Search results for: the autonomous underwater vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1936

Search results for: the autonomous underwater vehicle

1546 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA

Procedia PDF Downloads 485
1545 Application of Industrial Ergonomics in Vehicle Service System Design

Authors: Zhao Yu, Zhi-Nan Zhang

Abstract:

More and more interactive devices are used in the transportation service system. Our mobile phones, on-board computers, and Head-Up Displays (HUDs) can all be used as the tools of the in-car service system. People can access smart systems with different terminals such as mobile phones, computers, pads and even their cars and watches. Different forms of terminals bring the different quality of interaction by the various human-computer Interaction modes. The new interactive devices require good ergonomics design at each stage of the whole design process. According to the theory of human factors and ergonomics, this paper compared three types of interactive devices by four driving tasks. Forty-eight drivers were chosen to experience these three interactive devices (mobile phones, on-board computers, and HUDs) by a simulate driving process. The subjects evaluated ergonomics performance and subjective workload after the process. And subjects were encouraged to support suggestions for improving the interactive device. The result shows that different interactive devices have different advantages in driving tasks, especially in non-driving tasks such as information and entertainment fields. Compared with mobile phones and onboard groups, the HUD groups had shorter response times in most tasks. The tasks of slow-up and the emergency braking are less accurate than the performance of a control group, which may because the haptic feedback of these two tasks is harder to distinguish than the visual information. Simulated driving is also helpful in improving the design of in-vehicle interactive devices. The paper summarizes the ergonomics characteristics of three in-vehicle interactive devices. And the research provides a reference for the future design of in-vehicle interactive devices through an ergonomic approach to ensure a good interaction relationship between the driver and the in-vehicle service system.

Keywords: human factors, industrial ergonomics, transportation system, usability, vehicle user interface

Procedia PDF Downloads 110
1544 Motor Vehicle Accidents During Pregnancy: Analysis of Maternal and Fetal Outcome at a University Hospital

Authors: Manjunath Attibele, Alsawafi Manal, Al Dughaishi Tamima

Abstract:

Introduction: The purpose of this study was to describe the clinical characteristics and types of mechanisms of injuries caused by Motor vehicle accidents (MVA) during pregnancy. To analyze the patterns of accidents during pregnancy and its adverse consequences on both maternal and fetal outcome. Methods: This was a retrospective cohort study on pregnant patients who met with MVAs The study period was from January 1, 2010, to December 31, 2019. All relevant data were retrieved from electronic patients’ records from the hospital information system and from the antenatal ward admission register Results: Out of 168 women who had motor vehicle accidents during the study period, of which, 39 (23.2%) women during pregnancy. Twenty-one (53.8%) women were over 30 years old. Thirty-five (89.7%) women were Omanis, and 27 (69.2%) were in their third trimester. Twenty-three (59%) of accidents happened at night, and 31 (79.5%) of them happened on a weekday. Twenty-two (56.4%) of women were driving themselves, and 24 (61.5%) of them were not using any seatbelt. Accident related abdominal & back pain was seen in 23(59%) women. Regarding the outcome of pregnancy, 23 (74.2%) had a normal vaginal delivery. The mean accident to delivery interval was 7 weeks. Thirty (96.7%) of involved newborns were relatively healthy. One woman (3.2%) had a ruptured uterusleading to fetal death (3.2%). Conclusion: This study showed that the incidence of motor vehicle accidents during pregnancy is around 23.2% . Majority had trauma-associated pain. One serious injury to a woman causing a ruptured uterus which lead to fetal death. Majority of involved newborns were relatively healthy. No reported maternal death.

