Search results for: predictive coding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1577

Search results for: predictive coding

1187 The Role of HPV Status in Patients with Overlapping Grey Zone Cancer in Oral Cavity and Oropharynx

Authors: Yao Song

Abstract:

Objectives: We aimed to explore the clinicodemographic characteristics and prognosis of grey zone squamous cell cancer (GZSCC) located in the overlapping or ambiguous area of the oral cavity and oropharynx and to identify valuable factors that would improve its differential diagnosis and prognosis. Methods: Information of GZSCC patients in the Surveillance, Epidemiology, and End Results (SEER) database was compared to patients with an oral cavity (OCSCC) and oropharyngeal (OPSCC) squamous cell carcinomas with corresponding HPV status, respectively. Kaplan-Meier method with log-rank test and multivariate Cox regression analysis were applied to assess associations between clinical characteristics and overall survival (OS). A predictive model integrating age, gender, marital status, HPV status, and staging variables was conducted to classify GZSCC patients into three risk groups and verified internally by 10-fold cross validation. Results: A total of 3318 GZSCC, 10792 OPSCC, and 6656 OCSCC patients were identified. HPV-positive GZSCC patients had the best 5-year OS as HPV-positive OPSCC (81% vs. 82%). However, the 5-year OS of HPV-negative/unknown GZSCC (43%/42%) was the worst among all groups, indicating that HPV status and the overlapping nature of tumors were valuable prognostic predictors in GZSCC patients. Compared with the strategy of dividing GZSCC into two groups by HPV status, the predictive model integrating more variables could additionally identify a unique high-risk GZSCC group with the lowest OS rate. Conclusions: GZSCC patients had distinct clinical characteristics and prognoses compared with OPSCC and OCSCC; integrating HPV status and other clinical factors could help distinguish GZSCC and predict their prognosis.

Keywords: GZSCC, OCSCC, OPSCC, HPV

Procedia PDF Downloads 75
1186 The Study of Power as a Pertinent Motive among Tribal College Students of Assam

Authors: K. P. Gogoi

Abstract:

The current research study investigates the motivational pattern viz Power motivation among the tribal college students of Assam. The sample consisted of 240 college students (120 tribal and 120 non-tribal) ranging from 18-24 years, 60 males and 60 females for both tribal’s and non-tribal’s. Attempts were made to include all the prominent tribes of Assam viz. Thematic Apperception Test, Power motive Scale and a semi structured interview schedule were used to gather information about their family types, parental deprivation, parental relations, social and political belongingness. Mean, Standard Deviation, and t-test were the statistical measures adopted in this 2x2 factorial design study. In addition to this discriminant analysis has been worked out to strengthen the predictive validity of the obtained data. TAT scores reveal significant difference between the tribal’s and non-tribal on power motivation. However results obtained on gender difference indicates similar scores among both the cultures. Cross validation of the TAT results was done by using the power motive scale by T. S. Dapola which confirms the results on need for power through TAT scores. Power motivation has been studied in three directions i.e. coercion, inducement and restraint. An interesting finding is that on coercion tribal’s score high showing significant difference whereas in inducement or seduction the non-tribal’s scored high showing significant difference. On the other hand on restraint no difference exists between both cultures. Discriminant analysis has been worked out between the variables n-power, coercion, inducement and restraint. Results indicated that inducement or seduction (.502) is the dependent measure which has the most discriminating power between these two cultures.

Keywords: power motivation, tribal, social, political, predictive validity, cross validation, coercion, inducement, restraint

Procedia PDF Downloads 486
1185 Role of Imaging in Predicting the Receptor Positivity Status in Lung Adenocarcinoma: A Chapter in Radiogenomics

Authors: Sonal Sethi, Mukesh Yadav, Abhimanyu Gupta

Abstract:

The upcoming field of radiogenomics has the potential to upgrade the role of imaging in lung cancer management by noninvasive characterization of tumor histology and genetic microenvironment. Receptor positivity like epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genotyping are critical in lung adenocarcinoma for treatment. As conventional identification of receptor positivity is an invasive procedure, we analyzed the features on non-invasive computed tomography (CT), which predicts the receptor positivity in lung adenocarcinoma. Retrospectively, we did a comprehensive study from 77 proven lung adenocarcinoma patients with CT images, EGFR and ALK receptor genotyping, and clinical information. Total 22/77 patients were receptor-positive (15 had only EGFR mutation, 6 had ALK mutation, and 1 had both EGFR and ALK mutation). Various morphological characteristics and metastatic distribution on CT were analyzed along with the clinical information. Univariate and multivariable logistic regression analyses were used. On multivariable logistic regression analysis, we found spiculated margin, lymphangitic spread, air bronchogram, pleural effusion, and distant metastasis had a significant predictive value for receptor mutation status. On univariate analysis, air bronchogram and pleural effusion had significant individual predictive value. Conclusions: Receptor positive lung cancer has characteristic imaging features compared with nonreceptor positive lung adenocarcinoma. Since CT is routinely used in lung cancer diagnosis, we can predict the receptor positivity by a noninvasive technique and would follow a more aggressive algorithm for evaluation of distant metastases as well as for the treatment.

