Search results for: noise shaping
1296 System Identification in Presence of Outliers
Authors: Chao Yu, Qing-Guo Wang, Dan Zhang
Abstract:
The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising
Procedia PDF Downloads 3071295 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker
Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang
Abstract:
The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).Keywords: inertial navigation, adaptive filtering, star tracker, FOG
Procedia PDF Downloads 801294 Active Control Effects on Dynamic Response of Elevated Water Storage Tanks
Authors: Ali Etemadi, Claudia Fernanda Yasar
Abstract:
Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice.Keywords: elevated water storage tank, tuned mass damper model, real time control, shaping control, seismic vibration control, the laplace transform
Procedia PDF Downloads 1501293 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization
Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed
Abstract:
Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction
Procedia PDF Downloads 101292 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 661291 Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources
Authors: K. Nasir, S. Ahmad, A. Khan, H. Benkreira
Abstract:
The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%.Keywords: fire resistant, vibration damping, acoustic material, vibro-acoustic, thermal insulation, sustainable material, low cost materials, recycled materials, construction material
Procedia PDF Downloads 1341290 Experimental Investigation of the Aeroacoustics Field for a Rectangular Jet Impinging on a Slotted Plate: Stereoscopic Particle Image Velocimetry Measurement before and after the Plate
Authors: Nour Eldin Afyouni, Hassan Assoum, Kamel Abed-Meraim, Anas Sakout
Abstract:
The acoustic of an impinging jet holds significant importance in the engineering field. In HVAC systems, the jet impingement, in some cases, generates noise that destroys acoustic comfort. This paper presents an experimental study of a rectangular air jet impinging on a slotted plate to investigate the correlation between sound emission and turbulence dynamics. The experiment was conducted with an impact ratio L/H = 4 and a Reynolds number Re = 4700. The survey shows that coherent structures within the impinging jet are responsible for self-sustaining tone production. To achieve this, a specific experimental setup consisting of two simultaneous Stereoscopic Particle Image Velocimetry (S-PIV) measurements was developed to track vortical structures both before and after the plate, in addition to acoustic measurements. The results reveal a significant correlation between acoustic waves and the passage of coherent structures. Variations in the arrangement of vortical structures between the upstream and downstream sides of the plate were observed. This analysis of flow dynamics can enhance our understanding of slot noise.Keywords: impinging jet, coherent structures, SPIV, aeroacoustics
Procedia PDF Downloads 831289 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform
Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho
Abstract:
In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay, and signal noise were added to a simulation model of an active-controlled vibration isolation system to regulate the movement of the exercise platform. Previous simulation work was conducted primarily via MATLAB/Simulink. Two additional simulation tools used in this study were Trick and MBDyn, NASA co-developed software simulation environments. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active-controlled vibration isolation system outperforms a passive-controlled system even with the addition of feedback delay and signal noise to the active-controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from a squat exercise was calculated from the motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active-controlled system than the passive-controlled system.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 1131288 Sentiment Analysis of Social Media Responses: A Comparative Study of (NDA) and Indian National Developmental Inclusive Alliance (INDIA) during Indian General Elections 2024
Authors: Pankaj Dhiman, Simranjeet Kaur
Abstract:
This research paper presents a comprehensive sentiment analysis of social media responses to videos on Facebook, YouTube, Twitter, and Instagram during the 2024 Indian general elections. The study focuses on the sentiment patterns of voters towards the National Democratic Alliance (NDA) and The Indian National Developmental Inclusive Alliance (INDIA) on these platforms. The analysis aims to understand the impact of social media on voter sentiment and its correlation with the election outcome. The study employed a mixed-methods approach, combining both quantitative and qualitative methods. With a total of 200 posts analysed during general election-2024 final phase, the sentiment analysis was conducted using natural language processing (NLP) techniques, including sentiment dictionaries