Keywords: motor vehicle accidents, pregnancy, maternal outcome, fetal outcome

Procedia PDF Downloads 65
1543 An Open-Source Guidance System for an Autonomous Planter Robot in Precision Agriculture

Authors: Nardjes Hamini, Mohamed Bachir Yagoubi

Abstract:

Precision agriculture has revolutionized farming by enabling farmers to monitor their crops remotely in real-time. By utilizing technologies such as sensors, farmers can detect the state of growth, hydration levels, and nutritional status and even identify diseases affecting their crops. With this information, farmers can make informed decisions regarding irrigation, fertilization, and pesticide application. Automated agricultural tasks, such as plowing, seeding, planting, and harvesting, are carried out by autonomous robots and have helped reduce costs and increase production. Despite the advantages of precision agriculture, its high cost makes it inaccessible to small and medium-sized farms. To address this issue, this paper presents an open-source guidance system for an autonomous planter robot. The system is composed of a Raspberry Pi-type nanocomputer equipped with Wi-Fi, a GPS module, a gyroscope, and a power supply module. The accompanying application allows users to enter and calibrate maps with at least four coordinates, enabling the localized contour of the parcel to be captured. The application comprises several modules, such as the mission entry module, which traces the planting trajectory and points, and the action plan entry module, which creates an ordered list of pre-established tasks such as loading, following the plan, returning to the garage, and entering sleep mode. A remote control module enables users to control the robot manually, visualize its location on the map, and use a real-time camera. Wi-Fi coverage is provided by an outdoor access point, covering a 2km circle. This open-source system offers a low-cost alternative for small and medium-sized farms, enabling them to benefit from the advantages of precision agriculture.

Keywords: autonomous robot, guidance system, low-cost, medium farms, open-source system, planter robot, precision agriculture, real-time monitoring, remote control, small farms

Procedia PDF Downloads 83
1542 Automatic Battery Charging for Rotor Wings Type Unmanned Aerial Vehicle

Authors: Jeyeon Kim

Abstract:

This paper describes the development of the automatic battery charging device for the rotor wings type unmanned aerial vehicle (UAV) and the positioning method that can be accurately landed on the charging device when landing. The developed automatic battery charging device is considered by simple maintenance, durability, cost and error of the positioning when landing. In order to for the UAV accurately land on the charging device, two kinds of markers (a color marker and a light marker) installed on the charging device is detected by the camera mounted on the UAV. And then, the UAV is controlled so that the detected marker becomes the center of the image and is landed on the device. We conduct the performance evaluation of the proposal positioning method by the outdoor experiments at day and night, and show the effectiveness of the system.

Keywords: unmanned aerial vehicle, automatic battery charging, positioning

Procedia PDF Downloads 330
1541 Sensor Registration in Multi-Static Sonar Fusion Detection

Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin

Abstract:

In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.

Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem

Procedia PDF Downloads 139
1540 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)

Authors: Tauhidur Rahman, Dhrubajyoti Thakuria

Abstract:

In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.

Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control

Procedia PDF Downloads 383
1539 An Application of Integrated Multi-Objective Particles Swarm Optimization and Genetic Algorithm Metaheuristic through Fuzzy Logic for Optimization of Vehicle Routing Problems in Sugar Industry

Authors: Mukhtiar Singh, Sumeet Nagar

Abstract:

Vehicle routing problem (VRP) is a combinatorial optimization and nonlinear programming problem aiming to optimize decisions regarding given set of routes for a fleet of vehicles in order to provide cost-effective and efficient delivery of both services and goods to the intended customers. This paper proposes the application of integrated particle swarm optimization (PSO) and genetic optimization algorithm (GA) to address the Vehicle routing problem in sugarcane industry in India. Suger industry is very prominent agro-based industry in India due to its impacts on rural livelihood and estimated to be employing around 5 lakhs workers directly in sugar mills. Due to various inadequacies, inefficiencies and inappropriateness associated with the current vehicle routing model it costs huge money loss to the industry which needs to be addressed in proper context. The proposed algorithm utilizes the crossover operation that originally appears in genetic algorithm (GA) to improve its flexibility and manipulation more readily and avoid being trapped in local optimum, and simultaneously for improving the convergence speed of the algorithm, level set theory is also added to it. We employ the hybrid approach to an example of VRP and compare its result with those generated by PSO, GA, and parallel PSO algorithms. The experimental comparison results indicate that the performance of hybrid algorithm is superior to others, and it will become an effective approach for solving discrete combinatory problems.

