Search results for: integration power system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22689

Search results for: integration power system

22299 A Study on the Relationship between Transaction Fairness, Social Capital, Supply Chain Integration and Sustainability: Focusing on Manufacturing Companies of South Korea

Authors: Sung-Min Park, Chan Kwon Park, Chae-Bogk Kim

Abstract:

The purpose of this study is to analyze the relationship between transaction fairness, social capital, supply chain integration and sustainability. Based on the previous studies, measurement items were determined by using SPSS 22 and exploratory factor analysis was performed, and again, using AMOS 21 for confirmatory factor analysis and path analysis was performed by using study items that satisfy reliability, validity, and appropriateness of measurement model. It has shown that transaction fairness has a (+) significant effect on social capital, social capital on supply chain integration, supply chain integration on economic sustainability and social sustainability, and has a (+), but not significant effect on environmental sustainability. It has shown that supply chain integration has been proven to play a role as a parameter between social capital and economic and social sustainability, but not as a parameter between environmental sustainability. Through this study, it is suggested that clearly examining the relationship between fairness of trade, social capital, supply chain integration and sustainability, maintaining fairness of the transaction make formation of social capital, and further integration of supply chain, and achieve sustainability of entire supply chain.

Keywords: transaction fairness, social capital, supply chain integration, sustainability

Procedia PDF Downloads 419
22298 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations

Procedia PDF Downloads 413
22297 Optimization Method of Dispersed Generation in Electrical Distribution Systems

Authors: Mahmoud Samkan

Abstract:

Dispersed Generation (DG) is a promising solution to many power system problems such as voltage regulation and power loss. This paper proposes a heuristic two-step method to optimize the location and size of DG for reducing active power losses and, therefore, improve the voltage profile in radial distribution networks. In addition to a DG placed at the system load gravity center, this method consists in assigning a DG to each lateral of the network. After having determined the central DG placement, the location and size of each lateral DG are predetermined in the first step. The results are then refined in the second step. This method is tested for 33-bus system for 100% DG penetration. The results obtained are compared with those of other methods found in the literature.

Keywords: optimal location, optimal size, dispersed generation (DG), radial distribution networks, reducing losses

Procedia PDF Downloads 423
22296 Development of AUTOSAR Software Components of MDPS System

Authors: Jae-Woo Kim, Kyung-Joong Lee, Hyun-Sik Ahn

Abstract:

This paper describes the development of a Motor-Driven Power Steering (MDPS) system using Automotive Open System Architecture (AUTOSAR) methodology. The MDPS system is a new power steering technology for vehicles and it can enhance driver’s convenience and fuel efficiency. AUTOSAR defines common standards for the implementation of embedded automotive software. Some aspects of safety and timing requirements are analyzed. Through the AUTOSAR methodology, the embedded software becomes more flexible, reusable and maintainable than ever. Hence, we first design software components (SW-C) for MDPS control based on AUTOSAR and implement SW-Cs for MDPS control using authoring tool following AUTOSAR standards.

Keywords: AUTOSAR, MDPS, simulink, software component

Procedia PDF Downloads 332
22295 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction

Procedia PDF Downloads 120
22294 Lesson Learnt from Solar Photovoltaic Power Generation in Thailand with Global Self-Consumption Experience

Authors: Tongpong Sriboon, Prapita Thanarak, Chaitawatch Khunrangabsang

Abstract:

Nowadays, the usage of power generated from photovoltaic system has been promoted significantly in Thailand. The targeted result which is to increase the Solar Power Generation in 2036 to 6000 megawatts (MW) was planned by Alternative Energy Development Plan (AEDP 2015) and Power Development Plan (PDP 2015). The solar rooftop 200 MW was promoted and supported under the Feed-in Tariff scheme (FiT) in two phases; phase I in 2012 and phase II in 2015. However, the number of people interested in supporting the projects reduced due to many reasons which range from the first process to the last that is to sell electricity back to Electricity Authority. This paper will review this situation especially in total electricity generated from solar rooftop system during the day that has been sold back to the grid utility in different capacity FiT rates. With many stakeholders involved, the regulations and criteria were established to maintain the standard of the system. Besides, lots of problems have occurred during the processes including reliability and quality. These problems were shortly followed by other irrevocably issues concerning politics, social, economic etc. In order to effectively develop solar PV power system in Thailand, the problems and solutions were compared to those from six countries including Japan, Australia. America, China, German and Malaysia. This paper particularly focuses on policies and measurement implemented to encourage the rising in solar PV system interest. This review enables one to gain insight into the nature of the changes that have taken place in each and every country mentioned above as well as the underlying reasons behind them. Brief analysis is carried out on identify key challenges and opportunities for solar PV application. This could help create a development path that is suitable with situations to enhance the overall performance of solar PV power generating system in Thailand.

