Search results for: semantic filtering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 867

Search results for: semantic filtering

477 Adaptive Online Object Tracking via Positive and Negative Models Matching

Authors: Shaomei Li, Yawen Wang, Chao Gao

Abstract:

To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

Keywords: object tracking, tracking drift, partial least squares analysis, positive and negative models matching

Procedia PDF Downloads 529
476 A Hebbian Neural Network Model of the Stroop Effect

Authors: Vadim Kulikov

Abstract:

The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.

Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop

Procedia PDF Downloads 264
475 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques

Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan

Abstract:

A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.

Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104

Procedia PDF Downloads 590
474 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array

Authors: Rachid Dehini, Brahim Berbaoui

Abstract:

The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.

Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)

Procedia PDF Downloads 331
473 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression

Authors: Jamilatuzzahro, Rezzy Eko Caraka

Abstract:

The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.

Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government

Procedia PDF Downloads 243
472 Switched Uses of a Bidirectional Microphone as a Microphone and Sensors with High Gain and Wide Frequency Range

Authors: Toru Shionoya, Yosuke Kurihara, Takashi Kaburagi, Kajiro Watanabe

Abstract:

Mass-produced bidirectional microphones have attractive characteristics. They work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. We present novel multiple functional uses of the microphones. A mathematical model for explaining the high-pass-filtering characteristics of bidirectional microphones was presented. Based on the model, the characteristics of the microphone were investigated, and a novel use for the microphone as a sensor with a wide frequency range was presented. In this study, applications for using the microphone as a security sensor and a human biosensor were introduced. The mathematical model was validated through experiments, and the feasibility of the abovementioned applications for security monitoring and the biosignal monitoring were examined through experiments.

Keywords: bidirectional microphone, low-frequency, mathematical model, frequency response

Procedia PDF Downloads 544
471 Distribution of Synechococcus and Prochlorococcus in Southeastern Coast of Peninsular Malaysia

Authors: Roswati Md. Amin, Nurul Asmera Mudiman, Muhammad Faisal Abd. Rahman, Md-Suffian Idris, Noor Hazwani Mohd Azmi

Abstract:

Distribution of picophytoplankton from two genera, Synechococcus and Prochlorococcus at the surface water (0.5m) were observed from coastal to offshore area of the southeastern coast of Peninsular Malaysia, for a six day cruise in August 2014 during SouthWest monsoon. The picophytoplankton was divided into two different size fractions (0.7-2.7μm and <0.7 μm) by filtering through GF/D (2.7 μm) and GF/F (0.7 μm) filter papers and counted by using flow cytometer. Synechococcus and Prochlorococcus contribute higher at 0.7-2.7μm size range (ca. 90% and 95%, respectively) compared to <0.7 μm (ca. 10% and 5%, respectively). Synechococcus (>52%) dominated the total picophytoplankton compared to Prochlorococcus (<26%) for both size fractions in southeastern coast of Peninsular Malaysia. Total density (<2.7 μm) of Synechococcus was ranging between 1.72 x104 and 12.57 x104 cells ml-1, while Prochlorococcus varied from 1.50 x104 to 8.62 x104. Both Synechococcus and Prochlorococcus abundance showed a decreasing trend from coastal to offshore.

Keywords: Peninsular Malaysia, prochlorococcus, South China Sea, synechococcus

Procedia PDF Downloads 316
470 Permeodynamic Particulate Matter Filtration for Improved Air Quality

Authors: Hamad M. Alnagran, Mohammed S. Imbabi

Abstract:

Particulate matter (PM) in the air we breathe is detrimental to health. Overcoming this problem has attracted interest and prompted research on the use of PM filtration in commercial buildings and homes to be carried out. The consensus is that tangible health benefits can result from the use of PM filters in most urban environments, to clean up the building’s fresh air supply and thereby reduce exposure of residents to airborne PM. The authors have investigated and are developing a new large-scale Permeodynamic Filtration Technology (PFT) capable of permanently filtering and removing airborne PMs from outdoor spaces, thus also benefiting internal spaces such as the interiors of buildings. Theoretical models were developed, and laboratory trials carried out to determine, and validate through measurement permeodynamic filtration efficiency and pressure drop as functions of PM particle size distributions. The conclusion is that PFT offers a potentially viable, cost effective end of pipe solution to the problem of airborne PM.