Keywords: fuzzy logic, genetic algorithm, particle swarm optimization, vehicle routing problem

Procedia PDF Downloads 369
1538 Ocean Planner: A Web-Based Decision Aid to Design Measures to Best Mitigate Underwater Noise

Authors: Thomas Folegot, Arnaud Levaufre, Léna Bourven, Nicolas Kermagoret, Alexis Caillard, Roger Gallou

Abstract:

Concern for negative impacts of anthropogenic noise on the ocean’s ecosystems has increased over the recent decades. This concern leads to a similar increased willingness to regulate noise-generating activities, of which shipping is one of the most significant. Dealing with ship noise requires not only knowledge about the noise from individual ships, but also how the ship noise is distributed in time and space within the habitats of concern. Marine mammals, but also fish, sea turtles, larvae and invertebrates are mostly dependent on the sounds they use to hunt, feed, avoid predators, during reproduction to socialize and communicate, or to defend a territory. In the marine environment, sight is only useful up to a few tens of meters, whereas sound can propagate over hundreds or even thousands of kilometers. Directive 2008/56/EC of the European Parliament and of the Council of June 17, 2008 called the Marine Strategy Framework Directive (MSFD) require the Member States of the European Union to take the necessary measures to reduce the impacts of maritime activities to achieve and maintain a good environmental status of the marine environment. The Ocean-Planner is a web-based platform that provides to regulators, managers of protected or sensitive areas, etc. with a decision support tool that enable to anticipate and quantify the effectiveness of management measures in terms of reduction or modification the distribution of underwater noise, in response to Descriptor 11 of the MSFD and to the Marine Spatial Planning Directive. Based on the operational sound modelling tool Quonops Online Service, Ocean-Planner allows the user via an intuitive geographical interface to define management measures at local (Marine Protected Area, Natura 2000 sites, Harbors, etc.) or global (Particularly Sensitive Sea Area) scales, seasonal (regulation over a period of time) or permanent, partial (focused to some maritime activities) or complete (all maritime activities), etc. Speed limit, exclusion area, traffic separation scheme (TSS), and vessel sound level limitation are among the measures supported be the tool. Ocean Planner help to decide on the most effective measure to apply to maintain or restore the biodiversity and the functioning of the ecosystems of the coastal seabed, maintain a good state of conservation of sensitive areas and maintain or restore the populations of marine species.

Keywords: underwater noise, marine biodiversity, marine spatial planning, mitigation measures, prediction

Procedia PDF Downloads 92
1537 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem

Authors: Tarek Aboueldahab, Hanan Farag

Abstract:

Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.

Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation

Procedia PDF Downloads 73
1536 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter

Procedia PDF Downloads 393
1535 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring

Procedia PDF Downloads 532
1534 Development of a Weed Suppression Robot for Rice Cultivation Weed Suppression and Posture Control

Authors: Shohei Nakai, Yasuhiro Yamada

Abstract:

Weed suppression and weeding are necessary measures for rice cultivation. Weed suppression precedes the process of weeding. It means suppressing the growth of young weeds and creating a weed-less environment. If we suppress the growth of weeds, we can reduce the number of weeds in a paddy field. This would result in a reduction of the weeding work load. In this paper, we will show how we developed a weed suppression robot for the purpose of reducing the weeding work load. The robot has a laser range finder for autonomous mobility and a robot arm for weed suppression. It travels along the rice rows without stepping on and injuring the rice plants in a paddy field. The robot arm applies force to the weed seedlings and thereby suppresses the growth of weeds. This paper will explain the methodology of the autonomous mobile, the experiment in weed suppression, and the method of controlling the robot’s posture on uneven ground.

Keywords: mobile robot, paddy field, robot arm, weed

Procedia PDF Downloads 355
1533 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control

Authors: Hartani Kada, Merah Abdelkader

Abstract:

Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.

Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion

Procedia PDF Downloads 579
1532 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 41
1531 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model

Authors: T. Sanches, K. Bousson

Abstract:

As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.