Keywords: solar PV rooftop, PV policy, self-consumption, solar PV power generation

Procedia PDF Downloads 287
22293 MPPT Control with (P&O) and (FLC) Algorithms of Solar Electric Generator

Authors: Dib Djalel, Mordjaoui Mourad

Abstract:

The current trend towards the exploitation of various renewable energy resources has become indispensable, so it is important to improve the efficiency and reliability of the GPV photovoltaic systems. Maximum Power Point Tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions. This paper presents a new fuzzy logic control based MPPT algorithm for solar panel. The solar panel is modeled and analyzed in Matlab/Simulink. The Solar panel can produce maximum power at a particular operating point called Maximum Power Point(MPP). To produce maximum power and to get maximum efficiency, the entire photovoltaic panel must operate at this particular point. Maximum power point of PV panel keeps on changing with changing environmental conditions such as solar irradiance and cell temperature. Thus, to extract maximum available power from a PV module, MPPT algorithms are implemented and Perturb and Observe (P&O) MPPT and fuzzy logic control FLC, MPPT are developed and compared. Simulation results show the effectiveness of the fuzzy control technique to produce a more stable power.

Keywords: MPPT, photovoltaic panel, fuzzy logic control, modeling, solar power

Procedia PDF Downloads 457
22292 A Succinct Method for Allocation of Reactive Power Loss in Deregulated Scenario

Authors: J. S. Savier

Abstract:

Real power is the component power which is converted into useful energy whereas reactive power is the component of power which cannot be converted to useful energy but it is required for the magnetization of various electrical machineries. If the reactive power is compensated at the consumer end, the need for reactive power flow from generators to the load can be avoided and hence the overall power loss can be reduced. In this scenario, this paper presents a succinct method called JSS method for allocation of reactive power losses to consumers connected to radial distribution networks in a deregulated environment. The proposed method has the advantage that no assumptions are made while deriving the reactive power loss allocation method.

Keywords: deregulation, reactive power loss allocation, radial distribution systems, succinct method

Procedia PDF Downloads 350
22291 Suitability of Alternative Insulating Fluid for Power Transformer: A Laboratory Investigation

Authors: S. N. Deepa, A. D. Srinivasan, K. T. Veeramanju, R. Sandeep Kumar, Ashwini Mathapati

Abstract:

Power transformer is a vital element in a power system as it continuously regulates power flow, maintaining good voltage regulation. The working of transformer much depends on the oil insulation, the oil insulation also decides the aging of transformer and hence its reliability. The mineral oil based liquid insulation is globally accepted for power transformer insulation; however it is potentially hazardous due to its non-biodegradability. In this work efficient alternative biodegradable insulating fluid is presented as a replacement to conventional mineral oil. Dielectric tests are performed as distinct alternating fluid to evaluate the suitability for transformer insulation. The selection of the distinct natural esters for an insulation system is carried out by the laboratory investigation of Breakdown voltage, Oxidation stability, Dissipation factor, Permittivity, Viscosity, Flash and Fire point. It is proposed to study and characterize the properties of natural esters to be used in power transformer. Therefore for the investigation of the dielectric behavior rice bran oil, sesame oil, and sunflower oil are considered for the study. The investigated results have been compared with the mineral oil to validate the dielectric behavior of natural esters.

Keywords: alternative insulating fluid, dielectric properties, natural esters, power transformers

Procedia PDF Downloads 118
22290 External Sector and Its Impact on Economic Growth of Pakistan (1990-2010)

Authors: Rizwan Fazal

Abstract:

This study investigates the behavior of external sector of Pakistan economy and its impact on economic growth, using quarterly data for the period 1990:01-2010:04. External sector indices used in this study are financial integration, net foreign assets and trade integration. Augmented Ducky fuller confirms that all variables of external sector are non-stationary at level, but at first difference it becomes stationary. The co-integration test suggests one co-integrating variables in the study. The analysis is based on Vector Auto Regression model followed by Vector Error Correction Model. The empirical findings show that financial integration play important role in increasing economic growth in Pakistan economy while trade integration has negative effect on economic growth of Pakistan in the long run. However, the short run confirms that output lag accounts for error correction. The estimated CUSUM and CUSUMQ stability test provide information that the period of the study equation remains stable.