and machine learning algorithms. The results show that NDA received significantly more positive sentiment responses across all platforms, with a positive sentiment score of 47% compared to INDIA's score of 38.98 %. The analysis also revealed that Twitter and YouTube were the most influential platforms in shaping voter sentiment, with 60% of the total sentiment score coming from these two platforms. The study's findings suggest that social media sentiment analysis can be a valuable tool for understanding voter sentiment and predicting election outcomes. The results also highlight the importance of social media in shaping public opinion and the need for political parties to engage effectively with voters on these platforms. The study's implications are significant, as they indicate that social media can be a key factor in determining the outcome of elections. The findings also underscore the need for political parties to develop effective social media strategies to engage with voters and shape public opinion.Keywords: Indian Elections-2024, NDA, INDIA, sentiment analysis, social media, democracy
Procedia PDF Downloads 521287 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW
Procedia PDF Downloads 4951286 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function
Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana
Abstract:
Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.Keywords: HSV space, histology, enhancement, image
Procedia PDF Downloads 3291285 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method
Authors: M. M. Qasaymeh, M. A. Khodeir
Abstract:
Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme.Keywords: frequency hopping, channel model, time delay estimation, RRLU, RRQR, MUSIC, LS-ESPRIT
Procedia PDF Downloads 4101284 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.Keywords: adaptive estimation, fault detection, GNSS, residual
Procedia PDF Downloads 5751283 Evidence of Natural Selection Footprints among Some African Chicken Breeds and Village Ecotypes
Authors: Ahmed Elbeltagy, Francesca Bertolini, Damarius Fleming, Angelica Van Goor, Chris Ashwell, Carl Schmidt, Donald Kugonza, Susan Lamont, Max Rothschild
Abstract:
The major factor in shaping genomic variation of the African indigenous rural chicken is likely natural selection drives the development genetic footprints in the chicken genomes. To investigate such a hypothesis of a selection footprint, a total of 292 birds were randomly sampled from three indigenous ecotypes from East Africa (Uganda, Rwanda) and North Africa (Egypt) and two registered Egyptian breeds (Fayoumi and Dandarawi), and from the synthetic Kuroiler breed. Samples were genotyped using the Affymetrix 600K Axiom® Array. A total of 526,652 SNPs were utilized in the downstream analysis after quality control measures. The intra-population runs of homozygosity (ROH) that were consensuses in > 50% of individuals of an ecotype or > 75% of a breed were studied. To identify inter-population differentiation due to genetic structure, FST was calculated for North- vs. East- African populations in addition to population-pairwise combinations for overlapping windows (500Kb with an overlap of 250Kb). A total of 28,563 ROH were determined and were classified into three length categories. ROH and Fst detected sweeps were identified on several autosomes. Several genes in these regions are likely to be related to adaptation to local environmental stresses that include high altitude, diseases resistance, poor nutrition, oxidative and heat stresses and were linked to gene ontology terms (GO) related to immune response, oxygen consumption and heme binding, carbohydrate metabolism, oxidation-reduction, and behavior. Results indicated a possible effect of natural selection forces on shaping genomic structure for adaptation to local environmental stresses.Keywords: African Chicken, runs of homozygosity, FST, selection footprints
Procedia PDF Downloads 3131282 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yichao Ma, Chengsiong Chin, Wailok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance
Procedia PDF Downloads 4381281 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance
Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian
Abstract:
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.Keywords: identification, Hammerstein-Wiener, optimization, quantization
Procedia PDF Downloads 2571280 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 681279 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems
Authors: Mohammad Mohammadzadeh, Alireza Ghasempour
Abstract:
In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm
Procedia PDF Downloads 2991278 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 1301277 Urban Freight Station: An Innovative Approach to Urban Freight
Authors: Amit Kumar Jain, Surbhi Jain
Abstract:
The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation.Keywords: congestion, urban freight, intelligent transport system, pollution
Procedia PDF Downloads 3031276 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single
Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa
Abstract:
Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600 minimum load impedance of the DAQ card with the 5 to 20 low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.Keywords: flux density, electrical steel, LabVIEW, magnetization
Procedia PDF Downloads 2911275 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 3021274 Deep Learning to Improve the 5G NR Uplink Control Channel
Authors: Ahmed Krobba, Meriem Touzene, Mohamed Debeyche
Abstract:
The wireless communications system (5G) will provide more diverse applications and higher quality services for users compared to the long-term evolution 4G (LTE). 5G uses a higher carrier frequency, which suffers from information loss in 5G coverage. Most 5G users often cannot obtain high-quality communications due to transmission channel noise and channel complexity. Physical Uplink Control Channel (PUCCH-NR: Physical Uplink Control Channel New Radio) plays a crucial role in 5G NR telecommunication technology, which is mainly used to transmit link control information uplink (UCI: Uplink Control Information. This study based of evaluating the performance of channel physical uplink control PUCCH-NR under low Signal-to-Noise Ratios with various antenna numbers reception. We propose the artificial intelligence approach based on deep neural networks (Deep Learning) to estimate the PUCCH-NR channel in comparison with this approach with different conventional methods such as least-square (LS) and minimum-mean-square-error (MMSE). To evaluate the channel performance we use the block error rate (BLER) as an evaluation criterion of the communication system. The results show that the deep neural networks method gives best performance compared with MMSE and LSKeywords: 5G network, uplink (Uplink), PUCCH channel, NR-PUCCH channel, deep learning
Procedia PDF Downloads 821273 Analysis of Cardiovascular Diseases Using Artificial Neural Network
Authors: Jyotismita Talukdar
Abstract:
In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach
Procedia PDF Downloads 1741272 Robust Medical Image Watermarking based on Contourlet and Extraction Using ICA
Authors: S. Saju, G. Thirugnanam
Abstract:
In this paper, a medical image watermarking algorithm based on contourlet is proposed. Medical image watermarking is a special subcategory of image watermarking in the sense that images have special requirements. Watermarked medical images should not differ perceptually from their original counterparts because clinical reading of images must not be affected. Watermarking techniques based on wavelet transform are reported in many literatures but robustness and security using contourlet are better when compared to wavelet transform. The main challenge in exploring geometry in images comes from the discrete nature of the data. In this paper, original image is decomposed to two level using contourlet and the watermark is embedded in the resultant sub-bands. Sub-band selection is based on the value of Peak Signal to Noise Ratio (PSNR) that is calculated between watermarked and original image. To extract the watermark, Kernel ICA is used and it has a novel characteristic is that it does not require the transformation process to extract the watermark. Simulation results show that proposed scheme is robust against attacks such as Salt and Pepper noise, Median filtering and rotation. The performance measures like PSNR and Similarity measure are evaluated and compared with Discrete Wavelet Transform (DWT) to prove the robustness of the scheme. Simulations are carried out using Matlab Software.Keywords: digital watermarking, independent component analysis, wavelet transform, contourlet
Procedia PDF Downloads 5281271 Developing Wearable EMG Sensor Designed for Parkinson's Disease (PD) Monitoring, and Treatment
Authors: Bulcha Belay Etana
Abstract:
Electromyography is used to measure the electrical activity of muscles for various health monitoring applications using surface electrodes or needle electrodes. Recent developments in electromyogram signal acquisition using textile electrodes open the door for wearable health monitoring which enables patients to monitor and control their health issues outside of traditional healthcare facilities. The aim of this research is therefore to develop and analyze wearable textile electrodes for the acquisition of electromyography signals for Parkinson’s patients and apply an appropriate thermal stimulus to relieve muscle cramping. In order to achieve this, textile electrodes are sewn with a silver-coated thread in an overlapping zigzag pattern into an inextensible fabric, and stainless steel knitted textile electrodes attached to a sleeve were prepared and its electrical characteristics including signal to noise ratio were compared with traditional electrodes. To relieve muscle cramping, a heating element using stainless steel conductive yarn Sewn onto a cotton fabric, coupled with a vibration system were developed. The system was integrated using a microcontroller and a Myoware muscle