Keywords: autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control

Procedia PDF Downloads 112
1530 Modeling and Optimal Control of Hybrid Unmanned Aerial Vehicles with Wind Disturbance

Authors: Sunsoo Kim, Niladri Das, Raktim Bhattacharya

Abstract:

This paper addresses modeling and control of a six-degree-of-freedom unmanned aerial vehicle capable of vertical take-off and landing in the presence of wind disturbances. We design a hybrid vehicle that combines the benefits of both the fixed-wing and the rotary-wing UAVs. A non-linear model for the hybrid vehicle is rapidly built, combining rigid body dynamics, aerodynamics of wing, and dynamics of the motor and propeller. Further, we design a H₂ optimal controller to make the UAV robust to wind disturbances. We compare its results against that of proportional-integral-derivative and linear-quadratic regulator based control. Our proposed controller results in better performance in terms of root mean squared errors and time responses during two scenarios: hover and level- flight.

Keywords: hybrid UAVs, VTOL, aircraft modeling, H2 optimal control, wind disturbances

Procedia PDF Downloads 130
1529 GPS Signal Correction to Improve Vehicle Location during Experimental Campaign

Authors: L. Della Ragione, G. Meccariello

Abstract:

In recent years the progress of the automobile industry in Italy in the field of reduction of emissions values is very remarkable. Nevertheless, their evaluation and reduction is a key problem, especially in the cities, which account for more than 50% of world population. In this paper we dealt with the problem of describing a quantitative approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars.

Keywords: air pollution, driving cycles, GPS signal, vehicle location

Procedia PDF Downloads 406
1528 Non-Thermal Pulsed Plasma Discharge for Contaminants of Emerging Concern Removal in Water

Authors: Davide Palma, Dimitra Papagiannaki, Marco Minella, Manuel Lai, Rita Binetti, Claire Richard

Abstract:

Modern analytical technologies allow us to detect water contaminants at trace and ultra-trace concentrations highlighting how a large number of organic compounds is not efficiently abated by most wastewater treatment facilities relying on biological processes; we usually refer to these micropollutants as contaminants of emerging concern (CECs). The availability of reliable end effective technologies, able to guarantee the high standards of water quality demanded by legislators worldwide, has therefore become a primary need. In this context, water plasma stands out among developing technologies as it is extremely effective in the abatement of numerous classes of pollutants, cost-effective, and environmentally friendly. In this work, a custom-built non-thermal pulsed plasma discharge generator was used to abate the concentration of selected CECs in the water samples. Samples were treated in a 50 mL pyrex reactor using two different types of plasma discharge occurring at the surface of the treated solution or, underwater, working with positive polarity. The distance between the tips of the electrodes determined where the discharge was formed: underwater when the distance was < 2mm, at the water surface when the distance was > 2 mm. Peak voltage was in the 100-130kV range with typical current values of 20-40 A. The duration of the pulse was 500 ns, and the frequency of discharge could be manually set between 5 and 45 Hz. Treatment of 100 µM diclofenac solution in MilliQ water, with a pulse frequency of 17Hz, revealed that surface discharge was more efficient in the degradation of diclofenac that was no longer detectable after 6 minutes of treatment. Over 30 minutes were required to obtain the same results with underwater discharge. These results are justified by the higher rate of H₂O₂ formation (21.80 µmolL⁻¹min⁻¹ for surface discharge against 1.20 µmolL⁻¹min⁻¹ for underwater discharge), larger discharge volume and UV light emission, high rate of ozone and NOx production (up to 800 and 1400 ppb respectively) observed when working with surface discharge. Then, the surface discharge was used for the treatment of the three selected perfluoroalkyl compounds, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and pefluorooctanesulfonic acid (PFOS) both individually and in mixture, in ultrapure and groundwater matrices with initial concentration of 1 ppb. In both matrices, PFOS exhibited the best degradation reaching complete removal after 30 min of treatment (degradation rate 0.107 min⁻¹ in ultrapure water and 0.0633 min⁻¹ in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 80%, respectively. Total nitrogen (TN) measurements revealed levels up to 45 mgL⁻¹h⁻¹ in water samples treated with surface discharge, while, in analogous samples treated with underwater discharge, TN increase was 5 to 10 times lower. These results can be explained by the significant NOx concentrations (over 1400 ppb) measured above functioning reactor operating with superficial discharge; rapid NOx hydrolysis led to nitrates accumulation in the solution explaining the observed evolution of TN values. Ionic chromatography measures confirmed that the vast majority of TN was under the form of nitrates. In conclusion, non-thermal pulsed plasma discharge, obtained with a custom-built generator, was proven to effectively degrade diclofenac in water matrices confirming the potential interest of this technology for wastewater treatment. The surface discharge was proven to be more effective in CECs removal due to the high rate of formation of H₂O₂, ozone, reactive radical species, and strong UV light emission. Furthermore, nitrates enriched water obtained after treatment could be an interesting added-value product to be used as fertilizer in agriculture. Acknowledgment: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765860.

