

Recent developments in composite materials for the interior cabin market provide more sustainable solutions for industrial applications. One contribution comes from epoxy-based prepregs recently developed to substitute phenolic prepregs in order to reduce the environmental impact of their production process and to eliminate health and safety issues related to their handling. Another example is the use of Mica-based products for improving the fire protection of interior cabin parts. Minerals, such as Mica, can be used as reinforcement in composites to reduce the heat release rate or, more traditionally, to improve the burn-through performance of fuselage and cargo lining components.

Keywords: prepreg, epoxy, Mica, battery protection

Procedia PDF Downloads 56
14442 Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process

Authors: Mahsa Ja’fari, Mohammad R. Khosravi-Nikou, Mohsen Motavassel

Abstract:

A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.

Keywords: design of experiment (DOE), dibenzothiophene (DBT), optimization, oxidative desulfurization (ODS)

Procedia PDF Downloads 194
14441 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite

Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee

Abstract:

Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.

Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration

Procedia PDF Downloads 204
14440 Enhancement of CO2 Capturing Performance of N-Methyldiethanolamine (MDEA) Using with New Class Functionalized Ionic Liquids: Kinetics and Interaction Mechanism Analysis

Authors: Surya Chandra Tiwari, Kamal Kishore Pant, Sreedevi Upadhyayula

Abstract:

CO2 capture using benign cost-effective solvents is an essential unit operation not only in the process industry for CO2 separation and recovery from industrial off-gas streams but also for direct capture from air to clean the environment. Several solvents are identified, by researchers, with high CO2 capture efficiency due to their favorable chemical and physical properties, interaction mechanism with CO2, and low regeneration energy cost. However, N-Methyldiethanolamine (MDEA) is the most frequently used solvent for CO2 capture with promoters such as piperazine (Pz) and monoethanolamine (MEA). These promoters have several issues such as low thermal stability, heat-stable salt formation, and being highly degradable. Therefore, new class promoters need to be used to overcome these issues. Functionalized ionic liquids (FILs) have the potential to overcome these limitations. Hence, in this work, four different new class functionalized ionic liquids (FILs) were used as promoters and determined their effectivity toward enhancement of the CO2 absorption performance. The CO2 absorption is performed at different pressure (2 bar, 4.4 bar, and 7 bar) and different temperature (303, 313, and 323K). The results confirmed that CO2 loading increases around 18 to 22% after 5wt% FILs blended in the MDEA. It was noticed that the CO2 loading increases with increasing pressure and decreases with increasing temperature for all absorbents systems. Further, the absorption kinetics was determined, and results showed that all the FILs provide an excellent absorption rate enhancement. Additionally, for the interaction mechanism study, 13C NMR analysis was performed for the blend aqueous MDEA-CO2 system. The results suggested that the FILs blend MDEA system produced a high amount of carbamates and bicarbonates during CO2 absorption, which further decreases with increasing temperature. Eventually, regeneration energy was calculated, and results confirmed that the energy heat duty penalty was lower in the [TETAH][Im] blend MDEA system. Overall, [TETAH][Pz], [TETAH][Im], [DETAH][Im] and [DETAH][Tz] showed the promising ability as promoters to enhance CO2 capturing performance of MDEA.

Keywords: CO2 capture, interaction mechanism, kinetics, Ionic liquids

Procedia PDF Downloads 89