Search results for: trained athletes
993 The Impact of Artificial Intelligence on Human Rights Priciples and Obligations
Authors: Adel Atta Youssef Rezkalla
Abstract:
Russia's invasion of Ukraine tested the international community and prompted not only states but also non-state actors to take deterrent measures in response. In fact, international sports federations, notably FIFA and UEFA, have managed to shift the power dynamic quite effectively by imposing a blanket ban on Russian national teams and clubs. The purpose of this article is to examine the human rights consequences of such actions by international sports organizations. First, the article moves away from assessing the legal status of FIFA and UEFA under international law and examines the question of how a legal connection can be established with their human rights obligations. Secondly, the human rights aspects of the controversial FIFA and UEFA measures against Russian athletes are examined and these are analyzed in more detail using the proportionality test than the principle of non-discrimination under international human rights law. Finally, the main avenues for redress for possible human rights violations related to the actions taken by these organizations are identified and the challenges of arbitration and litigation in Switzerland are highlighted.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.
Procedia PDF Downloads 76992 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise
Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang
Abstract:
Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.Keywords: electromyographic feature extraction, muscle status, pedaling exercise, relaxation segment
Procedia PDF Downloads 303991 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network
Authors: Leila Keshavarz Afshar, Hedieh Sajedi
Abstract:
Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter
Procedia PDF Downloads 147990 Teacher Education and Curriculum Innovation in Nigeria: Issues and Perspectives
Authors: Kenneth Uzochukwu Ezugwu
Abstract:
The quest for adequate teacher education is a serious task for the educational system in Nigeria because teachers are the major translators of education programmes in the classroom. The production of well trained teachers will enhance quality of the products of the school system. It is in this respect that the national policy on education posited that no educational system can rise above the quality of teachers. It is in the light of the above that this paper discusses and brought to the fore certain issues as the re-introduction of teacher training colleges, competitive entry requirement into teacher education and continuous on-the-job training as areas of needed innovation.Keywords: curriculum innovation, issues, perspectives, teacher education
Procedia PDF Downloads 600989 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning
Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher
Abstract:
Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping
Procedia PDF Downloads 136988 The Relevance of Intellectual Capital: An Analysis of Spanish Universities
Authors: Yolanda Ramirez, Angel Tejada, Agustin Baidez
Abstract:
In recent years, the intellectual capital reporting in higher education institutions has been acquiring progressive importance worldwide. Intellectual capital approaches becomes critical at universities, mainly due to the fact that knowledge is the main output as well as input in these institutions. Universities produce knowledge, either through scientific and technical research (the results of investigation, publications, etc.) or through teaching (students trained and productive relationships with their stakeholders). The purpose of the present paper is to identify the intangible elements about which university stakeholders demand most information. The results of a study done at Spanish universities are used to see which groups of universities have stakeholders who are more proactive to the disclosure of intellectual capital.Keywords: intellectual capital, universities, Spain, cluster analysis
Procedia PDF Downloads 508987 Institutional Legitimacy and Professional Boundary: Western Medicine-Trained Doctors' Attitudes and Behaviors toward Traditional Chinese Medicine
Authors: Xiaoli Tian
Abstract:
The recent growing interest in and use of complementary and alternative medicine is a global phenomenon. In many regions, traditional Chinese medicine (TCM), an important type of complementary and alternative medicine, has been formally integrated into the healthcare system. Consequently, today’s doctors face increasing requests and questions from patients regarding TCM. However, studies of TCM focus either on patients’ approaches to TCM and Western medicine (WM) or on the politics involved in the institutionalization of TCM. To our knowledge, sociological studies on doctors’ attitudes toward TCM are rare. This paper compares the receptivity of WM-trained Chinese doctors to TCM in Hong Kong and mainland China, in order to evaluate the interplay between professional training and dominant medical paradigms, on the one hand, and institutional legitimacy and government and client pressures to accept TCM, on the other. Based on survey and in-depth interviews with Western-medicine