Keywords: CECs removal, nitrogen fixation, non-thermal plasma, water treatment

Procedia PDF Downloads 97
1527 Motivation for Therapy in Clinical Social Work in Kuwait

Authors: Hend Almaseb

Abstract:

​The motivational model proposed by Self-Determination Theory provided an explanation for clients’ motivation for therapy. Among a sample of 78 inpatient residents in the Addiction Treatment Center, this study examined the relationship between three types of motivation (Autonomous, Controlled, and Amotivation) and each of the following variables: Age, Marital Status, Educational Level of Participant, and Number of Years of Addiction. In addition, the study investigated whether or not the participants are motivated to receive therapy. The results showed 1) a significant relationship between Controlled Motivation and the following variables: Age, Marital Status, and Number of Years of Addiction; 2) a significant relationship between Autonomous Motivation and Number of Years of Addiction; and a significant relationship between Educational Level and Amotivation. The results also illustrated that the participants of this study were not motivated to seek therapy.

Keywords: addiction, clinical social work, motivation, self-determination

Procedia PDF Downloads 358
1526 Explanatory Variables for Crash Injury Risk Analysis

Authors: Guilhermina Torrao

Abstract:

An extensive number of studies have been conducted to determine the factors which influence crash injury risk (CIR); however, uncertainties inherent to selected variables have been neglected. A review of existing literature is required to not only obtain an overview of the variables and measures but also ascertain the implications when comparing studies without a systematic view of variable taxonomy. Therefore, the aim of this literature review is to examine and report on peer-reviewed studies in the field of crash analysis and to understand the implications of broad variations in variable selection in CIR analysis. The objective of this study is to demonstrate the variance in variable selection and classification when modeling injury risk involving occupants of light vehicles by presenting an analytical review of the literature. Based on data collected from 64 journal publications reported over the past 21 years, the analytical review discusses the variables selected by each study across an organized list of predictors for CIR analysis and provides a better understanding of the contribution of accident and vehicle factors to injuries acquired by occupants of light vehicles. A cross-comparison analysis demonstrates that almost half the studies (48%) did not consider vehicle design specifications (e.g., vehicle weight), whereas, for those that did, the vehicle age/model year was the most selected explanatory variable used by 41% of the literature studies. For those studies that included speed risk factor in their analyses, the majority (64%) used the legal speed limit data as a ‘proxy’ of vehicle speed at the moment of a crash, imposing limitations for CIR analysis and modeling. Despite the proven efficiency of airbags in minimizing injury impact following a crash, only 22% of studies included airbag deployment data. A major contribution of this study is to highlight the uncertainty linked to explanatory variable selection and identify opportunities for improvements when performing future studies in the field of road injuries.

Keywords: crash, exploratory, injury, risk, variables, vehicle

Procedia PDF Downloads 100
1525 Clarifications on the Damping Mechanism Related to the Hunting Motion of the Wheel Axle of a High-Speed Railway Vehicle

Authors: Barenten Suciu

Abstract:

In order to explain the damping mechanism, related to the hunting motion of the wheel axle of a high-speed railway vehicle, a generalized dynamic model is proposed. Based on such model, analytic expressions for the damping coefficient and damped natural frequency are derived, without imposing restrictions on the ratio between the lateral and vertical creep coefficients. Influence of the travelling speed, wheel conicity, dimensionless mass of the wheel axle, ratio of the creep coefficients, ratio of the track span to the yawing diameter, etc. on the damping coefficient and damped natural frequency, is clarified.

Keywords: high-speed railway vehicle, hunting motion, wheel axle, damping, creep, vibration model, analysis.

