Search results for: neural machine translation (NMT)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4671

Search results for: neural machine translation (NMT)

4281 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution

Authors: Haiyan Wu, Ying Liu, Shaoyun Shi

Abstract:

Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.

Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction

Procedia PDF Downloads 136
4280 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network

Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi

Abstract:

The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.

Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design

Procedia PDF Downloads 276
4279 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: neural network, motion detection, signature detection, convolutional neural network

Procedia PDF Downloads 87
4278 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 177
4277 Critical Comparison of Two Teaching Methods: The Grammar Translation Method and the Communicative Teaching Method

Authors: Aicha Zohbie

Abstract:

The purpose of this paper is to critically compare two teaching methods: the communicative method and the grammar-translation method. The paper presents the importance of language awareness as an approach to teaching and learning language and some challenges that language teachers face. In addition, the paper strives to determine whether the adoption of communicative teaching methods or the grammar teaching method would be more effective to teach a language. A variety of features are considered for comparing the two methods: the purpose of each method, techniques used, teachers’ and students’ roles, the use of L1, the skills that are emphasized, the correction of students’ errors, and the students’ assessments. Finally, the paper includes suggestions and recommendations for implementing an approach that best meets the students’ needs in a classroom.

Keywords: language teaching methods, language awareness, communicative method grammar translation method, advantages and disadvantages

Procedia PDF Downloads 151
4276 Translation as a Foreign Language Teaching Tool: Results of an Experiment with University Level Students in Spain

Authors: Nune Ayvazyan

Abstract:

Since the proclamation of monolingual foreign-language learning methods (the Berlitz Method in the early 20ᵗʰ century and the like), the dilemma has been to allow or not to allow learners’ mother tongue in the foreign-language learning process. The reason for not allowing learners’ mother tongue is reported to create a situation of immersion where students will only use the target language. It could be argued that this artificial monolingual situation is defective, mainly because there are very few real monolingual situations in the society. This is mainly due to the fact that societies are nowadays increasingly multilingual as plurilingual speakers are the norm rather than an exception. More recently, the use of learners’ mother tongue and translation has been put under the spotlight as valid foreign-language teaching tools. The logic dictates that if learners were permitted to use their mother tongue in the foreign-language learning process, that would not only be natural, but also would give them additional means of participation in class, which could eventually lead to learning. For example, when learners’ metalinguistic skills are poor in the target language, a question they might have could be asked in their mother tongue. Otherwise, that question might be left unasked. Attempts at empirically testing the role of translation as a didactic tool in foreign-language teaching are still very scant. In order to fill this void, this study looks into the interaction patterns between students in two kinds of English-learning classes: one with translation and the other in English only (immersion). The experiment was carried out with 61 students enrolled in a second-year university subject in English grammar in Spain. All the students underwent the two treatments, classes with translation and in English only, in order to see how they interacted under the different conditions. The analysis centered on four categories of interaction: teacher talk, teacher-initiated student interaction, student-initiated student-to-teacher interaction, and student-to-student interaction. Also, pre-experiment and post-experiment questionnaires and individual interviews gathered information about the students’ attitudes to translation. The findings show that translation elicited more student-initiated interaction than did the English-only classes, while the difference in teacher-initiated interactional turns was not statistically significant. Also, student-initiated participation was higher in comprehension-based activities (into L1) as opposed to production-based activities (into L2). As evidenced by the questionnaires, the students’ attitudes to translation were initially positive and mainly did not vary as a result of the experiment.

Keywords: foreign language, learning, mother tongue, translation

Procedia PDF Downloads 162
4275 Using Historical Data for Stock Prediction

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: finance, machine learning, opening price, stock market

Procedia PDF Downloads 189
4274 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks

Authors: P. Karimi, A. H. Khedmati Bazkiaei

Abstract:

The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.