Keywords: financial integration, trade integration, net foreign assets, gross domestic product

Procedia PDF Downloads 251
22289 Evaluation of Urban-Rural Integration of Characteristic Towns in Yunnan Province

Authors: Huang Yong, Chen Qianting, Zhao Shurong

Abstract:

In order to identify the role and effect of Characteristic Towns as an important means to promote urban-rural integration, this paper uses Flow Theory and complex network analysis methods to jointly construct the identification path of urban-rural integration capabilities of Characteristic Towns. Take the National Characteristic Towns of Yunnan Province as the empirical objects to identify their role laws. The study found that in the implementation of the National Characteristic Town Project in Yunnan Province, (1) the population is more susceptible to the impact of the Characteristic Town Project than the technical elements, but the stability is poor; (2) The flow capacity of urban and rural technical elements is weak, and the quality of the enterprise cooperation network in general; (3) Compared with the batch of Characteristic Towns in 2016, its ability to promote urban-rural integration is higher in 2017; (4) The role of the Characteristic Town Project on urban-rural integration focuses on the improvement of the number of urban and rural flow elements. This paper analyzes the mode of the role of Characteristic Towns on urban-rural integration from the perspective of ‘flow,’ establishes a research paradigm for evaluating the role of Characteristic Towns in urban-rural integration capabilities, and builds a path for the application of Characteristic Towns to support the realization of urban-rural integration goals.

Keywords: characteristic town, urban-rural integration, flow theory, complex network analysis

Procedia PDF Downloads 110
22288 Optimal Allocation of Distributed Generation Sources for Loss Reduction and Voltage Profile Improvement by Using Particle Swarm Optimization

Authors: Muhammad Zaheer Babar, Amer Kashif, Muhammad Rizwan Javed

Abstract:

Nowadays distributed generation integration is best way to overcome the increasing load demand. Optimal allocation of distributed generation plays a vital role in reducing system losses and improves voltage profile. In this paper, a Meta heuristic technique is proposed for allocation of DG in order to reduce power losses and improve voltage profile. The proposed technique is based on Multi Objective Particle Swarm optimization. Fewer control parameters are needed in this algorithm. Modification is made in search space of PSO. The effectiveness of proposed technique is tested on IEEE 33 bus test system. Single DG as well as multiple DG scenario is adopted for proposed method. Proposed method is more effective as compared to other Meta heuristic techniques and gives better results regarding system losses and voltage profile.

Keywords: Distributed generation (DG), Multi Objective Particle Swarm Optimization (MOPSO), particle swarm optimization (PSO), IEEE standard Test System

Procedia PDF Downloads 428
22287 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland

Authors: Ahmed Aisa, Tariq Iqbal

Abstract:

This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.

Keywords: water heating, thermal storage, capital cost solar, consumption

Procedia PDF Downloads 407
22286 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems

Authors: S. Sudhharani

Abstract:

Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.

Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)

Procedia PDF Downloads 115
22285 Low Power CMOS Amplifier Design for Wearable Electrocardiogram Sensor

Authors: Ow Tze Weng, Suhaila Isaak, Yusmeeraz Yusof

Abstract:

The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability, especially in the most common electrocardiogram (ECG) monitoring system. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip (SoC) is increasing in exponential way, the front end ECG sensors are still suffering from flicker noise for low frequency cardiac signal acquisition, 50 Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a high performance CMOS amplifier for ECG sensors that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13 µm CMOS technology from Silterra, the simulation results show that this front end circuit can achieve a very low input referred noise of 1 pV/√Hz and high common mode rejection ratio (CMRR) of 174.05 dB. It also gives voltage gain of 75.45 dB with good power supply rejection ratio (PSSR) of 92.12 dB. The total power consumption is only 3 µW and thus suitable to be implemented with further signal processing and classification back end for low power biomedical SoC.