Keywords: air filtration, particulate matter, particle size distribution, permeodynamic

Procedia PDF Downloads 204
469 Variability of the Speaker's Verbal and Non-Verbal Behaviour in the Process of Changing Social Roles in the English Marketing Discourse

Authors: Yuliia Skrynnik

Abstract:

This research focuses on the interaction of verbal, non-verbal, and super-verbal communicative components used by the speaker changing social roles in the marketing discourse. The changing/performing of social roles is implemented through communicative strategies and tactics, the structural, semantic, and linguo-pragmatic means of which are characterized by specific features and differ for the performance of either a role of a supplier or a customer. Communication within the marketing discourse is characterized by symmetrical roles’ relation between communicative opponents. The strategy of a supplier’s social role realization and the strategy of a customer’s role realization influence the discursive personality's linguistic repertoire in the marketing discourse. This study takes into account that one person can be both a supplier and a customer under different circumstances, thus, exploring the one individual who can be both a supplier and a customer. Cooperative and non-cooperative tactics are the instruments for the implementation of these strategies. In the marketing discourse, verbal and non-verbal behaviour of the speaker performing a customer’s social role is highly informative for speakers who perform the role of a supplier. The research methods include discourse, context-situational, pragmalinguistic, pragmasemantic analyses, the method of non-verbal components analysis. The methodology of the study includes 5 steps: 1) defining the configurations of speakers’ social roles on the selected material; 2) establishing the type of the discourse (marketing discourse); 3) describing the specific features of a discursive personality as a subject of the communication in the process of social roles realization; 4) selecting the strategies and tactics which direct the interaction in different roles configurations; 5) characterizing the structural, semantic and pragmatic features of the strategies and tactics realization, including the analysis of interaction between verbal and non-verbal components of communication. In the marketing discourse, non-verbal behaviour is usually spontaneous but not purposeful. Thus, the adequate decoding of a partner’s non-verbal behavior provides more opportunities both for the supplier and the customer. Super-verbal characteristics in the marketing discourse are crucial in defining the opponent's social status and social role at the initial stage of interaction. The research provides the scenario of stereotypical situations of the play of a supplier and a customer. The performed analysis has perspectives for further research connected with the study of discursive variativity of speakers' verbal and non-verbal behaviour considering the intercultural factor influencing the process of performing the social roles in the marketing discourse; and the formation of the methods for the scenario construction of non-stereotypical situations of social roles realization/change in the marketing discourse.

Keywords: discursive personality, marketing discourse, non-verbal component of communication, social role, strategy, super-verbal component of communication, tactic, verbal component of communication

Procedia PDF Downloads 122
468 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations

Authors: Teng Li, Kamran Mohseni

Abstract:

This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulations

Keywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow

Procedia PDF Downloads 502
467 Evaluating 8D Reports Using Text-Mining

Authors: Benjamin Kuester, Bjoern Eilert, Malte Stonis, Ludger Overmeyer

Abstract:

Increasing quality requirements make reliable and effective quality management indispensable. This includes the complaint handling in which the 8D method is widely used. The 8D report as a written documentation of the 8D method is one of the key quality documents as it internally secures the quality standards and acts as a communication medium to the customer. In practice, however, the 8D report is mostly faulty and of poor quality. There is no quality control of 8D reports today. This paper describes the use of natural language processing for the automated evaluation of 8D reports. Based on semantic analysis and text-mining algorithms the presented system is able to uncover content and formal quality deficiencies and thus increases the quality of the complaint processing in the long term.

Keywords: 8D report, complaint management, evaluation system, text-mining

Procedia PDF Downloads 315
466 OSEME: A Smart Learning Environment for Music Education

Authors: Konstantinos Sofianos, Michael Stefanidakis

Abstract:

Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.

Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web

Procedia PDF Downloads 311
465 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 353
464 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: antenna array, signal detection, ToA, AoA estimation

Procedia PDF Downloads 494
463 Semantic Analysis of the Change in Awareness of Korean College Admission Policy

Authors: Sujin Hwang, Hyerang Park, Hyunchul Kim

Abstract:

The purpose of this study is to find the effectiveness of the admission simplification policy. The number of online news articles about ‘high school record’ was collected and semantically analyzed to identify and analyze the social awareness during 2014 to 2015. The main results of the study are as follows: First, there was a difference in expectations that the burden of the examinees would decrease as announced by KCUE. Thus, there was still a strain on the university entrance exam after the enforcement of the policy. Second, private tutoring is expanding in different forms, rather than reducing the policy. It is different from the prediction that examinees can prepare for university admissions without the private tutoring. Thus, the college admission rules currently enforced needs to be improved. The reasonable college admission system changes are discussed.