Keywords: smart material, on-line differential artificial neural network, active control, finite element method

Procedia PDF Downloads 210
4273 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove

Procedia PDF Downloads 301
4272 Translating the Gendered Discourse: A Corpus-Based Study of the Chinese Science Fiction The Three Body Problem

Authors: Yi Gu

Abstract:

The Three-Body Problem by Cixin Liu has been a bestseller Chinese Sci-Fi novel for years since 2008. The book was translated into English by Ken Liu in 2014 and won the prestigious 2015 science fiction and fantasy writing Hugo Award, drawing greater attention from wider international communities. The story exposes the horrors of the Chinese Cultural Revolution in the 1960s, in an intriguing narrative for readers at home and abroad. However, without the access to the source text, western readers may not be aware that the original Chinese version of the book is rich in gender-bias. Some Chinese scholars have applied feminist translation theories to their analysis on this book before, based on isolated selected, cherry-picking examples. Thus this paper aims to obtain a more thorough picture of how translators can cope with gender discrimination and reshape the gendered discourse from the source text, by systematically investigating the lexical and syntactic patterns in the translation of Liu’s entire book of 400 pages. The source text and the translation were downloaded into digital files, automatically aligned at paragraph level and then manually post-edited. They were then compiled into a parallel corpus of 114,629 English words and 204,145 Chinese characters using Sketch Engine. Gender-discrimination markers such as the overuse of ‘girl’ to describe an adult woman were searched in the source text, and the alignment made it possible to identify the strategies adopted by the translator to mitigate gender discrimination. The results provide a framework for translators to address gender bias. The study also shows how corpus methods can be used to further research in feminist translation and critical discourse analysis.

Keywords: corpus, discourse analysis, feminist translation, science fiction translation

Procedia PDF Downloads 256
4271 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 321
4270 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks

Authors: Siddhant Rao

Abstract:

Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.

Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks

Procedia PDF Downloads 223
4269 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 103
4268 Quick Covering Machine for Grain Drying Pavement

Authors: Fatima S. Rodriguez, Victorino T. Taylan, Manolito C. Bulaong, Helen F. Gavino, Vitaliana U. Malamug

Abstract:

In sundrying, the quality of the grains are greatly reduced when paddy grains were caught by the rain unsacked and unstored resulting to reduced profit. The objectives of this study were to design and fabricate a quick covering machine for grain drying pavement to test and evaluate the operating characteristics of the machine according to its deployment speed, recovery speed, deployment time, recovery time, power consumption, aesthetics of laminated sack, conducting partial budget, and cost curve analysis. The machine was able to cover the grains in a 12.8 m x 22.5 m grain drying pavement at an average time of 17.13 s. It consumed 0 .53 W-hr for the deployment and recovery of the cover. The machine entailed an investment cost of $1,344.40 and an annual cost charge of $647.32. Moreover, the savings per year using the quick covering machine was $101.83.

Keywords: quick, covering machine, grain, drying pavement

Procedia PDF Downloads 373
4267 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students

Authors: J. K. Alhassan, C. S. Actsu

Abstract:

This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.

Keywords: academic performance, artificial neural network, prediction, students

Procedia PDF Downloads 467
4266 A Review of Feature Selection Methods Implemented in Neural Stem Cells

Authors: Natasha Petrovska, Mirjana Pavlovic, Maria M. Larrondo-Petrie

Abstract:

Neural stem cells (NSCs) are multi-potent, self-renewing cells that generate new neurons. Three subtypes of NSCs can be separated regarding the stages of NSC lineage: quiescent neural stem cells (qNSCs), activated neural stem cells (aNSCs) and neural progenitor cells (NPCs), but their gene expression signatures are not utterly understood yet. Single-cell examinations have started to elucidate the complex structure of NSC populations. Nevertheless, there is a lack of thorough molecular interpretation of the NSC lineage heterogeneity and an increasing need for tools to analyze and improve the efficiency and correctness of single-cell sequencing data. Feature selection and ordering can identify and classify the gene expression signatures of these subtypes and can discover novel subpopulations during the NSCs activation and differentiation processes. The aim here is to review the implementation of the feature selection technique on NSC subtypes and the classification techniques that have been used for the identification of gene expression signatures.