Keywords: lung cancer, multidisciplinary cancer care, oncologic imaging, radiobiology

Procedia PDF Downloads 136
1184 A Systematic Review Investigating the Use of EEG Measures in Neuromarketing

Authors: A. M. Byrne, E. Bonfiglio, C. Rigby, N. Edelstyn

Abstract:

Introduction: Neuromarketing employs numerous methodologies when investigating products and advertisement effectiveness. Electroencephalography (EEG), a non-invasive measure of electrical activity from the brain, is commonly used in neuromarketing. EEG data can be considered using time-frequency (TF) analysis, where changes in the frequency of brainwaves are calculated to infer participant’s mental states, or event-related potential (ERP) analysis, where changes in amplitude are observed in direct response to a stimulus. This presentation discusses the findings of a systematic review of EEG measures in neuromarketing. A systematic review summarises evidence on a research question, using explicit measures to identify, select, and critically appraise relevant research papers. Thissystematic review identifies which EEG measures are the most robust predictor of customer preference and purchase intention. Methods: Search terms identified174 papers that used EEG in combination with marketing-related stimuli. Publications were excluded if they were written in a language other than English or were not published as journal articles (e.g., book chapters). The review investigated which TF effect (e.g., theta-band power) and ERP component (e.g., N400) most consistently reflected preference and purchase intention. Machine-learning prediction was also investigated, along with the use of EEG combined with physiological measures such as eye-tracking. Results: Frontal alpha asymmetry was the most reliable TF signal, where an increase in activity over the left side of the frontal lobe indexed a positive response to marketing stimuli, while an increase in activity over the right side indexed a negative response. The late positive potential, a positive amplitude increase around 600 ms after stimulus presentation, was the most reliable ERP component, reflecting the conscious emotional evaluation of marketing stimuli. However, each measure showed mixed results when related to preference and purchase behaviour. Predictive accuracy was greatly improved through machine-learning algorithms such as deep neural networks, especially when combined with eye-tracking or facial expression analyses. Discussion: This systematic review provides a novel catalogue of the most effective use of each EEG measure commonly used in neuromarketing. Exciting findings to emerge are the identification of the frontal alpha asymmetry and late positive potential as markers of preferential responses to marketing stimuli. Predictive accuracy using machine-learning algorithms achieved predictive accuracies as high as 97%, and future research should therefore focus on machine-learning prediction when using EEG measures in neuromarketing.

Keywords: EEG, ERP, neuromarketing, machine-learning, systematic review, time-frequency

Procedia PDF Downloads 111
1183 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems

Authors: Emily Kambalame

Abstract:

Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluation

Keywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems

Procedia PDF Downloads 62
1182 Using the Transtheoretical Model to Investigate Stages of Change in Regular Volunteer Service among Seniors in Community

Authors: Pei-Ti Hsu, I-Ju Chen, Jeu-Jung Chen, Cheng-Fen Chang, Shiu-Yan Yang

Abstract:

Taiwan now is an aging society Research on the elderly should not be confined to caring for seniors, but should also be focused on ways to improve health and the quality of life. Senior citizens who participate in volunteer services could become less lonely, have new growth opportunities, and regain a sense of accomplishment. Thus, the question of how to get the elderly to participate in volunteer service is worth exploring. Apply the Transtheoretical Model to understand stages of change in regular volunteer service and voluntary service behaviour among the seniors. 1525 adults over the age of 65 from the Renai district of Keelung City were interviewed. The research tool was a self-constructed questionnaire and individual interviews were conducted to collect data. Then the data was processed and analyzed using the IBM SPSS Statistics 20 (Windows version) statistical software program. In the past six months, research subjects averaged 9.92 days of volunteer services. A majority of these elderly individuals had no intention to change their regular volunteer services. We discovered that during the maintenance stage, the self-efficacy for volunteer services was higher than during all other stages, but self-perceived barriers were less during the preparation stage and action stage. Self-perceived benefits were found to have an important predictive power for those with regular volunteer service behaviors in the previous stage, and self-efficacy was found to have an important predictive power for those with regular volunteer service behaviors in later stages. The research results support the conclusion that community nursing staff should group elders based on their regular volunteer services change stages and design appropriate behavioral change strategies.

Keywords: seniors, stages of change in regular volunteer services, volunteer service behavior, self-efficacy, self-perceived benefits

Procedia PDF Downloads 426
1181 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 26
1180 A Theoretical Study on Pain Assessment through Human Facial Expresion

Authors: Mrinal Kanti Bhowmik, Debanjana Debnath Jr., Debotosh Bhattacharjee

Abstract:

A facial expression is undeniably the human manners. It is a significant channel for human communication and can be applied to extract emotional features accurately. People in pain often show variations in facial expressions that are readily observable to others. A core of actions is likely to occur or to increase in intensity when people are in pain. To illustrate the changes in the facial appearance, a system known as Facial Action Coding System (FACS) is pioneered by Ekman and Friesen for human observers. According to Prkachin and Solomon, a set of such actions carries the bulk of information about pain. Thus, the Prkachin and Solomon pain intensity (PSPI) metric is defined. So, it is very important to notice that facial expressions, being a behavioral source in communication media, provide an important opening into the issues of non-verbal communication in pain. People express their pain in many ways, and this pain behavior is the basis on which most inferences about pain are drawn in clinical and research settings. Hence, to understand the roles of different pain behaviors, it is essential to study the properties. For the past several years, the studies are concentrated on the properties of one specific form of pain behavior i.e. facial expression. This paper represents a comprehensive study on pain assessment that can model and estimate the intensity of pain that the patient is suffering. It also reviews the historical background of different pain assessment techniques in the context of painful expressions. Different approaches incorporate FACS from psychological views and a pain intensity score using the PSPI metric in pain estimation. This paper investigates in depth analysis of different approaches used in pain estimation and presents different observations found from each technique. It also offers a brief study on different distinguishing features of real and fake pain. Therefore, the necessity of the study lies in the emerging fields of painful face assessment in clinical settings.