sensor so that when muscle cramping occurs, measured by the system activates the heating elements and vibration motors. The optimum temperature considered for treatment was 35.50c, so a Temperature measurement system was incorporated to deactivate the heating system when the temperature reaches this threshold, and the signals indicating muscle cramping have subsided. The textile electrode exhibited a signal to noise ratio of 6.38dB while the signal to noise ratio of the traditional electrode was 7.05dB. The rise time of the developed heating element was about 6 minutes to reach the optimum temperature using a 9volt power supply. The treatment of muscle cramping in Parkinson's patients using heat and muscle vibration simultaneously with a wearable electromyography signal acquisition system will improve patients’ livelihoods and enable better chronic pain management.Keywords: electromyography, heating textile, vibration therapy, parkinson’s disease, wearable electronic textile
Procedia PDF Downloads 1351270 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 2021269 Distributed Optical Fiber Vibration Sensing Using Phase Generated Carrier Demodulation Algorithm
Authors: Zhihua Yu, Qi Zhang, Mingyu Zhang, Haolong Dai
Abstract:
Distributed fiber-optic vibration sensors are gaining extensive attention, for the advantages of high sensitivity, accurate location, light weight, large-scale monitoring, good concealment, and etc. In this paper, a novel optical fiber distributed vibration sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson Interferometry (MI) to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000m sensing fiber and demodulated correctly. Experiments show that the spatial resolution of is 10 m, and the noise level of the Φ-OTDR system is about 10-3 rad/√Hz, and the signal to noise ratio (SNR) is about 30.34dB. This vibration measurement scheme can be applied at surface, seabed or downhole for vibration measurements or distributed acoustic sensing (DAS).Keywords: fiber optics sensors, Michelson interferometry, MI, phase-sensitive optical time domain reflectometry, Φ-OTDR, phase generated carrier, PGC
Procedia PDF Downloads 1891268 Low Power CMOS Amplifier Design for Wearable Electrocardiogram Sensor
Authors: Ow Tze Weng, Suhaila Isaak, Yusmeeraz Yusof
Abstract:
The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability, especially in the most common electrocardiogram (ECG) monitoring system. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip (SoC) is increasing in exponential way, the front end ECG sensors are still suffering from flicker noise for low frequency cardiac signal acquisition, 50 Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a high performance CMOS amplifier for ECG sensors that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13 µm CMOS technology from Silterra, the simulation results show that this front end circuit can achieve a very low input referred noise of 1 pV/√Hz and high common mode rejection ratio (CMRR) of 174.05 dB. It also gives voltage gain of 75.45 dB with good power supply rejection ratio (PSSR) of 92.12 dB. The total power consumption is only 3 µW and thus suitable to be implemented with further signal processing and classification back end for low power biomedical SoC.Keywords: CMOS, ECG, amplifier, low power
Procedia PDF Downloads 2481267 High-Resolution ECG Automated Analysis and Diagnosis
Authors: Ayad Dalloo, Sulaf Dalloo
Abstract:
Electrocardiogram (ECG) recording is prone to complications, on analysis by physicians, due to noise and artifacts, thus creating ambiguity leading to possible error of diagnosis. Such drawbacks may be overcome with the advent of high resolution Methods, such as Discrete Wavelet Analysis and Digital Signal Processing (DSP) techniques. This ECG signal analysis is implemented in three stages: ECG preprocessing, features extraction and classification with the aim of realizing high resolution ECG diagnosis and improved detection of abnormal conditions in the heart. The preprocessing stage involves removing spurious artifacts (noise), due to such factors as muscle contraction, motion, respiration, etc. ECG features are extracted by applying DSP and suggested sloping method techniques. These measured features represent peak amplitude values and intervals of P, Q, R, S, R’, and T waves on ECG, and other features such as ST elevation, QRS width, heart rate, electrical axis, QR and QT intervals. The classification is preformed using these extracted features and the criteria for cardiovascular diseases. The ECG diagnostic system is successfully applied to 12-lead ECG recordings for 12 cases. The system is provided with information to enable it diagnoses 15 different diseases. Physician’s and computer’s diagnoses are compared with 90% agreement, with respect to physician diagnosis, and the time taken for diagnosis is 2 seconds. All of these operations are programmed in Matlab environment.Keywords: ECG diagnostic system, QRS detection, ECG baseline removal, cardiovascular diseases
Procedia PDF Downloads 297