Keywords: feature selection, feature similarity, neural stem cells, genes, feature selection methods

Procedia PDF Downloads 152
4265 Emotions in Human-Machine Interaction

Authors: Joanna Maj

Abstract:

Awe inspiring is the idea that emotions could be present in human-machine interactions, both on the human side as well as the machine side. Human factors present intriguing components and are examined in detail while discussing this controversial topic. Mood, attention, memory, performance, assessment, causes of emotion, and neurological responses are analyzed as components of the interaction. Problems in computer-based technology, revenge of the system on its users and design, and applications comprise a major part of all descriptions and examples throughout this paper. It also allows for critical thinking while challenging intriguing questions regarding future directions in research, dealing with emotion in human-machine interactions.

Keywords: biocomputing, biomedical engineering, emotions, human-machine interaction, interfaces

Procedia PDF Downloads 133
4264 An Interdisciplinary Approach to Investigating Style: A Case Study of a Chinese Translation of Gilbert’s (2006) Eat Pray Love

Authors: Elaine Y. L. Ng

Abstract:

Elizabeth Gilbert’s (2006) biography Eat, Pray, Love describes her travels to Italy, India, and Indonesia after a painful divorce. The author’s experiences with love, loss, search for happiness, and meaning have resonated with a huge readership. As regards the translation of Gilbert’s (2006) Eat, Pray, Love into Chinese, it was first translated by a Taiwanese translator He Pei-Hua and published in Taiwan in 2007 by Make Boluo Wenhua Chubanshe with the fairly catching title “Enjoy! Traveling Alone.” The same translation was translocated to China, republished in simplified Chinese characters by Shanxi Shifan Daxue Chubanshe in 2008 and renamed in China, entitled “To Be a Girl for the Whole Life.” Later on, the same translation in simplified Chinese characters was reprinted by Hunan Wenyi Chubanshe in 2013. This study employs Munday’s (2002) systemic model for descriptive translation studies to investigate the translation of Gilbert’s (2006) Eat, Pray, Love into Chinese by the Taiwanese translator Hu Pei-Hua. It employs an interdisciplinary approach, combining systemic functional linguistics and corpus stylistics with sociohistorical research within a descriptive framework to study the translator’s discursive presence in the text. The research consists of three phases. The first phase is to locate the target text within its socio-cultural context. The target-text context concerning the para-texts, readers’ responses, and the publishers’ orientation will be explored. The second phase is to compare the source text and the target text for the categorization of translation shifts by using the methodological tools of systemic functional linguistics and corpus stylistics. The investigation concerns the rendering of mental clauses and speech and thought presentation. The final phase is an explanation of the causes of translation shifts. The linguistic findings are related to the extra-textual information collected in an effort to ascertain the motivations behind the translator’s choices. There exist sets of possible factors that may have contributed to shaping the textual features of the given translation within a specific socio-cultural context. The study finds that the translator generally reproduces the mental clauses and speech and thought presentation closely according to the original. Nevertheless, the language of the translation has been widely criticized to be unidiomatic and stiff, losing the elegance of the original. In addition, the several Chinese translations of the given text produced by one Taiwanese and two Chinese publishers are basically the same. They are repackaged slightly differently, mainly with the change of the book cover and its captions for each version. By relating the textual findings to the extra-textual data of the study, it is argued that the popularity of the Chinese translation of Gilbert’s (2006) Eat, Pray, Love may not be attributed to the quality of the translation. Instead, it may have to do with the way the work is promoted strategically by the social media manipulated by the four e-bookstores promoting and selling the book online in China.