Keywords: facial action coding system (FACS), pain, pain behavior, Prkachin and Solomon pain intensity (PSPI)

Procedia PDF Downloads 346
1179 Negotiating Communication Options for Deaf-Disabled Children

Authors: Steven J. Singer, Julianna F. Kamenakis, Allison R. Shapiro, Kimberly M. Cacciato

Abstract:

Communication and language are topics frequently studied among deaf children. However, there is limited research that focuses specifically on the communication and language experiences of Deaf-Disabled children. In this ethnography, researchers investigated the language experiences of six sets of parents with Deaf-Disabled children who chose American Sign Language (ASL) as the preferred mode of communication for their child. Specifically, the researchers were interested in the factors that influenced the parents’ decisions regarding their child’s communication options, educational placements, and social experiences. Data collection in this research included 18 hours of semi-structured interviews, 20 hours of participant observations, over 150 pages of reflexive journals and field notes, and a 2-hour focus group. The team conducted constant comparison qualitative analysis using NVivo software and an inductive coding procedure. The four researchers each read the data several times until they were able to chunk it into broad categories about communication and social influences. The team compared the various categories they developed, selecting ones that were consistent among researchers and redefining categories that differed. Continuing to use open inductive coding, the research team refined the categories until they were able to develop distinct themes. Two team members developed each theme through a process of independent coding, comparison, discussion, and resolution. The research team developed three themes: 1) early medical needs provided time for the parents to explore various communication options for their Deaf-Disabled child, 2) without intervention from medical professionals or educators, ASL emerged as a prioritized mode of communication for the family, 3) atypical gender roles affected familial communication dynamics. While managing the significant health issues of their Deaf-Disabled child at birth, families and medical professionals were so fixated on tending to the medical needs of the child that the typical pressures of determining a mode of communication were deprioritized. This allowed the families to meticulously research various methods of communication, resulting in an informed, rational, and well-considered decision to use ASL as the primary mode of communication with their Deaf-Disabled child. It was evident that having a Deaf-Disabled child meant an increased amount of labor and responsibilities for parents. This led to a shift in the roles of the family members. During the child’s development, the mother transformed from fulfilling the stereotypical roles of nurturer and administrator to that of administrator and champion. The mother facilitated medical proceedings and educational arrangements while the father became the caretaker and nurturer of their Deaf-Disabled child in addition to the traditional role of earning the family’s primary income. Ultimately, this research led to a deeper understanding of the critical role that time plays in parents’ decision-making process regarding communication methods with their Deaf-Disabled child.

Keywords: American Sign Language, deaf-disabled, ethnography, sociolinguistics

Procedia PDF Downloads 120
1178 Brand Building in Higher Education: A Grounded Theory Investigation of the Impact of the ‘Positive-Visualization-Course in Brand Identity’ upon Freshmen Student's Perception

Authors: Maria Kountouridou, Dino Domic

Abstract:

Within an increasingly competitive and dynamic environment, the higher education sector is becoming more commodified, with the concept of branding to become exceedingly imperative and an inextricable ingredient for the university’s success. Branding in higher education has proven to be an effective strategy that managed to receive considerable attention in the recent few years, and a growing number of articles have begun to appear in the literature. However, a clear void in the literature confirms that the concept of students’ perceptions towards the university’s brand image has not been researched extensively. An investigation on this central concept is of paramount importance since it will facilitate the development of an inductively generated theoretical model concerning branding in higher education. This research focuses on examining the impact of the ‘positive-visualization-course in brand identity’ upon the perception of freshmen students towards a university’s brand image. A grounded theory methodology has been selected, consisting of semi-structured interviews. Forty-two students have participated in the research, among which twenty-five women and seventeen men. The identification of the sample emerged through the use of the snowball sampling technique. The participants were divided into two groups (experimental and control group) after the researcher had taken into consideration the factor ‘program of study’, to eliminate any possible interaction between the participants of each group. An experiment was carried out where a ‘positive-visualization-course in brand identity’ was conducted among the participants of the experimental group, while the participants of the control group have not been exposed to the course. For the purpose of this research, the term ‘positive-visualization-course in brand identity’ refers to a course where brand history, past achievements/recognitions/awards, its values, and its mission are presented. Prior to the course implementation, face-to-face semi-structured interviews were carried out among the participants of both groups, with the aim of examining the freshmen students’ perceptions towards the university’s brand image. One week after the course implementation, the researcher carried out semi-structured interviews with the participants of the experimental group only in order to identify whether students’ perceptions had been affected after the course completion. Four months after the course completion, semi-structured interviews were carried out among the participants of both groups. Eight months after the course completion, semi-structured interviews were conducted with the aim of identifying the freshmen students’ updated perceptions. Data has been analyzed using substantive coding (open and selective coding), theoretical coding, field memos, and constant comparative analysis. The findings strongly suggest that the ‘positive-visualization-course in brand identity’ can positively affect freshmen students’ perceptions towards a university’s brand image. Additionally, other factors conduce to the formation of perception throughout the months. This study contributes and expands upon the existing literature by presenting an inductively generated theoretical model to guide future research in the links between ‘positive-visualization-course in brand identity’ and the perception of freshmen students towards a university’s brand image.

