Search results for: full wave inversion
3388 The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions
Authors: Ramin Dabirian, Yi Zhang, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham
Abstract:
Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation.Keywords: oil-water dispersion, separation mechanism, phase inversion, emulsion formation
Procedia PDF Downloads 1813387 Basin Geometry and Salt Structures in the Knana/Ragoubet Mahjbia Ranges, North of Tunisia
Authors: Mohamed Montassar Ben Slama, Mohamed Fadel Ladeb, Mohamed Ghanmi, Mohamed Ben Youssef, Fouad Zargouni
Abstract:
The salt province Basin in Northern Tunisia is a complex of late Triassic to Early Cretaceous rift and sag basins which was inverted during the Tertiary folding. The deposition of evaporitic sediments during the Late Triassic times played a major role in the subsequent tectonic evolution of the basin. Within southern tethyan passive marge, the ductile salt mass shown early mobilization, vertical transport and withdrawal of the evaporites. These movements influenced the sedimentation during the late Jurassic and Early Cretaceous. The evaporites also influenced deformation during the inversion of the basin and the development of the Tertiary and Quaternary folding. In the studied area, the biostratigraphic and tectonic map analysis of the region of Jebel el Asoued / Ragoubet el Mahjbia can resolve between the hypotheses of the diapiric intrusion of the Triassic salt and the lateral spreading of the Triassic salt as salt ‘glacier’. Also the variation in thickness and facies of the Aptian sediments demonstrates the existence of continental rise architecture at the Aptian time. The observation in a mappable outcrop of the extension segment of the graben fault of Bou Arada on the one hand confirms the existence of a Cretaceous extensive architecture and the tectonic inversion during the Tertiary time has not filled the main game distension. The extent of our observations of Triassic/Aptian and Triassic/Early Campanian contacts, we propose a composite salt ‘glacier’ model as the structures recorded in the Gulf of Mexico in the subsurface and in the Ouenza east Algeria and in Tunisia within Fedj el Adoum, Touiref-Nebeur and Jebel Ech Cheid in the outcrops.Keywords: Cretaceous rift, salt ‘glassier’, tertiary folding, Tunisia
Procedia PDF Downloads 3813386 BECOME: Body Experience-Based Co-Operation between Juveniles through Mutually Excited Team Gameplay
Authors: Tsugunosuke Sakai, Haruya Tamaki, Ryuichi Yoshida, Ryohei Egusa, Etsuji Yamaguchi, Shigenori Inagaki, Fusako Kusunoki, Miki Namatame, Masanori Sugimoto, Hiroshi Mizoguchi
Abstract:
We aim to develop a full-body interaction game that could let children cooperate and interact with other children in small groups. As the first step for our aim, the objective of the full-body interaction game developed in this study is to make interaction between children. The game requires two children to jump together with the same timing. We let children experience the game and answer the questionnaires. The children using several strategies to coordinate the timing of their jumps were observed. These included shouting time, watching each other, and jumping in a constant rhythm as if they were skipping rope. In this manner, we observed the children playing the game while cooperating with each other. The results of a questionnaire to evaluate the proposed interactive game indicate that the jumping game was a very enjoyable experience in which the participants could immerse themselves. Therefore, the game enabled children to experience cooperation with others by using body movements.Keywords: children, cooperation, full-body interaction game, kinect sensor
Procedia PDF Downloads 3703385 Traditional Ceramics Value in the Middle East
Authors: Abdelmessih Malak Sadek Labib
Abstract:
The Stability in harsh environments thanks to excellent electrical, mechanical and thermal properties is what ceramics are all about selected materials for many applications despite advent of new materials such as plastics and composites. However, ceramic materials have disadvantages, including brittleness. Fragility is often attributed to pottery strong covalent and ionic bonds in the ceramic body. There is still much to learn about brittle cracks in a attention to detail, hence the fragility of the ceramic and its catastrophic failure of a frequently studied topic, particularly in charging applications. One of the most commonly used ceramics for load-bearing applications such as veneers is porcelain. Porcelain is a type of traditional pottery. Traditional pottery consists mainly of three basic ingredients: clay, which gives plasticity; silica which maintains the shape and stability of the ceramic body over temperature high temperature; and feldspar affecting glazing. In traditional pottery, the inversion of quartz during cooling the process can create microcracks that act as a stress concentration centers. Consequently, subcritical crack growth is caused due to quartz inversion origins unpredictable catastrophic failure of the work of ceramic bodies when reloading. In the case of porcelain, however, this is what the mullite hypothesis says the strength of porcelain can be significantly increased with felt Interlocking of mullite needles in the ceramic body.in this way realistic assessment of the role of quartz and mullite Porcelain with a strength of is needed to grow stronger and smaller fragile porcelain. Currently,the lack of reports on Young's moduli in the literature leads to erroneous conclusions in this regard mechanical behavior of porcelain. Therefore, the current project uses the Young's modulus approach for the investigation the role of quartz and mullite on the mechanical strength of various porcelains, in addition to reducing particle size, flexural strength fractographic forces and techniques.Keywords: materials, technical, ceramics, properties, thermal, stability, advantages