Keywords: chinese translation of eat pray love, corpus stylistics, motivations for translation shifts, systemic approach to translation studies

Procedia PDF Downloads 175
4263 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
4262 Modeling Binomial Dependent Distribution of the Values: Synthesis Tables of Probabilities of Errors of the First and Second Kind of Biometrics-Neural Network Authentication System

Authors: B. S.Akhmetov, S. T. Akhmetova, D. N. Nadeyev, V. Yu. Yegorov, V. V. Smogoonov

Abstract:

Estimated probabilities of errors of the first and second kind for nonideal biometrics-neural transducers 256 outputs, the construction of nomograms based error probability of 'own' and 'alien' from the mathematical expectation and standard deviation of the normalized measures Hamming.

Keywords: modeling, errors, probability, biometrics, neural network, authentication

Procedia PDF Downloads 482
4261 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City

Procedia PDF Downloads 352
4260 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Xiaohan Bookman, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labeled samples and flexible network. We have conducted experiments on four UCI open data sets and achieved good results as expected. In conclusion, our model could handle more sparse labeled and more high-dimension data set in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, classifier, structural risk

Procedia PDF Downloads 341
4259 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: neural network, dry relaxation, knitting, linear regression

Procedia PDF Downloads 585
4258 Vibration Imaging Method for Vibrating Objects with Translation

Authors: Kohei Shimasaki, Tomoaki Okamura, Idaku Ishii

Abstract:

We propose a vibration imaging method for high frame rate (HFR)-video-based localization of vibrating objects with large translations. When the ratio of the translation speed of a target to its vibration frequency is large, obtaining its frequency response in image intensities becomes difficult because one or no waves are observable at the same pixel. Our method can precisely localize moving objects with vibration by virtually translating multiple image sequences for pixel-level short-time Fourier transform to observe multiple waves at the same pixel. The effectiveness of the proposed method is demonstrated by analyzing several HFR videos of flying insects in real scenarios.

Keywords: HFR video analysis, pixel-level vibration source localization, short-time Fourier transform, virtual translation

Procedia PDF Downloads 108
4257 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 155
4256 Translating Silence: An Analysis of Dhofar University Student Translations of Elliptical Structures from English into Arabic

Authors: Ali Algryani

Abstract:

Ellipsis involves the omission of an item or items that can be recovered from the preceding clause. Ellipsis is used as a cohesion marker; it enhances the cohesiveness of a text/discourse as a clause is interpretable only through making reference to an antecedent clause. The present study attempts to investigate the linguistic phenomenon of ellipsis from a translation perspective. It is mainly concerned with how ellipsis is translated from English into Arabic. The study covers different forms of ellipsis, such as noun phrase ellipsis, verb phrase ellipsis, gapping, pseudo-gapping, stripping, and sluicing. The primary aim of the study, apart from discussing the use and function of ellipsis, is to find out how such ellipsis phenomena are dealt with in English-Arabic translation and determine the implications of the translations of elliptical structures into Arabic. The study is based on the analysis of Dhofar University (DU) students' translations of sentences containing different forms of ellipsis. The initial findings of the study indicate that due to differences in syntactic structures and stylistic preferences between English and Arabic, Arabic tends to use lexical repetition in the translation of some elliptical structures, thus achieving a higher level of explicitness. This implies that Arabic tends to prefer lexical repetition to create cohesion more than English does. Furthermore, the study also reveals that the improper translation of ellipsis leads to interpretations different from those understood from the source text. Such mistranslations can be attributed to student translators’ lack of awareness of the use and function of ellipsis as well as the stylistic preferences of both languages. This has pedagogical implications on the teaching and training of translation students at DU. Students' linguistic competence needs to be enhanced through teaching linguistics-related issues with reference to translation and both languages, .i.e. source and target languages and with special emphasis on their use, function and stylistic preferences.