Procedia PDF Downloads 275
1524 Autonomous Flight Control for Multirotor by Alternative Input Output State Linearization with Nested Saturations

Authors: Yong Eun Yoon, Eric N. Johnson, Liling Ren

Abstract:

Multirotor is one of the most popular types of small unmanned aircraft systems and has already been used in many areas including transport, military, surveillance, and leisure. Together with its popularity, the needs for proper flight control is growing because in most applications it is required to conduct its missions autonomously, which is in many aspects based on autonomous flight control. There have been many studies about the flight control for multirotor, but there is still room for enhancements in terms of performance and efficiency. This paper presents an autonomous flight control method for multirotor based on alternative input output linearization coupled with nested saturations. With alternative choice of the output of the multirotor flight control system, we can reduce computational cost regarding Lie algebra, and the linearized system can be stabilized with the introduction of nested saturations with real poles of our own design. Stabilization of internal dynamics is also based on the nested saturations and accompanies the determination of part of desired states. In particular, outer control loops involving state variables which originally are not included in the output of the flight control system is naturally rendered through this internal dynamics stabilization. We can also observe that desired tilting angles are determined by error dynamics from outer loops. Simulation results show that in any tracking situations multirotor stabilizes itself with small time constants, preceded by tuning process for control parameters with relatively low degree of complexity. Future study includes control of piecewise linear behavior of multirotor with actuator saturations, and the optimal determination of desired states while tracking multiple waypoints.

Keywords: automatic flight control, input output linearization, multirotor, nested saturations

Procedia PDF Downloads 206
1523 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: electric vehicles, fuel cell, battery, regenerative braking, energy management

Procedia PDF Downloads 687
1522 Axle Load Estimation of Moving Vehicles Using BWIM Technique

Authors: Changgil Lee, Seunghee Park

Abstract:

Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model.

Keywords: bridge weigh-in-motion(BWIM) system, precision analysis model, dynamic characteristic of bridge, numerical simulation

Procedia PDF Downloads 264
1521 Material Mechanical Property for Improving the Energy Density of Lithium-Ion Battery

Authors: Collins Chike Kwasi-Effah, Timon Rabczuk, Osarobo O. Ighodaro

Abstract:

The energy density of various battery technologies used in the electric vehicle industry still ranges between 250 Wh/kg to 650 Wh/kg, thus limiting their distance range compared to the conventional internal combustion engine vehicle. In order to overcome this limitation, a new material technology is necessary to overcome this limitation. The proposed sole lithium-air battery seems to be far behind in terms of practical implementation. In this paper, experimental analysis using COMSOL multiphysics has been conducted to predict the performance of lithium ion battery with variation in the elastic property of five different cathode materials including; LiMn2O4, LiFePO4, LiCoO2, LiV6O13, and LiTiS2. Combining LiCoO2, and aqueous lithium showed great improvement in the energy density. Thus, the material combination of LiCoO2/aqueous lithium-air could give a practical solution in achieving high energy density for application in the electric vehicle industry.

Keywords: battery energy, energy density, lithium-ion, mechanical property

Procedia PDF Downloads 133
1520 Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator

Authors: Neda Navidi, Rene Jr. Landry

Abstract:

Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone.

Keywords: driver behavior monitoring, integration, IMU, GNSS, monitoring, tracking

Procedia PDF Downloads 198
1519 A Study on Automotive Attack Database and Data Flow Diagram for Concretization of HEAVENS: A Car Security Model

Authors: Se-Han Lee, Kwang-Woo Go, Gwang-Hyun Ahn, Hee-Sung Park, Cheol-Kyu Han, Jun-Bo Shim, Geun-Chul Kang, Hyun-Jung Lee

Abstract:

In recent years, with the advent of smart cars and the expansion of the market, the announcement of 'Adventures in Automotive Networks and Control Units' at the DEFCON21 conference in 2013 revealed that cars are not safe from hacking. As a result, the HEAVENS model considering not only the functional safety of the vehicle but also the security has been suggested. However, the HEAVENS model only presents a simple process, and there are no detailed procedures and activities for each process, making it difficult to apply it to the actual vehicle security vulnerability check. In this paper, we propose an automated attack database that systematically summarizes attack vectors, attack types, and vulnerable vehicle models to prepare for various car hacking attacks, and data flow diagrams that can detect various vulnerabilities and suggest a way to materialize the HEAVENS model.