Keywords: CMOS, ECG, amplifier, low power

Procedia PDF Downloads 228
22284 Integrating Deterministic and Probabilistic Safety Assessment to Decrease Risk & Energy Consumption in a Typical PWR

Authors: Ebrahim Ghanbari, Mohammad Reza Nematollahi

Abstract:

Integrating deterministic and probabilistic safety assessment (IDPSA) is one of the most commonly used issues in the field of safety analysis of power plant accident. It has also been recognized today that the role of human error in creating these accidents is not less than systemic errors, so the human interference and system errors in fault and event sequences are necessary. The integration of these analytical topics will be reflected in the frequency of core damage and also the study of the use of water resources in an accident such as the loss of all electrical power of the plant. In this regard, the SBO accident was simulated for the pressurized water reactor in the deterministic analysis issue, and by analyzing the operator's behavior in controlling the accident, the results of the combination of deterministic and probabilistic assessment were identified. The results showed that the best performance of the plant operator would reduce the risk of an accident by 10%, as well as a decrease of 6.82 liters/second of the water sources of the plant.

Keywords: IDPSA, human error, SBO, risk

Procedia PDF Downloads 107
22283 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Ghambir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, fault ride through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT

Procedia PDF Downloads 442
22282 The Batteryless Wi-Fi Backscatter System and Method for Improving the Transmission Range

Authors: Young-Min Ko, Seung-Jun Yu, Seongjoo Lee, Hyoung-Kyu Song

Abstract:

The Internet of things (IoT) system has attracted attention. IoT is a technology to connect all the objects to the internet as well as computer. IoT makes it possible for providing more data interoperability methods for an application purpose. Among the IoT technology, the research of devices so that they can communicate without power supply has been actively conducted. Batteryless system permits us to communicate without power supply devices. In this paper, batteryless backscatter system is used as a tag. And mobile devices which are embedded wireless fidelity (Wi-Fi) chipset are used as a reader. The backscatter tag can be obtained Internet connectivity from the reader. Conventional Wi-Fi backscatter system has limitation in the transmission range. In this paper, the proposed algorithm can be obtained improved reliability as well as overcoming the limitation about transmission range.

Keywords: Ambient RF, Backscatter, Batteryless communication, Energy-harvesting, IoT, RFID, Tag, Wi-Fi

Procedia PDF Downloads 365
22281 Application of Integrated Marketing Communications-Multiple, Case Studies

Authors: Yichen Lin, Hsiao-Han Chen, Chi-Chen Jan

Abstract:

Since 1990, the research area of Integrated Marketing Communications (IMC) has been presented from a different perspective. With advances in information technology and the rise of consumer consciousness, businesses are in a competitive environment. There is an urgent need to adopt more profitable and effective integrated marketing strategies to increase core competitiveness. The goal of the company's sustainable management is to increase consumers' willingness to purchase and to maximize profits. This research uses six aspects of IMC, which includes awareness integration, unified image, database integration, customer-based integration, stakeholders-based integration, and evaluation integration to examine the role of marketing strategies in the strengths and weaknesses of the six components of integrated marketing communications, their effectiveness, the most important components and the most important components that need improvement. At the same time, social media such as FaceBook, Instagram, Youtube, Line, or even TikTok have become marketing tools which firms adopt them more and more frequently in the marketing strategy. In the end of 2019, the outbreak of COVID-19 did really affect the global industries. Lockdown policies also accelerated closure of brick-mentor stores worldwide. Online purchases rose dramatically. Hence, the effectiveness of online marketing will be essential to maintain the business. This study uses multiple-case studies to extend the effects of social media and IMC. Moreover, the study would also explore the differences of social media and IMC during COVID-19. Through literature review and multiple-case studies, it is found that using social media combined with IMC did really help companies expand their business and make good connections with stakeholders. One of previous studies also used system theory to explore the interrelationship among Integrated Marketing Communication, collaborative marketing, and global brand building. Even during pandemic, firms could still maintain the operation and connect with their customers more tightly.