Keywords: cohesion, ellipsis, explicitness, lexical repetition

Procedia PDF Downloads 124
4255 Intertextuality in Tourism Advertising: Sources of Knowledge Asymmetries in Translating Vocative Texts

Authors: Maria Ilyushkina

Abstract:

The article addresses the problem of translating vocative texts with intertextual references and describes the influence of language on how knowledge and meaning are developed in the field of advertising. The starting point of the article takes advertisements from the sphere of tourism and the way we choose, translate, and interpret intertexts. The article focuses on the perception and understanding of the information in printed texts advertising recreational facilities and services for tourists as the target audience by representatives of other cultures and the knowledge intertexts convey. The authors argue that intertextuality complicates translation leading to knowledge asymmetries. Studying typical communicative failures is considered to be of great importance, allowing for improvement in the practice of translation in the sphere of advertising as well as preventing the fallacious transfer of knowledge when translating foreign intertexts.

Keywords: advertising, translation, intertext, Russian culture, knowledge asymmetries, tourism, vocative texts

Procedia PDF Downloads 134
4254 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 38
4253 Challenges in Translating Malay Idiomatic Expressions: A Study

Authors: Nor Ruba’Yah Binti Abd Rahim, Norsyahidah Binti Jaafar

Abstract:

Translating Malay idiomatic expressions into other languages presents unique challenges due to the deep cultural nuances and linguistic intricacies embedded within these expressions. This study examined these challenges through a two-pronged methodology: a comparative analysis using survey questionnaires and a quiz administered to 50 semester 6 students who are taking Translation 1 course, and in-depth interviews with their lecturers. The survey aimed to capture students’ experiences and difficulties in translating selected Malay idioms into English, highlighting common errors and misunderstandings. Complementing this, interviews with lecturers provided expert insights into the nuances of these expressions and effective translation strategies. The findings revealed that literal translations often fail to convey the intended meanings, underscoring the importance of cultural competence and contextual awareness. The study also identified key factors that contribute to successful translations, such as the translator’s familiarity with both source and target cultures and their ability to adapt expressions creatively. This research contributed to the field of translation studies by offering practical recommendations for improving the translation of idiomatic expressions, thereby enhancing cross-cultural communication. The insights gained from this study are valuable for translators, educators, and students, emphasizing the need for a nuanced approach that respects the cultural richness of the source language while ensuring clarity in the target language.

Keywords: idiomatic expressions, cultural competence, translation strategies, cross-cultural communication, students’ difficulties

Procedia PDF Downloads 12
4252 Peer-Review as a Means to Improve Students' Translation Skills

Authors: Bahia Braktia, Ahlem Ghamri

Abstract:

Years ago, faculties and administrators realized that students entering college were not prepared for the academic sphere; however, as a type of collaborative learning, peer-review gave students a social context in which they could learn more efficiently. Peer-review has proven its effectiveness in higher education. Numerous studies have been conducted on peer review and its effects on the quality of students’ writing, and several publications recommended peer-review as part of the feedback process. Student writers showed a tendency towards making significant meaning-level revisions and surface-level revisions. Last but not least, studies reported that peer-review helps students develop their self-assessment skills as well as critical thinking. The use of peer-review has become well known and widely adopted to the L2 classroom environment. However, little is known about peer review on translation students. The purpose of this study was to investigate the students' perspective on peer-review, and whether this method affected the quality of their translation. A mixed method design was adopted. Students were requested to translate two texts from Arabic into English, and they gave and received structured feedback to their classmates' translations. A survey was administered, followed by semi-structured interviews, to examine the students' attitudes toward peer-review. The results of the study showed that peer-review was considered a good proofreading method for most students. The students also showed a positive attitude toward it, and they reported that they benefited from the interaction with their peers. The findings implied that the inclusion of peer-review can be an effective pedagogical practice for teaching translation and writing to foreign language learners.

Keywords: language teaching, feedback, peer-review, translation

Procedia PDF Downloads 198