Keywords: education policy, private tutoring, shadow education, education admission policy

Procedia PDF Downloads 227
462 TRAC: A Software Based New Track Circuit for Traffic Regulation

Authors: Jérôme de Reffye, Marc Antoni

Abstract:

Following the development of the ERTMS system, we think it is interesting to develop another software-based track circuit system which would fit secondary railway lines with an easy-to-work implementation and a low sensitivity to rail-wheel impedance variations. We called this track circuit 'Track Railway by Automatic Circuits.' To be internationally implemented, this system must not have any mechanical component and must be compatible with existing track circuit systems. For example, the system is independent from the French 'Joints Isolants Collés' that isolate track sections from one another, and it is equally independent from component used in Germany called 'Counting Axles,' in French 'compteur d’essieux.' This track circuit is fully interoperable. Such universality is obtained by replacing the train detection mechanical system with a space-time filtering of train position. The various track sections are defined by the frequency of a continuous signal. The set of frequencies related to the track sections is a set of orthogonal functions in a Hilbert Space. Thus the failure probability of track sections separation is precisely calculated on the basis of signal-to-noise ratio. SNR is a function of the level of traction current conducted by rails. This is the reason why we developed a very powerful algorithm to reject noise and jamming to obtain an SNR compatible with the precision required for the track circuit and SIL 4 level. The SIL 4 level is thus reachable by an adjustment of the set of orthogonal functions. Our major contributions to railway engineering signalling science are i) Train space localization is precisely defined by a calibration system. The operation bypasses the GSM-R radio system of the ERTMS system. Moreover, the track circuit is naturally protected against radio-type jammers. After the calibration operation, the track circuit is autonomous. ii) A mathematical topology adapted to train space localization by following the train through a linear time filtering of the received signal. Track sections are numerically defined and can be modified with a software update. The system was numerically simulated, and results were beyond our expectations. We achieved a precision of one meter. Rail-ground and rail-wheel impedance sensitivity analysis gave excellent results. Results are now complete and ready to be published. This work was initialised as a research project of the French Railways developed by the Pi-Ramses Company under SNCF contract and required five years to obtain the results. This track circuit is already at Level 3 of the ERTMS system, and it will be much cheaper to implement and to work. The traffic regulation is based on variable length track sections. As the traffic growths, the maximum speed is reduced, and the track section lengths are decreasing. It is possible if the elementary track section is correctly defined for the minimum speed and if every track section is able to emit with variable frequencies.

Keywords: track section, track circuits, space-time crossing, adaptive track section, automatic railway signalling

Procedia PDF Downloads 331
461 Bandwidth Control Using Reconfigurable Antenna Elements

Authors: Sudhina H. K, Ravi M. Yadahalli, N. M. Shetti

Abstract:

Reconfigurable antennas represent a recent innovation in antenna design that changes from classical fixed-form, Fixed function antennas to modifiable structures that can be adapted to fit the requirements of a time varying system. The ability to control the operating band of an antenna system can have many useful applications. Systems that operate in an acquire-and-track configuration would see a benefit from active bandwidth control. In such systems a wide band search mode is first employed to find a desired signal, Then a narrow band track mode is used to follow only that signal. Utilizing active antenna bandwidth control, A single antenna would function for both the wide band and narrow band configurations providing the rejection of unwanted signals with the antenna hardware. This ability to move a portion of the RF filtering out of the receiver and onto the antenna itself will also aid in reducing the complexity of the often expensive RF processing subsystems.

Keywords: designing methods, mems, stack, reconfigurable elements

Procedia PDF Downloads 272
460 English Loanwords in Nigerian Languages: Sociolinguistic Survey

Authors: Surajo Ladan

Abstract:

English has been in existence in Nigeria since colonial period. The advent of English in Nigeria has caused a lot of linguistic changes in Nigerian languages especially among the educated elites and to some extent, even the ordinary people were not spared from this phenomenon. This scenario has generated a linguistic situation which culminated into the creation of Nigerian Pidgin that are conglomeration of English and other Nigerian languages. English has infiltrated the Nigerian languages to a point that a typical Nigerian can hardly talk without code-switching or using one English word or the other. The existence of English loanwords in Nigerian languages has taken another dimension in this scientific and technological age. Most of scientific and technological inventions are products of English language which are virtually adopted into the languages with phonological, morphological, and sometimes semantic variations. This paper is of the view that there should be a re-think and agitation from Nigerians to protect their languages from the linguistic genocide of English which are invariably facing extinction.