Keywords: integration marketing communications, multiple-case studies, social media, system theory

Procedia PDF Downloads 197
22280 Water Saving in Electricity Generation System Considering Natural Gas Limitation

Authors: Mehdi Ganjkhani, Sobhan Badakhshan, Seyedvahid Hosseini

Abstract:

Power plants exploit striking proportion of underground water consumption. Correspondingly, natural gas-fired power plants need less water than the other conventional power plants. Therefore, shifting unit commitment planning toward these power plants would help to save water consumption. This paper discusses the impacts of water consumption limitation on natural gas consumption and vice versa as a short-term water consumption management solution. To do so, conventional unit commitment problem is extended by adding water consumption and natural gas constraints to the previous constrains. The paper presents the impact of water saving on natural gas demands as well as natural gas shortage on water demand. Correspondingly, the additional cost of electricity production according to the aforementioned constraints is evaluated. Finally, a test system is applied to investigate potentials and impacts of water saving and natural gas shortage. Different scenarios are conducted and the results are presented. The results of the study illustrate that in order to use less water for power production it needs to use more natural gas. Meanwhile, natural gas shortage causes to utilize more amount of water in aggregate.

Keywords: electric energy generation system, underground water sources, unit commitment, water consumption saving, natural gas

Procedia PDF Downloads 161
22279 Simulation of Wind Solar Hybrid Power Generation for Pumping Station

Authors: Masoud Taghavi, Gholamreza Salehi, Ali Lohrasbi Nichkoohi

Abstract:

Despite the growing use of renewable energies in different fields of application of this technology in the field of water supply has been less attention. Photovoltaic and wind hybrid system is that new topics in renewable energy, including photovoltaic arrays, wind turbines, a set of batteries as a storage system and a diesel generator as a backup system is. In this investigation, first climate data including average wind speed and solar radiation at any time during the year, data collection and analysis are performed in the energy. The wind turbines in four models, photovoltaic panels at the 6 position of relative power, batteries and diesel generator capacity in seven states in the two models are combined hours of operation with renewables, diesel generator and battery bank check and a hybrid system of solar power generation-wind, which is optimized conditions, are presented.

Keywords: renewable energy, wind and solar energy, hybrid systems, cloning station

Procedia PDF Downloads 374
22278 BIM Application Research Based on the Main Entrance and Garden Area Project of Shanghai Disneyland

Authors: Ying Yuken, Pengfei Wang, Zhang Qilin, Xiao Ben

Abstract:

Based on the main entrance and garden area (ME&G) project of Shanghai Disneyland, this paper introduces the application of BIM technology in this kind of low-rise comprehensive building with complex facade system, electromechanical system and decoration system. BIM technology is applied to the whole process of design, construction and completion of the whole project. With the construction of BIM application framework of the whole project, the key points of BIM modeling methods of different systems and the integration and coordination of BIM models are elaborated in detail. The specific application methods of BIM technology in similar complex low-rise building projects are sorted out. Finally, the paper summarizes the benefits of BIM technology application, and puts forward some suggestions for BIM management mode and practical application of similar projects in the future.

Keywords: BIM, complex low-rise building, BIM modeling, model integration and coordination, 3D scanning

Procedia PDF Downloads 139
22277 Design and Thermal Analysis of Power Harvesting System of a Hexagonal Shaped Small Spacecraft

Authors: Mansa Radhakrishnan, Anwar Ali, Muhammad Rizwan Mughal

Abstract:

Many universities around the world are working on modular and low budget architecture of small spacecraft to reduce the development cost of the overall system. This paper focuses on the design of a modular solar power harvesting system for a hexagonal-shaped small satellite. The designed solar power harvesting systems are composed of solar panels and power converter subsystems. The solar panel is composed of solar cells mounted on the external face of the printed circuit board (PCB), while the electronic components of power conversion are mounted on the interior side of the same PCB. The solar panel with dimensions 16.5cm × 99cm is composed of 36 solar cells (each solar cell is 4cm × 7cm) divided into four parallel banks where each bank consists of 9 solar cells. The output voltage of a single solar cell is 2.14V, and the combined output voltage of 9 series connected solar cells is around 19.3V. The output voltage of the solar panel is boosted to the satellite power distribution bus voltage level (28V) by a boost converter working on a constant voltage maximum power point tracking (MPPT) technique. The solar panel module is an eight-layer PCB having embedded coil in 4 internal layers. This coil is used to control the attitude of the spacecraft, which consumes power to generate a magnetic field and rotate the spacecraft. As power converter and distribution subsystem components are mounted on the PCB internal layer, therefore it is mandatory to do thermal analysis in order to ensure that the overall module temperature is within thermal safety limits. The main focus of the overall design is on compactness, miniaturization, and efficiency enhancement.