Keywords: automotive security, HEAVENS, car hacking, security model, information security

Procedia PDF Downloads 327
1518 The Influence of the Aquatic Environment on Hematological Parameters in Cyprinus carpio

Authors: Andreea D. Șerban, Răzvan Mălăncuș, Mihaela Ivancia, Șteofil Creangă

Abstract:

Just as air influences the quality of life in the terrestrial environment, water, as a living environment, is one of great importance when it comes to the quality of life of underwater animals, which acquires an even higher degree of importance when analyzing underwater creatures as future products for human consumption. Thus, going beyond the ideal environment, in which all water quality parameters are permanently in perfect standards for reproduction, growth, and development of fish material and customizing this study to reality, it was demonstrated the importance of reproduction, development, and growth of biological material, necessary in the population fish farms, in the same environment to gain the maximum yield that a fish farm can offer. The biological material used was harvested from 3 fish farms located at great distances from each other to have environments with different parameters. The specimens were clinically healthy at 2 years of age. Thus, the differences in water quality parameters had effects on specimens from other environments, describing large curves in their evolution in new environments. Another change was observed in the new environment, the specimens contributing with the "genetic package" to its modification, tending to a balance of the parameters studied to the values in the environment in which they lived until the time of the experiment. The study clearly showed that adaptability to the environment in which an individual has developed and grown is not valid in environments with different parameters, resulting even in the fatality of one sample during the experiment. In some specimens, the values of the studied hematological parameters were halved after the transfer to the new environment, and in others, the same parameters were doubled. The study concludes that the specimens were adapted to the environment in which they developed and grew, their descendants having a higher value of heritability only in the initial environment. It is known that heritability is influenced 50% by the genetic package of the individual and 50% by the environment, by removing the value of the environment, the duration of improvement of characters of interest will be shorter and the maximum yield of fish farms can be achieved in a smaller period.

Keywords: environment, heritability, quality, water

Procedia PDF Downloads 140
1517 Modelling, Simulation, and Experimental Validation of the Influence of Golf-Ball-Inspired Dimpled Design in Drag Reduction and Improved Fuel Efficiency of Super-Mileage Vehicle

Authors: Bibin Sagaram, Ronith Stanly, S. S. Suneesh

Abstract:

Due to the dwindling supply of fuel reserves, engineers and designers now focus on fuel efficient designs for the solution of any problem; the transportation industry is not new to this kind of approach. Though the aerodynamic benefits of the dimples on a Golf-ball are known, it has never been scientifically tested on how such a design philosophy can improve the fuel efficiency of a real-life vehicle by imparting better aerodynamic performance. The main purpose of the paper is to establish the aerodynamic benefits of the Golf-ball-Inspired Dimpled Design in improving the fuel efficiency of a Super-mileage vehicle, constructed by Team Go Viridis for ‘Shell Eco Marathon Asia 2015’, and to predict the extent to which the results can be held valid for a road car. The body design was modeled in Autodesk Inventor and the Computational Fluid Dynamics (CFD) simulations were carried out using Ansys Fluent software. The aerodynamic parameters of designs (with and without the Golf-ball-Inspired Dimples) have been studied and the results are experimentally validated against those obtained from wind tunnel tests carried out on a 1:10 scaled-down 3D printed model. Test drives of the Super-mileage vehicle were carried out, under various conditions, to compare the variation in fuel efficiency with and without the Golf-ball-Inspired design. Primary investigations reveal an aerodynamic advantage of 25% for the vehicle with the Golf Ball Inspired Dimpled Design as opposed to the normal design. Initial tests conducted by ‘Mythbusters’ on Discovery Network using a modified road car has shown positive results which has motivated us to conduct such a research work using a custom-built experimental Super-Mileage vehicle. The content of the paper becomes relevant to the present Automotive and Energy industry where improving the fuel efficiency is of the top most priority.

Keywords: aerodynamics, CFD, fuel efficiency, golf ball

Procedia PDF Downloads 314