Keywords: brand image, brand name, branding, higher education marketing, perception

Procedia PDF Downloads 178
1177 The Secrecy Capacity of the Semi-Deterministic Wiretap Channel with Three State Information

Authors: Mustafa El-Halabi

Abstract:

A general model of wiretap channel with states is considered, where the legitimate receiver and the wiretapper’s observations depend on three states S1, S2 and S3. State S1 is non-causally known to the encoder, S2 is known to the receiver, and S3 remains unknown. A secure coding scheme, based using structured-binning, is proposed, and it is shown to achieve the secrecy capacity when the signal at legitimate receiver is a deterministic function of the input.

Keywords: physical layer security, interference, side information, secrecy capacity

Procedia PDF Downloads 389
1176 Clinical and Radiological Features of Adenomyosis and Its Histopathological Correlation

Authors: Surabhi Agrawal Kohli, Sunita Gupta, Esha Khanuja, Parul Garg, P. Gupta

Abstract:

Background: Adenomyosis is a common gynaecological condition that affects the menstruating women. Uterine enlargement, dysmenorrhoea, and menorrhagia are regarded as the cardinal clinical symptoms of adenomyosis. Classically it was thought, compared with ultrasonography, when adenomyosis is suspected, MRI enables more accurate diagnosis of the disease. Materials and Methods: 172 subjects were enrolled after an informed consent that had complaints of HMB, dyspareunia, dysmenorrhea, and chronic pelvic pain. Detailed history of the enrolled subjects was taken, followed by a clinical examination. These patients were then subjected to TVS where myometrial echo texture, presence of myometrial cysts, blurring of endomyometrial junction was noted. MRI was followed which noted the presence of junctional zone thickness and myometrial cysts. After hysterectomy, histopathological diagnosis was obtained. Results: 78 participants were analysed. The mean age was 44.2 years. 43.5% had parity of 4 or more. heavy menstrual bleeding (HMB) was present in 97.8% and dysmenorrhea in 93.48 % of HPE positive patient. Transvaginal sonography (TVS) and MRI had a sensitivity of 89.13% and 80.43%, specificity of 90.62% and 84.37%, positive likelihood ratio of 9.51 and 5.15, negative likelihood ratio of 0.12 and 0.23, positive predictive value of 93.18% and 88.1%, negative predictive value of 85.29% and 75% and a diagnostic accuracy of 89.74% and 82.5%. Comparison of sensitivity (p=0.289) and specificity (p=0.625) showed no statistically significant difference between TVS and MRI. Conclusion: Prevalence of 30.23%. HMB with dysmenorrhoea and chronic pelvic pain helps in diagnosis. TVS (Endomyometrial junction blurring) is both sensitive and specific in diagnosing adenomyosis without need for additional diagnostic tool. Both TVS and MRI are equally efficient, however because of certain additional advantages of TVS over MRI, it may be used as the first choice of imaging. MRI may be used additionally in difficult cases as well as in patients with existing co-pathologies.

Keywords: adenomyosis, heavy menstrual bleeding, MRI, TVS

Procedia PDF Downloads 498
1175 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 132
1174 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma

Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren

Abstract:

We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.

Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values

Procedia PDF Downloads 154
1173 Transcriptome Analysis for Insights into Disease Progression in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Dengue virus infection is now considered as one of the most important mosquito-borne infection in human. The virus is known to promote vascular permeability, cerebral edema leading to Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Dengue infection has known to be endemic in India for over two centuries as a benign and self-limited disease. In the last couple of years, the disease symptoms have changed, manifesting severe secondary complication. So far, Delhi has experienced 12 outbreaks of dengue virus infection since 1997 with the last reported in 2014-15. Without specific antivirals, the case management of high-risk dengue patients entirely relies on supportive care, involving constant monitoring and timely fluid support to prevent hypovolemic shock. Nonetheless, the diverse clinical spectrum of dengue disease, as well as its initial similarity to other viral febrile illnesses, presents a challenge in the early identification of this high-risk group. WHO recommends the use of warning signs to identify high-risk patients, but warning signs generally appear during, or just one day before the development of severe illness, thus, providing only a narrow window for clinical intervention. The ability to predict which patient may develop DHF and DSS may improve the triage and treatment. With the recent discovery of high throughput RNA sequencing allows us to understand the disease progression at the genomic level. Here, we will collate the results of RNA-Sequencing data obtained recently from PBMC of different categories of dengue patients from India and will discuss the possible role of deregulated genes and long non-coding RNAs NEAT1 for development of disease progression.

Keywords: long non-coding RNA (lncRNA), dengue, peripheral blood mononuclear cell (PBMC), nuclear enriched abundant transcript 1 (NEAT1), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS)

Procedia PDF Downloads 308
1172 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.

Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy

Procedia PDF Downloads 110
1171 Gearbox Defect Detection in the Semi Autogenous Mills Using the Vibration Analysis Technique

Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi

Abstract:

Semi autogenous mills are designed for grinding or primary crushed ore, and are the most widely used in concentrators globally. Any defect occurrence in semi autogenous mills can stop the production line. A Gearbox is a significant part of a rotating machine or a mill, so, the gearbox monitoring is a necessary process to prevent the unwanted defects. When a defect happens in a gearbox bearing, this defect can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. Vibration analysis is one of the most effective and common ways to detect the bearing defects in the mills. Vibration signal in a mill can be made by different parts of the mill including electromotor, pinion girth gear, different rolling bearings, and tire. When a vibration signal, made by the aforementioned parts, is added to the gearbox vibration spectrum, an accurate and on time defect detection in the gearbox will be difficult. In this paper, a new method is proposed to detect the gearbox bearing defects in the semi autogenous mill on time and accurately, using the vibration signal analysis method. In this method, if the vibration values are increased in the vibration curve, the probability of defect occurrence is investigated by comparing the equipment vibration values and the standard ones. Then, all vibration frequencies are extracted from the vibration signal and the equipment defect is detected using the vibration spectrum curve. This method is implemented on the semi autogenous mills in the Golgohar mining and industrial company in Iran. The results show that the proposed method can detect the bearing looseness on time and accurately. After defect detection, the bearing is opened before the equipment failure and the predictive maintenance actions are implemented on it.

Keywords: condition monitoring, gearbox defects, predictive maintenance, vibration analysis

Procedia PDF Downloads 464
1170 Disrupted or Discounted Cash Flow: Impact of Digitisation on Business Valuation

Authors: Matthias Haerri, Tobias Huettche, Clemens Kustner

Abstract:

This article discusses the impact of digitization on business valuation. In order to become and remain ‘digital’, investments are necessary whose return on investment (ROI) often remains vague. This uncertainty is contradictory for a valuation, that rely on predictable cash flows, fixed capital structures and the steady state. However digitisation does not make a company valuation impossible, but traditional approaches must be reconsidered. The authors identify four areas that are to be changing: (1) Tools instead of intuition - In the future, company valuation will neither be art nor science, but craft. This does not require intuition, but experience and good tools. Digital evaluation tools beyond Excel will therefore gain in importance. (2) Real-time instead of deadline - At present, company valuations are always carried out on a case-by-case basis and on a specific key date. This will change with the digitalization and the introduction of web-based valuation tools. Company valuations can thus not only be carried out faster and more efficiently, but can also be offered more frequently. Instead of calculating the value for a previous key date, current and real-time valuations can be carried out. (3) Predictive planning instead of analysis of the past - Past data will also be needed in the future, but its use will not be limited to monovalent time series or key figure analyses. With pictures of ‘black swans’ and the ‘turkey illusion’ it was made clear to us that we build forecasts on too few data points of the past and underestimate the power of chance. Predictive planning can help here. (4) Convergence instead of residual value - Digital transformation shortens the lifespan of viable business models. If companies want to live forever, they have to change forever. For the company valuation, this means that the business model valid on the valuation date only has a limited service life.

Keywords: business valuation, corporate finance, digitisation, disruption

Procedia PDF Downloads 133
1169 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center

Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency

Procedia PDF Downloads 33
1168 Impacts of Social Support on Perceived Level of Stress and Self-Esteem among Students of Private Universities of Karachi-Pakistan

Authors: Sheeba Farhan

Abstract:

This study is conducted to explore the predictive relationship of perceived stress and self-esteem with social support of students and to explore the factors, which contribute to develop or enhance the level of stress in students of private universities in Karachi-Pakistan. After literature review following hypotheses were formulated; 1)social support would predict perceived stress of students of business administration of private organizations of Higher education, 2) social support would predict the self-esteem of students of private organizations of Higher education, 3) there will be a relationship of perceived stress and self-esteem of students of private organizations of Higher education, 4) there will be a relationship of self esteem and social support of students of private organizations of Higher education. Sample of the study is comprise of 100 students of private organizations of Higher education in Karachi- Pakistan (i.e. males= 50 & females= 50). The age range of participants is 18-26 years. The measures, used in the study are: Demographic information form, a semi structured interview form, Rosenberg self esteem scale (Rosenberg, 1965) and perceived stress scale (Cohen, Kamarck, and Mermelstein, 1983) and multidimensional scale of perceived social support (Zimet, 1988) Descriptive statistics is used for getting a better statistical view of characteristics of sample. Regression analysis is used to explore the predictive relationship of study related stress and self esteem with academic achievement of students of private organizations of Higher education. Percentages and ratios were calculated to explore the level of perceived stress with respect to Socio-demographic characteristics in students of private organizations of Higher education. Finding shows that social support is significantly associated with the higher level of self-esteem among students of graduation but insignificantly associated with stress that has been experienced by them. These results are correlated with a wide variety of studies in which social support has proposed to be a predictor of well being for the students.

Keywords: private universities of Karachi-Pakistan, Self-esteem, social support, stress

Procedia PDF Downloads 293
1167 Tc-99m MIBI Scintigraphy to Differentiate Malignant from Benign Lesions, Detected on Planar Bone Scan

Authors: Aniqa Jabeen

Abstract:

The aim of this study was to evaluate the effectiveness of Tc-99m MIBI (Technetium 99-methoxy-iso-butyl-isonitrile) scintigraphy to differentiate malignancies from benign lesions, which were detected on planar bone scans. Materials and Methods: 59 patients with bone lesions were enrolled in the study. The scintigraphic findings were compared with the clinical, radiological and the histological findings. Each patient initially underwent a three-phase bone scan with Tc-99m MDP (Methylene Diphosphonate) and if evidence of lesion found, the patient then underwent a dynamic and static MIBI scintigraphy after three to four days. The MDP and MIBI scans were evaluated visually and quantitatively. For quantitative analysis count ratios of lesions and contralateral normal side (L/C) were taken by region of interests drawn on scans. The Student T test was applied to assess the significant difference between benign and malignant lesions p-value < 0.05 was considered significant. Result: The MDP scans showed the increase tracer uptake, but there was no significant difference between benign and malignant uptake of the radiotracer. However significant difference (p-value 0.015), in uptake was seen in malignant (L/C = 3.51 ± 1.02) and benign lesion (L/C = 2.50±0.42) on MIBI scan. Three of thirty benign lesions did not show significant MIBI uptake. Seven malignant appeared as false negatives. Specificity of the scan was 86.66%, and its Negative Predictive Value (NPV) was 81.25% whereas the sensitivity of scan was 79.31%. In excluding the axial metastasis from the lesions, the sensitivity of MIBI scan increased to 91.66% and the NPV also increased to 92.85%. Conclusion: MIBI scintigraphy provides its usefulness by distinguishing malignant from benign lesions. MIBI also correctly identifies metastatic lesions. The negative predictive value of the scan points towards its ability to accurately diagnose the normal (benign) cases. However, biopsy remains the gold standard and a definitive diagnostic modality in musculoskeletal tumors. MIBI scan provides useful information in preoperative assessment and in distinguishing between malignant and benign lesions.

Keywords: benign, malignancies, MDP bone scan, MIBI scintigraphy

Procedia PDF Downloads 404
1166 Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform

Authors: Denis Mustafov, Emmanouil Karteris, Maria Braoudaki

Abstract:

Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas.

Keywords: non-coding RNAs, gene expression, brain tumours, immunohistochemistry

Procedia PDF Downloads 89
1165 Human Facial Emotion: A Comparative and Evolutionary Perspective Using a Canine Model

Authors: Catia Correia Caeiro, Kun Guo, Daniel Mills

Abstract:

Despite its growing interest, emotions are still an understudied cognitive process and their origins are currently the focus of much debate among the scientific community. The use of facial expressions as traditional hallmarks of discrete and holistic emotions created a circular reasoning due to a priori assumptions of meaning and its associated appearance-biases. Ekman and colleagues solved this problem and laid the foundations for the quantitative and systematic study of facial expressions in humans by developing an anatomically-based system (independent from meaning) to measure facial behaviour, the Facial Action Coding System (FACS). One way of investigating emotion cognition processes is by applying comparative psychology methodologies and looking at either closely-related species (e.g. chimpanzees) or phylogenetically distant species sharing similar present adaptation problems (analogy). In this study, the domestic dog was used as a comparative animal model to look at facial expressions in social interactions in parallel with human facial expressions. The orofacial musculature seems to be relatively well conserved across mammal species and the same holds true for the domestic dog. Furthermore, the dog is unique in having shared the same social environment as humans for more than 10,000 years, facing similar challenges and acquiring a unique set of socio-cognitive skills in the process. In this study, the spontaneous facial movements of humans and dogs were compared when interacting with hetero- and conspecifics as well as in solitary contexts. In total, 200 participants were examined with FACS and DogFACS (The Dog Facial Action Coding System): coding tools across four different emotionally-driven contexts: a) Happiness (play and reunion), b) anticipation (of positive reward), c) fear (object or situation triggered), and d) frustration (negation of a resource). A neutral control was added for both species. All four contexts are commonly encountered by humans and dogs, are comparable between species and seem to give rise to emotions from homologous brain systems. The videos used in the study were extracted from public databases (e.g. Youtube) or published scientific databases (e.g. AM-FED). The results obtained allowed us to delineate clear similarities and differences on the flexibility of the facial musculature in the two species. More importantly, they shed light on what common facial movements are a product of the emotion linked contexts (the ones appearing in both species) and which are characteristic of the species, revealing an important clue for the debate on the origin of emotions. Additionally, we were able to examine movements that might have emerged for interspecific communication. Finally, our results are discussed from an evolutionary perspective adding to the recent line of work that supports an ancient shared origin of emotions in a mammal ancestor and defining emotions as mechanisms with a clear adaptive purpose essential on numerous situations, ranging from maintenance of social bonds to fitness and survival modulators.

Keywords: comparative and evolutionary psychology, emotion, facial expressions, FACS

Procedia PDF Downloads 434
1164 Sensitivity and Specificity of Some Serological Tests Used for Diagnosis of Bovine Brucellosis in Egypt on Bacteriological and Molecular Basis

Authors: Hosein I. Hosein, Ragab Azzam, Ahmed M. S. Menshawy, Sherin Rouby, Khaled Hendy, Ayman Mahrous, Hany Hussien

Abstract:

Brucellosis is a highly contagious bacterial zoonotic disease of a worldwide spread and has different names; Infectious or enzootic abortion and Bang's disease in animals; and Mediterranean or Malta fever, Undulant Fever and Rock fever in humans. It is caused by the different species of genus Brucella which is a Gram-negative, aerobic, non-spore forming, facultative intracellular bacterium. Brucella affects a wide range of mammals including bovines, small ruminants, pigs, equines, rodents, marine mammals as well as human resulting in serious economic losses in animal populations. In human, Brucella causes a severe illness representing a great public health problem. The disease was reported in Egypt for the first time in 1939; since then the disease remained endemic at high levels among cattle, buffalo, sheep and goat and is still representing a public health hazard. The annual economic losses due to brucellosis were estimated to be about 60 million Egyptian pounds yearly, but actual estimates are still missing despite almost 30 years of implementation of the Egyptian control programme. Despite being the gold standard, bacterial isolation has been reported to show poor sensitivity for samples with low-level of Brucella and is impractical for regular screening of large populations. Thus, serological tests still remain the corner stone for routine diagnosis of brucellosis, especially in developing countries. In the present study, a total of 1533 cows (256 from Beni-Suef Governorate, 445 from Al-Fayoum Governorate and 832 from Damietta Governorate), were employed for estimation of relative sensitivity, relative specificity, positive predictive value and negative predictive value of buffered acidified plate antigen test (BPAT), rose bengal test (RBT) and complement fixation test (CFT). The overall seroprevalence of brucellosis revealed (19.63%). Relative sensitivity, relative specificity, positive predictive value and negative predictive value of BPAT,RBT and CFT were estimated as, (96.27 %, 96.76 %, 87.65 % and 99.10 %), (93.42 %, 96.27 %, 90.16 % and 98.35%) and (89.30 %, 98.60 %, 94.35 %and 97.24 %) respectively. BPAT showed the highest sensitivity among the three employed serological tests. RBT was less specific than BPAT. CFT showed the least sensitivity 89.30 % among the three employed serological tests but showed the highest specificity. Different tissues specimens of 22 seropositive cows (spleen, retropharyngeal udder, and supra-mammary lymph nodes) were subjected for bacteriological studies for isolation and identification of Brucella organisms. Brucella melitensis biovar 3 could be recovered from 12 (54.55%) cows. Bacteriological examinations failed to classify 10 cases (45.45%) and were culture negative. Bruce-ladder PCR was carried out for molecular identification of the 12 Brucella isolates at the species level. Three fragments of 587 bp, 1071 bp and 1682 bp sizes were amplified indicating Brucella melitensis. The results indicated the importance of using several procedures to overcome the problem of escaping of some infected animals from diagnosis.Bruce-ladder PCR is an important tool for diagnosis and epidemiologic studies, providing relevant information for identification of Brucella spp.

Keywords: brucellosis, relative sensitivity, relative specificity, Bruce-ladder, Egypt

Procedia PDF Downloads 355
1163 External Validation of Risk Prediction Score for Candidemia in Critically Ill Patients: A Retrospective Observational Study

Authors: Nurul Mazni Abdullah, Saw Kian Cheah, Raha Abdul Rahman, Qurratu 'Aini Musthafa

Abstract:

Purpose: Candidemia was associated with high mortality in the critically ill patients. Early candidemia prediction is imperative for preemptive antifungal treatment. This study aimed to externally validate the candidemia risk prediction scores by Jameran et al. (2021) by identifying risk factors of acute kidney injury, renal replacement therapy, parenteral nutrition, and multifocal candida colonization. Methods: This single-center, retrospective observational study included all critically ill patients admitted to the intensive care unit (ICU) in a tertiary referral center from January 2018 to December 2023. The study evaluated the candidemia risk prediction score performance by analysing the occurrence of candidemia within the study period. Patients’ demographic characteristics, comorbidities, SOFA scores, and ICU outcomes were analyzed. Patients who were diagnosed with candidemia prior to ICU admission were excluded. Results: A total of 500 patients were analyzed with 2 dropouts due to incomplete data. Validation analysis showed that the candidemia risk prediction score has a sensitivity of 75.00% (95% CI: 59.66-86.81), specificity of 65.35% (95% CI: 60.78-69.72), positive predictive value of 17.28, and negative predictive value of 96.44. The incidence of candidemia was 8.86%, with no significant differences in demographics or comorbidities except for higher SOFA scoring in the candidemia group. The candidemia group showed significantly longer ICU, hospital LOS, and higher ICU in-hospital mortality. Conclusion: This study concluded the candidemia risk prediction score by Jameran et al. (2021) had good sensitivity and a high negative prediction value. Thus, the risk prediction score was validated for candidemia prediction in critically ill patients.

Keywords: Candidemia, intensive care, acute kidney injury, clinical prediction rule, incidence

Procedia PDF Downloads 7
1162 Probability Sampling in Matched Case-Control Study in Drug Abuse

Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell

Abstract:

Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.

Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling

Procedia PDF Downloads 493
1161 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin

Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi

Abstract:

The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.

Keywords: rainfall, neural networks, climatic indices, Mediterranean

Procedia PDF Downloads 312
1160 Correlation Between Different Radiological Findings and Histopathological diagnosis of Breast Diseases: Retrospective Review Conducted Over Sixth Years in King Fahad University Hospital in Eastern Province, Saudi Arabia

Authors: Sadeem Aljamaan, Reem Hariri, Rahaf Alghamdi, Batool Alotaibi, Batool Alsenan, Lama Althunayyan, Areej Alnemer

Abstract:

The aim of this study is to correlate between radiological findings and histopathological results in regard to the breast imaging-reporting and data system scores, size of breast masses, molecular subtypes and suspicious radiological features, as well as to assess the concordance rate in histological grade between core biopsy and surgical excision among breast cancer patients, followed by analyzing the change of concordance rate in relation to neoadjuvant chemotherapy in a Saudi population. A retrospective review was conducted over 6-year period (2017-2022) on all breast core biopsies of women preceded by radiological investigation. Chi-squared test (χ2) was performed on qualitative data, the Mann-Whitney test for quantitative non-parametric variables, and the Kappa test for grade agreement. A total of 641 cases were included. Ultrasound, mammography, and magnetic resonance imaging demonstrated diagnostic accuracies of 85%, 77.9% and 86.9%; respectively. magnetic resonance imaging manifested the highest sensitivity (72.2%), and the lowest was for ultrasound (61%). Concordance in tumor size with final excisions was best in magnetic resonance imaging, while mammography demonstrated a higher tendency of overestimation (41.9%), and ultrasound showed the highest underestimation (67.7%). The association between basal-like molecular subtypes and the breast imaging-reporting and data system score 5 classifications was statistically significant only for magnetic resonance imaging (p=0.04). Luminal subtypes demonstrated a significantly higher percentage of speculation in mammography. Breast imaging-reporting and data system score 4 manifested a substantial number of benign pathologies in all the 3 modalities. A fair concordance rate (k= 0.212 & 0.379) was demonstrated between excision and the preceding core biopsy grading with and without neoadjuvant therapy, respectively. The results demonstrated a down-grading in cases post-neoadjuvant therapy. In cases who did not receive neoadjuvant therapy, underestimation of tumor grade in biopsy was evident. In summary, magnetic resonance imaging had the highest sensitivity, specificity, positive predictive value and accuracy of both diagnosis and estimation of tumor size. Mammography demonstrated better sensitivity than ultrasound and had the highest negative predictive value, but ultrasound had better specificity, positive predictive value and accuracy. Therefore, the combination of different modalities is advantageous. The concordance rate of core biopsy grading with excision was not impacted by neoadjuvant therapy.

Keywords: breast cancer, mammography, MRI, neoadjuvant, pathology, US

Procedia PDF Downloads 82
1159 Streamlining .NET Data Access: Leveraging JSON for Data Operations in .NET

Authors: Tyler T. Procko, Steve Collins

Abstract:

New features in .NET (6 and above) permit streamlined access to information residing in JSON-capable relational databases, such as SQL Server (2016 and above). Traditional methods of data access now comparatively involve unnecessary steps which compromise system performance. This work posits that the established ORM (Object Relational Mapping) based methods of data access in applications and APIs result in common issues, e.g., object-relational impedance mismatch. Recent developments in C# and .NET Core combined with a framework of modern SQL Server coding conventions have allowed better technical solutions to the problem. As an amelioration, this work details the language features and coding conventions which enable this streamlined approach, resulting in an open-source .NET library implementation called Codeless Data Access (CODA). Canonical approaches rely on ad-hoc mapping code to perform type conversions between the client and back-end database; with CODA, no mapping code is needed, as JSON is freely mapped to SQL and vice versa. CODA streamlines API data access by improving on three aspects of immediate concern to web developers, database engineers and cybersecurity professionals: Simplicity, Speed and Security. Simplicity is engendered by cutting out the “middleman” steps, effectively making API data access a whitebox, whereas traditional methods are blackbox. Speed is improved because of the fewer translational steps taken, and security is improved as attack surfaces are minimized. An empirical evaluation of the speed of the CODA approach in comparison to ORM approaches ] is provided and demonstrates that the CODA approach is significantly faster. CODA presents substantial benefits for API developer workflows by simplifying data access, resulting in better speed and security and allowing developers to focus on productive development rather than being mired in data access code. Future considerations include a generalization of the CODA method and extension outside of the .NET ecosystem to other programming languages.

Keywords: API data access, database, JSON, .NET core, SQL server

Procedia PDF Downloads 66
1158 Predicting Intention and Readiness to Alcohol Consumption Reduction and Cessation among Thai Teenagers Using Scales Based on the Theory of Planned Behavior

Authors: Rewadee Watakakosol, Arunya Tuicomepee, Panrapee Suttiwan, Sakkaphat T. Ngamake

Abstract:

Health problems caused by alcohol consumption not only have short-term effects at the time of drinking but also leave long-lasting health conditions. Teenagers who start drinking in their middle-high or high school years or before entering college have higher likelihood to increase their alcohol use and abuse, and they were found to be less healthy compared with their non-drinking peers when entering adulthood. This study aimed to examine factors that predict intention and readiness to reduce and quit alcohol consumption among Thai teenagers. Participants were 826 high-school and vocational school students, most of whom were females (64.4%) with the average age of 16.4 (SD = 0.9) and the average age of first drinking at 13.7 (SD = 2.2). Instruments included the scales that developed based on the Theory of Planned Behaviour theoretical framework. They were the Attitude toward Alcohol Reduction and Cessation Scale, Normative Group and Influence Scale, Perceived Behavioral Control toward Alcohol Reduction and Cessation Scale, Behavioral Intent toward Alcohol Reduction and Cessation Scale, and Readiness to Reduce and Quit Alcohol Consumption Scale. Findings revealed that readiness to reduce / quit alcohol was the most powerful predictive factor (β=. 53, p < .01), followed by attitude of easiness in alcohol reduction and cessation (β=.46, p < .01), perceived behavioral control toward alcohol reduction and cessation (β =.41, p < .01), normative group and influence (β=.15, p < .01), and attitude of being accepted from alcohol reduction and cessation (β = -.12, p < .01), respectively. Attitude of improved health after alcohol reduction and cessation did not show statistically significantly predictive power. All factors significantly predict teenagers’ alcohol reduction and cessation behavior and accounted for 59 percent of total variance of alcohol consumption reduction and cessation.

Keywords: alcohol consumption reduction and cessation, intention, readiness to change, Thai teenagers

Procedia PDF Downloads 334