Keywords: small satellites, power subsystem, efficiency, MPPT

Procedia PDF Downloads 43
22276 Development of a Flexible Lora-Based Wireless Sensory System for Long-Time Health Monitoring of Civil Structures

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

In this study, a highly flexible LoRa-Based wireless sensing system was used to assess the strain state performance of building structures. The system was developed to address the local damage limitation of structural health monitoring (SHM) systems. The system is part of an intelligent SHM system designed to monitor, collect and transmit strain changes in key structural components. The main purpose of the wireless sensor system is to reduce the development and installation costs, and reduce the power consumption of the system, so as to achieve long-time monitoring. The highly stretchable flexible strain gauge is mounted on the surface of the structure and is waterproof, heat resistant, and low temperature resistant, greatly reducing the installation and maintenance costs of the sensor. The system was also developed with the aim of using LoRa wireless communication technology to achieve both low power consumption and long-distance transmission, therefore solving the problem of large-scale deployment of sensors to cover more areas in large structures. In the long-term monitoring of the building structure, the system shows very high performance, very low actual power consumption, and wireless transmission stability. The results show that the developed system has a high resolution, sensitivity, and high possibility of long-term monitoring.

Keywords: LoRa, SHM system, strain measurement, civil structures, flexible sensing system

Procedia PDF Downloads 72
22275 Performance Analysis of Different Power Electronics Structures for Electric Vehicles (EVs)

Authors: Sekkak Abdelmalek

Abstract:

The aim of this paper is to establish an energy balance of the drivetrain of a low power electric vehicle (around ten kilowatts). The study is based on two topologies of power electronics converter, the voltage source inverter and cascaded H-Bridge inverter. For each of these solutions, two voltage levels are studied for the drivetrain. At first a discussion of cascaded H-Bridge inverters will be performed on the potential benefits of this structure for its use to other functions such as macroscopic batteries management system. In a second step, the performances of the traction chain are compared according to the structure of the power converter and the voltage level of the traction chain.

Keywords: power electronics, static converters, cascaded H-Bridge, traction chain, efficiency, losses, batteries balancing

Procedia PDF Downloads 489
22274 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction

Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat

Abstract:

The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.

Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision

Procedia PDF Downloads 464
22273 Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources

Authors: Rade M. Ciric, Nikola L. J. Rajakovic

Abstract:

This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.

Keywords: distributed generation, renewable energy sources, energy policy, curriculum

Procedia PDF Downloads 334
22272 Coordinated Voltage Control in Radial Distribution System with Distributed Generators Using Sensitivity Analysis

Authors: Anubhav Shrivastava Shivarudraswamy, Bhat Lakshya

Abstract:

Distributed generation has indeed become a major area of interest in recent years. Distributed generation can address a large number of loads in a power line and hence has better efficiency over the conventional methods. However, there are certain drawbacks associated with it, an increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/- 5% of the base value even after the introduction of DGs. Three methods for regulation of voltage are discussed. A sensitivity based analysis is then carried out to determine the priority among the various methods listed in the paper.

Keywords: distributed generators, distributed system, reactive power, voltage control, sensitivity analysis

Procedia PDF Downloads 631
22271 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant

Authors: Yogi Sirodz Gaos, Irvan Wiradinata

Abstract:

In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.

Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning

Procedia PDF Downloads 123
22270 Analysis of Electromechanical Torsional Vibration in Large-Power AC Drive System Based on Virtual Inertia Control

Authors: Jin Wang, Chunyi Zhu, Chongjian Li, Dapeng Zheng

Abstract:

A method based on virtual inertia for suppressing electromechanical torsional vibration of a large-power AC drive system is presented in this paper. The main drive system of the rolling mill is the research object, and a two-inertia elastic model is established to study the mechanism of electromechanical torsional vibration. The improvement is made based on the control of the load observer. The virtual inertia control ratio K is added to the speed forward channel, and the feedback loop adds 1-K to design virtual inertia control. The control method combines the advantages of the positive and negative feedback control of the load observer, can achieve the purpose of controlling the moment of inertia of the motor from the perspective of electrical control, and effectively suppress oscillation.

Keywords: electromechanical torsional vibration, large-power AC drive system, load observer, simulation design

Procedia PDF Downloads 104