doctors in Hong Kong and mainland China, this research finds that: there is major difference between Western-medicine doctors’ attitude toward traditional Chinese medicine (TCM) in Hong Kong and mainland China. Doctors in Hong Kong are still suspicious toward TCM, no matter if they have exposure to TCM or not. Even some doctors who have much knowledge about TCM, such as got a diploma or certificate in TCM or tried TCM themselves, are still suspicious. This is because they hold up to the ideal of 'evidence-based medicine' and emphasize the kind of evidence based on randomized controlled trial (RCT). To Western medicine doctors in Hong Kong, this is the most reliable type of evidence for any medical practice, but it is lacking in TCM. This is the major reason why they do not trust TCM and would not refer patients to TCM in clinical practices. In contrast, western medicine doctors in mainland China also know about randomized controlled trial (RCT) and believe that’s the most reliable evidence, but they tend to think experience-based evidence is also reliable. On this basis, they think TCM also has clinical effectiveness. Research findings reveal that legitimacy based on institutional arrangements is a relevant factor, but how doctors understand their professional boundaries also play an important role. Doctors in Hong Kong are more serious about a strict professional boundary between Western medicine and TCM because they benefited from it, such as a very prestigious status and high income. Doctors in mainland China tend to be flexible about professional boundaries because they never benefited from a well-defined strict professional boundary. This is related to a long history of the lack of professionalism in China but is also aggravated by the increasing state support of TCM.Keywords: evidence-based decision-making, institutional legitimacy, professional behavior, traditional Chinese medicine
Procedia PDF Downloads 184986 Hybrid SVM/DBN Model for Arabic Isolated Words Recognition
Authors: Elyes Zarrouk, Yassine Benayed, Faiez Gargouri
Abstract:
This paper presents a new hybrid model for isolated Arabic words recognition. To do this, we apply Support Vectors Machine (SVM) as an estimator of posterior probabilities within the Dynamic Bayesian networks (DBN). This paper deals a comparative study between DBN and SVM/DBN systems for multi-dialect isolated Arabic words. Performance using SVM/DBN is found to exceed that of DBNs trained on an identical task, giving higher recognition accuracy for four different Arabic dialects. In fact, the average of recognition rates for the four dialects with SVM/DBN was 87.67% while 83.01% with DBN.Keywords: dynamic Bayesian networks, hybrid models, supports vectors machine, Arabic isolated words
Procedia PDF Downloads 560985 Intelligent Prediction System for Diagnosis of Heart Attack
Authors: Oluwaponmile David Alao
Abstract:
Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.Keywords: heart disease, artificial neural network, diagnosis, prediction system
Procedia PDF Downloads 450984 Integrating Blogging into Peer Assessment on College Students’ English Writing
Authors: Su-Lien Liao
Abstract:
Most of college students in Taiwan do not have sufficient English proficiency to express themselves in written English. Teachers spent a lot of time correcting students’ English writing, but the results are not satisfactory. This study aims to use blogs as a teaching and learning tool in written English. Before applying peer assessment, students should be trained to be good reviewers. The teacher starts the course by posting the error analysis of students’ first English composition on blogs as the comment models for students. Then the students will go through the process of drafting, composing, peer response and last revision on blogs. Evaluation Questionnaires and interviews will be conducted at the end of the course to see the impact and students’ perception for the course.Keywords: blog, peer assessment, English writing, error analysis
Procedia PDF Downloads 421983 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 52982 Evaluate the Changes in Stress Level Using Facial Thermal Imaging
Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian
Abstract:
This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.Keywords: stress, thermal imaging, face, SVM, polygraph
Procedia PDF Downloads 486981 Implementation of an Associative Memory Using a Restricted Hopfield Network
Authors: Tet H. Yeap
Abstract:
An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.Keywords: restricted Hopfield network, Lyapunov function, simultaneous perturbation stochastic approximation
Procedia PDF Downloads 133980 Sports Fans and Non-Interested Public Recognition of the Problems of Sports in Egypt through Caricature
Authors: Alaaeldin Hamdy Ahmed Mohammed
Abstract:
Introduction: This study examines sports’ fans and non-interested public perception and recognition of the problems that have negative impacts upon the Egyptian sports, particularly football, through caricatures. Eight caricature paintings were designed to express eight problems affecting the Egyptian sports and its development. These paintings were distributed on two groups of the fans and the non-interested public. Methods: The study was limited to eight caricatures representing the eight issues which are: the impact of stopping the sports activity on athletes, the effect of clubs’ disagreement, fanaticism between the members of the ultras of different clubs, the negative impact of the mingling of politics into sports, the negative role of the clubs affects the professionalism of the promising players, the conflict between the national organization responsible for sports, the breaking in of the fans to the playgrounds, the impact of the lack of planning on the national team. The Results: The results showed that both sports fans and those who are not interested in sports recognized the problems that the caricatures refer to and criticizes exaggeration although the rate was higher for the fans. These caricatures contributed also in their recognition of the danger of the negative impact of these problems on the Egyptian sports, particularly football which is the most common at the Egyptian sports fans. Discussion: This finding echoes the conclusion that caricatures are distinctive in the adults’ facial stimuli that are either systematically exaggerated recognition of them.Keywords: caricature, fans, football, sports
Procedia PDF Downloads 317979 Deep Learning to Enhance Mathematics Education for Secondary Students in Sri Lanka
Authors: Selvavinayagan Babiharan
Abstract:
This research aims to develop a deep learning platform to enhance mathematics education for secondary students in Sri Lanka. The platform will be designed to incorporate interactive and user-friendly features to engage students in active learning and promote their mathematical skills. The proposed platform will be developed using TensorFlow and Keras, two widely used deep learning frameworks. The system will be trained on a large dataset of math problems, which will be collected from Sri Lankan school curricula. The results of this research will contribute to the improvement of mathematics education in Sri Lanka and provide a valuable tool for teachers to enhance the learning experience of their students.Keywords: information technology, education, machine learning, mathematics
Procedia PDF Downloads 83978 Effects of Whole Body Vibration on Movement Variability Performing a Resistance Exercise with Different Ballasts and Rhythms
Authors: Sílvia tuyà Viñas, Bruno Fernández-Valdés, Carla Pérez-Chirinos, Monica Morral-Yepes, Lucas del Campo Montoliu, Gerard Moras Feliu
Abstract:
Some researchers stated that whole body vibration (WBV) generates postural destabilization, although there is no extensive research. Therefore, the aim of this study was to analyze movement variability when performing a half-squat with a different type of ballasts and rhythms with (V) and without (NV) WBV in male athletes using entropy. Twelve experienced in strength training males (age: 21.24 2.35 years, height: 176.83 5.80 cm, body mass: 70.63 8.58 kg) performed a half-squat with weighted vest (WV), dumbbells (D), and a bar with the weights suspended with elastic bands (B), in V and NV at 40 bpm and 60 bpm. Subjects performed one set of twelve repetitions of each situation, composed by the combination of the three factors. The movement variability was analyzed by calculating the Sample Entropy (SampEn) of the total acceleration signal recorded at the waist. In V, significant differences were found between D and WV (p<0.001; ES: 2.87 at 40 bpm; p<0.001; ES: 3.17 at 60 bpm) and between the B and WV at both rhythms (p<0.001; ES: 3.12 at 40 bpm; p<0.001; ES: 2.93 at 60 bpm) and a higher SampEn was obtained at 40 bpm with all ballasts (p<0.001; ES of WV: 1.22; ES of D: 4.49; ES of B: 4.03). No significant differences were found in NV. WBV is a disturbing and destabilizing stimulus. Strength and conditioning coaches should choose the combination of ballast and rhythm of execution according to the level and objectives of each athlete.Keywords: accelerometry, destabilization, entropy, movement variability, resistance training
Procedia PDF Downloads 179977 Discovering the Relationship between Teaching Creativity and Creative Writing in Pakistan
Authors: Humaira Irfan Khan
Abstract:
The paper explores teaching of creative writing in Pakistani classroom. The data collected from the questionnaire and focus group interview with a large public sector university’s Master of Arts in English students, who are also in-service school teachers, discovers that English teachers in Pakistan do not teach to develop the creative writing of pupils. The findings show that English teachers can define creative writing but are confused about strategies needed in rousing learners’ interest in creative writing. The teachers make their students memorise compositions from the textbooks to be reproduced in class. English teachers must be encouraged and trained to engage in activities that are essential for enhancing creative writing in schools.Keywords: creative writing, teaching creative writing, textbooks, Pakistan
Procedia PDF Downloads 352976 A Comprehensive Review of Yoga and Core Strength: Strengthening Core Muscles as Important Method for Injury Prevention (Lower Back Pain) and Performance Enhancement in Sports
Authors: Pintu Modak
Abstract:
The core strength is essential not only for athletes but also for everyone to perform everyday's household chores with ease and efficiency. Core strength means to strengthen the muscles deep within the abdomen which connect to the spine and pelvis which control the position and movement of the central portion of the body. Strengthening of core muscles is important for injury prevention (lower back pain) and performance enhancement in sports. The purpose of the study was to review the literature and findings on the effects of Yoga exercise as a part of sports training method and fitness programs. Fifteen papers were found to be relevant for this review. There are five simple yoga poses: Ardha Phalakasana (Low plank), Vasisthasana (side plank), Purvottanasana (inclined plane), Sarvangasana (shoulder stand), and Virabhadrasana (Warrior) are found to be very effective for strengthening core muscles. They are the most effective poses to build core strength and flexibility to the core muscles. The study suggests that sports and fitness trainers should include these yoga exercises in their programs to strengthen core muscles.Keywords: core strength, yoga, injuries, lower back
Procedia PDF Downloads 276975 Understanding the Benefits of Multiple-Use Water Systems (MUS) for Smallholder Farmers in the Rural Hills of Nepal
Authors: RAJ KUMAR G.C.
Abstract:
There are tremendous opportunities to maximize smallholder farmers’ income from small-scale water resource development through micro irrigation and multiple-use water systems (MUS). MUS are an improved water management approach, developed and tested successfully by iDE that pipes water to a community both for domestic use and for agriculture using efficient micro irrigation. Different MUS models address different landscape constraints, water demand, and users’ preferences. MUS are complemented by micro irrigation kits, which were developed by iDE to enable farmers to grow high-value crops year-round and to use limited water resources efficiently. Over the last 15 years, iDE’s promotion of the MUS approach has encouraged government and other key stakeholders to invest in MUS for better planning of scarce water resources. Currently, about 60% of the cost of MUS construction is covered by the government and community. Based on iDE’s experience, a gravity-fed MUS costs approximately $125 USD per household to construct, and it can increase household income by $300 USD per year. A key element of the MUS approach is keeping farmers well linked to input supply systems and local produce collection centers, which helps to ensure that the farmers can produce a sufficient quantity of high-quality produce that earns a fair price. This process in turn creates an enabling environment for smallholders to invest in MUS and micro irrigation. Therefore, MUS should be seen as an integrated package of interventions –the end users, water sources, technologies, and the marketplace– that together enhance technical, financial, and institutional sustainability. Communities are trained to participate in sustainable water resource management as a part of the MUS planning and construction process. The MUS approach is cost-effective, improves community governance of scarce water resources, helps smallholder farmers to improve rural health and livelihoods, and promotes gender equity. MUS systems are simple to maintain and communities are trained to ensure that they can undertake minor maintenance procedures themselves. All in all, the iDE Nepal MUS offers multiple benefits and represents a practical and sustainable model of the MUS approach. Moreover, there is a growing national consensus that rural water supply systems should be designed for multiple uses, acknowledging that substantial work remains in developing national-level and local capacity and policies for scale-up.Keywords: multiple-use water systems , small scale water resources, rural livelihoods, practical and sustainable model
Procedia PDF Downloads 290974 Wellness Warriors: A Qualitative Exploration of Frontline Healthcare Staff Responding to Crisis
Authors: Andrea Knezevic, Padmini Pai, Julaine Allan, Katarzyna Olcoń, Louisa Smith
Abstract:
Healthcare staff are on the frontline during times of disaster and are required to support the health and wellbeing of communities despite any personal adversity and trauma they are experiencing as a result of the disaster. This study explored the experiences of healthcare staff trained as ‘Wellness Warriors’ following the 2019-2020 Australian bushfires. The findings indicated that healthcare staff developed interpersonal skills around deep listening and connecting with others which allowed them to feel differently about work and restored their faith in healthcare leadership.Keywords: Australian bushfires, burnout, health care providers, mental health, occupational trauma, post-disaster, wellbeing, workplace wellness
Procedia PDF Downloads 137973 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining
Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri
Abstract:
In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.Keywords: educational data mining, Facebook, learning styles, personality traits
Procedia PDF Downloads 231972 Contact-Impact Analysis of Continuum Compliant Athletic Systems
Authors: Theddeus Tochukwu Akano, Omotayo Abayomi Fakinlede
Abstract:
Proper understanding of the behavior of compliant mechanisms use by athletes is important in order to avoid catastrophic failure. Such compliant mechanisms like the flex-run require the knowledge of their dynamic response and deformation behavior under quickly varying loads. The modeling of finite deformations of the compliant athletic system is described by Neo-Hookean model under contact-impact conditions. The dynamic impact-contact governing equations for both the target and impactor are derived based on the updated Lagrangian approach. A method where contactor and target are considered as a united body is applied in the formulation of the principle of virtual work for the bodies. In this paper, methods of continuum mechanics and nonlinear finite element method were deployed to develop a model that could capture the behavior of the compliant athletic system under quickly varying loads. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were employed, leveraging both ease of use and computational efficiency. The simulated results reveal the effect of the various contact-impact conditions on the deformation behavior of the impacting compliant mechanism.Keywords: eigenvalue problems, finite element method, robin boundary condition, sturm-liouville problem
Procedia PDF Downloads 472971 Real-Time Fitness Monitoring with MediaPipe
Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya, Harsha Pola
Abstract:
In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.Keywords: physical health, athletic trainers, fitness monitoring, technology driven solutions, Google’s MediaPipe, landmark detection, angle computation, real-time feedback
Procedia PDF Downloads 66970 Unsupervised Learning of Spatiotemporally Coherent Metrics
Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun
Abstract:
Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.Keywords: machine learning, pattern clustering, pooling, classification
Procedia PDF Downloads 456969 Leveraging Engineering Education and Industrial Training: Learning from a Case Study
Authors: Li Wang
Abstract:
The explosive of technology advances has opened up many avenues of career options for engineering graduates. Hence, how relevant their learning at university is very much dependent on their actual jobs. Bridging the gap between education and industrial practice is important, but it also becomes evident how both engineering education and industrial training can be leveraged at the same time and balance between what students should grasp at university and what they can be continuously trained at the working environment. Through a case study of developing a commercial product, this paper presents the required level of depth of technical knowledge and skills for some typical engineering jobs (for mechanical/materials engineering). It highlights the necessary collaboration for industry, university, and accreditation bodies to work together to nurture the next generation of engineers.Keywords: leverage, collaboration, career, industry, engineering education
Procedia PDF Downloads 97968 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness
Procedia PDF Downloads 412967 Core Stability Training and the Young Para-Swimmers’ Results on 50 Meters and 100 Meters Freestyle
Authors: Ninomyslaw Jakubczyk, Anna Zwierzchowska, Adam Maszczyk
Abstract:
Background: Central stabilisation training aims to improve neuromuscular coordination. It is used in the form of injury prevention and completing the swimmers' process. The aim of the study was to access the impact of this training on the results by disabled swimmers at 50 and 100 meters’ freestyle. Material/Method: 20 competitors with similar dysfunctions of the musculoskeletal system, randomly assigned to the experimental and control group, participated in the study. Each group consisted of 7 swimmers started in competitions from the standing starting position, and 3 started from the water. The study included a 4-week set of stabilization exercises, 4 times a week instead of pulling by legs. Exercises were held under specialist swimming conditions and involved controlled circuit muscle movements while maintaining a floating stable position in the water. Results: All groups improved their 'best times' besides swimmers started from standing position in the control group. There were no significant differences between intergroup and intra-group results, both at distance 50 and 100 meters’ freestyle. Conclusions: Better improvements in the experimental group were noted, but this effect cannot be attributed to 4-week stabilisation training. However, this investigation might suggest that this type of training could be beneficial for junior disabled swimmers.Keywords: athletes, swimming, trunk exercises, youth
Procedia PDF Downloads 156966 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions
Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin
Abstract:
In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography
Procedia PDF Downloads 269965 Nimart-trained Nurses' Perspectives Regarding Virally Unsuppressed Children HIV-positive on Antiretroviral Therapy and Missing Scheduled Clinic Visits: Mopani District, Limpopo Province
Authors: Linneth Nkateko Mabila, Patrick Hulisani Demana, Tebogo Maria Mothiba
Abstract:
Background: Sustaining adherence to antiretroviral therapy (ART) over the long term by people, especially children living with Human-Immunodeficiency Virus (HIV), requires accurate and consistent monitoring, and this is a particular challenge for countries in sub-Saharan Africa. However, the regularity and punctuality in monthly antiretroviral treatment collections indicate medication adherence to a certain extent since it has been revealed to be a significant determinant of the outcome of ART. Aim: This study assessed and described the pattern of monthly antiretroviral treatment collections among a cohort of virally unsuppressed HIV-positive children initiated and managed on ART in the rural public clinics of Mopani District, Limpopo, and explored the nurses' perceptions and views of the findings. Methods: A facility-based mixed-methods study was conducted to assess the honoring of scheduled monthly treatment collection practices by a cohort of HIV-positive children under 15 years initiated and managed on ART by Nurse Initiated Management of Antiretroviral Treatment (NIMART)-trained professional nurses (PNs) from 01 January 2015 to 31 December 2015 in public PHC clinics of Mopani District Municipality. This was followed by the exploration of the nurses' perceptions and views regarding this issue to share their experiences and knowledge acquired through managing these children on ART. Results: From a total of 7105 analysable visits, only 44% (3134) were honored as scheduled, with 40% (2828) of children presenting to the clinics after the scheduled appointment date – they missed their appointments, and 11% (768) of treatment collections that took place before the scheduled appointment date. This finding was further confirmed by 90% (97) of the nurses, who reported that they have children who miss scheduled appointments in their public clinics. The primary reasons for children missing appointments were related to caregivers' forgetfulness and conflict between the school schedule and the dates of clinic visits. Conclusion: We confirmed a high prevalence of non-adherence to scheduled monthly ART collections and the existence of health system, social, and caregiver-related factors that threaten treatment adherence and proper clinical outcomes. These findings suggest an urgent need for intervention since non-adherence to ARV therapy can be life-threatening to the child and poses the danger of reduced life expectancy.Keywords: antiretroviral therapy (art), nimart, virally unsuppressed children, missed appointments
Procedia PDF Downloads 102964 Children Overcome Learning Disadvantages through Mother-Tongue Based Multi-Lingual Education Programme
Authors: Binay Pattanayak
Abstract:
More than 9 out of every 10 children in Jharkhand struggle to understand the texts and teachers in public schools. The medium of learning in the schools is Hindi, which is very different in structure and vocabulary than those in children’s home languages. Hence around 3 out of 10 children enrolled in early grades drop out in these schools. The state realized the cause of children’s high dropout in 2013-14 when the M-TALL, the language research shared the findings of a state-wide socio-linguistic study. The study findings suggested that there was a great need for initiating a mother-tongue based multilingual education (MTB-MLE) programme for the state in early grades starting from pre-school level. Accordingly, M-TALL in partnership with department of education designed two learning packages: Bhasha Puliya pre-school education programme for 3-6-year-old children for their school readiness with bilingual picture dictionaries in 9 tribal and regional languages. This was followed by a plan for MTB-MLE programme for early primary grades. For this textbooks in five tribal and two regional languages were developed under the guidance of the author. These books were printed and circulated in the 1000 schools of the state for each child. Teachers and community members were trained for facilitating culturally sensitive mother-tongue based learning activities in and around the schools. The mother-tongue based approach of learning has worked very effectively in enabling them to acquire the basic literacy and numeracy skills in own mother-tongues. Using this basic early grade reading skills, these children are able to learn Hindi and English systematically. Community resource groups were constituted in each school for promoting storytelling, singing, painting, dancing, acting, riddles, humor, sanitation, health, nutrition, protection, etc. and were trained. School academic calendar was designed in each school to enable the community resource persons to visit the school as per the learning plan to assist children and teacher in facilitating rich cultural activities in mother-tongue. This enables children to take part in plethora of learning activities and acquire desired knowledge, skills and interest in mother-tongues. Also in this process, it is attempted to promote 21st Century learning skills by enabling children to apply their new knowledge and skills to look at their local issues and address those in a collective manner through team work, innovations and leadership.Keywords: community resource groups, learning, MTB-MLE, multilingual, socio-linguistic survey
Procedia PDF Downloads 236