Keywords: linguistic change, loanword, phenomenon, pidgin

Procedia PDF Downloads 862
459 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction

Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour

Abstract:

In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.

Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift

Procedia PDF Downloads 315
458 A Hybrid Recommendation System Based on Association Rules

Authors: Ahmed Mohammed Alsalama

Abstract:

Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of the current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose a hybrid framework recommendation system to be applied on two-dimensional spaces (User x Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.

Keywords: data mining, association rules, recommendation systems, hybrid systems

Procedia PDF Downloads 453
457 Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization

Authors: Sandabad Sara, Sayd Tahri Yassine, Hammouch Ahmed

Abstract:

The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature.

Keywords: MRI, Em algorithm, brain, tumor, Nl-means

Procedia PDF Downloads 336
456 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis

Authors: S. Jagadeesh Kumar

Abstract:

Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.

Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction

Procedia PDF Downloads 286
455 Using Morlet Wavelet Filter to Denoising Geoelectric ‘Disturbances’ Map of Moroccan Phosphate Deposit ‘Disturbances’

Authors: Saad Bakkali

Abstract:

Morocco is a major producer of phosphate, with an annual output of 19 million tons and reserves in excess of 35 billion cubic meters. This represents more than 75% of world reserves. Resistivity surveys have been successfully used in the Oulad Abdoun phosphate basin. A Schlumberger resistivity survey over an area of 50 hectares was carried out. A new field procedure based on analytic signal response of resistivity data was tested to deal with the presence of phosphate deposit disturbances. A resistivity map was expected to allow the electrical resistivity signal to be imaged in 2D. 2D wavelet is standard tool in the interpretation of geophysical potential field data. Wavelet transform is particularly suitable in denoising, filtering and analyzing geophysical data singularities. Wavelet transform tools are applied to analysis of a moroccan phosphate deposit ‘disturbances’. Wavelet approach applied to modeling surface phosphate “disturbances” was found to be consistently useful.

Keywords: resistivity, Schlumberger, phosphate, wavelet, Morocco

Procedia PDF Downloads 418
454 A Decentralized Application for Secure Data Handling of Wireless Networks Using Ethereum Smart Contracts

Authors: Midhun Xavier

Abstract:

This paper introduces a method to verify multi-agent systems in industrial control systems using blockchain technology. The proposed solution enables to record and verify each process that occurs while generating a customized product using Ethereum-based smart contracts. Node-Red software agents are developed with the help of semantic web technologies, and these software agents interact with IEC 61499 function blocks to execute the processes. The agent associated with each mechatronic component and its controller can communicate with the blockchain to record various events that occur during each process, and the latter smart contract helps to verify these process orders of the customized product.

Keywords: blockchain, Ethereum, node-red, IEC 61499, multi-agent system, MQTT

Procedia PDF Downloads 94
453 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter

Authors: Vahid Anari, Leila Shahmohammadi

Abstract:

Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction

Procedia PDF Downloads 67
452 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model

Authors: T. Sanches, K. Bousson

Abstract:

As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.

Keywords: autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control

Procedia PDF Downloads 138
451 Use of In-line Data Analytics and Empirical Model for Early Fault Detection

Authors: Hyun-Woo Cho

Abstract:

Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: batch process, monitoring, measurement, kernel method

Procedia PDF Downloads 323
450 Learning to Translate by Learning to Communicate to an Entailment Classifier

Authors: Szymon Rutkowski, Tomasz Korbak

Abstract:

We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.

Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning

Procedia PDF Downloads 128
449 A Proposed Approach for Emotion Lexicon Enrichment

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.

Keywords: document analysis, sentimental analysis, emotion detection, WEKA tool, NRC lexicon

Procedia PDF Downloads 442
448 A Study of the Performance Parameter for Recommendation Algorithm Evaluation

Authors: C. Rana, S. K. Jain

Abstract:

The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.

Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems

Procedia PDF Downloads 413