Procedia PDF Downloads 843384 Substrate Coupling in Millimeter Wave Frequencies
Authors: Vasileios Gerakis, Fontounasios Christos, Alkis Hatzopoulos
Abstract:
A study of the impact of metal guard rings on the coupling between two square metal pads is presented. The structure is designed over a bulk silicon substrate with epitaxial layer, so the coupling through the substrate is also involved. A lightly doped profile is adopted and is simulated by means of an electromagnetic simulator for various pad distances and different metal layers, assuming a 65 nm bulk CMOS technology. The impact of various guard ring design (geometrical) parameters is examined. Furthermore, the increase of isolation (resulting in reduction of the noise coupling) between the pads by cutting the ring, or by using multiple rings, is also analyzed. S parameters are used to compare the various structures.Keywords: guard rings, metal pad coupling, millimeter wave frequencies, substrate noise,
Procedia PDF Downloads 5393383 Oxide Based Memristor and Its Potential Application in Analog-Digital Electronics
Authors: P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu
Abstract:
Oxide based memristors were fabricated in order to establish its potential applications in analog/digital electronics. BaTiO₃-BiFeO₃ (BT-BFO) was employed as an active material, whereas platinum (Pt) and Nb-doped SrTiO₃ (Nb:STO) were served as a top and bottom electrodes, respectively. Piezoelectric force microscopy (PFM) was utilized to present the ferroelectricity and repeatable polarization inversion in the BT-BFO, demonstrating its effectiveness for resistive switching. The fabricated memristors exhibited excellent electrical characteristics, such as hysteresis current-voltage (I-V), high on/off ratio, high retention time, cyclic endurance, and low operating voltages. The band-alignment between the active material BT-BFO and the substrate Nb:STO was experimentally investigated using X-Ray photoelectron spectroscopy, and it attributed to staggered heterojunction alignment. An energy band diagram was proposed in order to understand the electrical transport in BT-BFO/Nb:STO heterojunction. It was identified that the I-V curves of these memristors have several discontinuities. Curve fitting technique was utilized to analyse the I-V characteristic, and the obtained I-V equations were found to be parabolic. Utilizing this analysis, a non-linear BT-BFO memristors equivalent circuit model was developed. Interestingly, the obtained equivalent circuit of the BT-BFO memristors mimics the identical electrical performance, those obtained in the fabricated devices. Based on the developed equivalent circuit, a finite state machine (FSM) design was proposed. Efforts were devoted to fabricate the same FSM, and the results were well matched with those in the simulated FSM devices. Its multilevel noise filtering and immunity to external noise characteristics were also studied. Further, the feature of variable negative resistance was established by controlling the current through the memristor.Keywords: band alignment, finite state machine, polarization inversion, resistive switching
Procedia PDF Downloads 1333382 A Mini Radar System for Low Altitude Targets Detection
Authors: Kangkang Wu, Kaizhi Wang, Zhijun Yuan
Abstract:
This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system.Keywords: unmanned aerial vehicle (UAV), interference, Block Least Mean Square (Block LMS) Algorithm, Frequency Modulated Continuous Wave (FMCW)
Procedia PDF Downloads 3203381 Numerical Studying the Real Analysis of the Seismic Response of the Soil
Authors: Noureddine Litim
Abstract:
This work is to theoretical and numerical studying the real analysis of the seismic response of the soil with an Elasto-plastic behavior. To perform this analysis, we used different core drilling performed at the tunnel T4 in El Horace section of the highway east-west. The two-dimensional model (2d) was established by the code of finite element plaxis to estimate the displacement amplification and accelerations caused by the seismic wave in the different core drilling and compared with the factor of acceleration given by the RPA (2003) in the area studying. Estimate the displacement amplification and accelerations caused by the seismic wave.Keywords: seismic response, deposition of soil, plaxis, elasto-plastic
Procedia PDF Downloads 1053380 Best Season for Seismic Survey in Zaria Area, Nigeria: Data Quality and Implications
Authors: Ibe O. Stephen, Egwuonwu N. Gabriel
Abstract:
Variations in seismic P-wave velocity and depth resolution resulting from variations in subsurface water saturation were investigated in this study in order to determine the season of the year that gives the most reliable P-wave velocity and depth resolution of the subsurface in Zaria Area, Nigeria. A 2D seismic refraction tomography technique involving an ABEM Terraloc MK6 Seismograph was used to collect data across a borehole of standard log with the centre of the spread situated at the borehole site. Using the same parameters this procedure was repeated along the same spread for at least once in a month for at least eight months in a year for four years. The choice for each survey time depended on when there was significant variation in rainfall data. The seismic data collected were tomographically inverted. The results suggested that the average P-wave velocity ranges of the subsurface in the area are generally higher when the ground was wet than when it was dry. The results also suggested that the overburden of about 9.0 m in thickness, the weathered basement of about 14.0 m in thickness and the fractured basement at a depth of about 23.0 m best fitted the borehole log. This best fit was consistently obtained in the months between March and May when the average total rainfall was about 44.8 mm in the area. The results had also shown that the velocity ranges in both dry and wet formations fall within the standard ranges as provided in literature. In terms of velocity, this study has not in any way clearly distinguished the quality of the results of the seismic data obtained when the subsurface was dry from the results of the data collected when the subsurface was wet. It was concluded that for more detailed and reliable seismic studies in Zaria Area and its environs with similar climatic condition, the surveys are best conducted between March and May. The most reliable seismic data for depth resolution are most likely obtainable in the area between March and May.Keywords: best season, variations in depth resolution, variations in P-wave velocity, variations in subsurface water saturation, Zaria area
Procedia PDF Downloads 2893379 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements
Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga
Abstract:
Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform
Procedia PDF Downloads 3863378 Investigation and Analysis on Pore Pressure Variation by Sonic Impedance under Influence of Compressional, Shear, and Stonely Waves in High Pressure Zones
Authors: Nouri, K., Ghassem Alaskari, M., K., Amiri Hazaveh, A., Nabi Bidhendi, M.
Abstract:
Pore pressure is one on the key Petrophysical parameter in exploration discussion and survey on hydrocarbon reservoir. Determination of pore pressure in various levels of drilling and integrity of drilling mud and high pressure zones in order to restrict blow-out and following damages are significant. The pore pressure is obtained by seismic and well logging data. In this study the pore pressure and over burden pressure through the matrix stress and Tarzaqi equation and other related formulas are calculated. By making a comparison on variation of density log in over normal pressure zones with change of sonic impedance under influence of compressional, shear, and Stonely waves, the correlation level of sonic impedance with density log is studied. The level of correlation and variation trend is recorded in sonic impedance under influence Stonely wave with density log that key factor in recording of over burden pressure and pore pressure in Tarzaqi equation is high. The transition time is in divert relation with porosity and fluid type in the formation and as a consequence to the pore pressure. The density log is a key factor in determination of pore pressure therefore sonic impedance under Stonley wave is denotes well the identification of high pressure besides other used factors.Keywords: pore pressure, stonely wave, density log, sonic impedance, high pressure zone
Procedia PDF Downloads 3963377 Determining Full Stage Creep Properties from Miniature Specimen Creep Test
Authors: W. Sun, W. Wen, J. Lu, A. A. Becker
Abstract:
In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.Keywords: creep damage property, miniature specimen, inverse approach, finite element modeling
Procedia PDF Downloads 2313376 The Effect of Dynamic Eccentricity on the Stator Current Spectrum of 550 kW Induction Motor
Authors: Saleh Elawgali
Abstract:
In order to present the effect of the dynamic eccentricity on the stator currents of squirrel cage induction machines, the current spectrums of a 550 kW induction motor was calculated for the cases of full symmetry and dynamic eccentricity. The calculations presented in this paper are based on the Poly-Harmonic Model accounting for static and dynamic eccentricity, stator and rotor slotting, parallel branches as well as cage asymmetry. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums for full symmetry and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one.Keywords: current spectrum, dynamic eccentricity, harmonics, Induction machine, slot harmonic zone.
Procedia PDF Downloads 4003375 Thrust Enhancement on a Two Dimensional Elliptic Airfoil in a Forward Flight
Authors: S. M. Dash, K. B. Lua, T. T. Lim
Abstract:
This paper presents results of numerical and experimental studies on a two-dimensional (2D) flapping elliptic airfoil in a forward flight condition at Reynolds number of 5000. The study is motivated from an earlier investigation which shows that the deterioration in thrust performance of a sinusoidal heaving and pitching 2D (NACA0012) airfoil at high flapping frequency can be recovered by changing the effective angle of attack profile to square wave, sawtooth, or cosine wave shape. To better understand why such modifications lead to superior thrust performance, we take a closer look at the transient aerodynamic force behavior of an airfoil when the effective angle of attack profile changes gradually from a generic smooth trapezoidal profile to a sinusoid shape by modifying the base length of the trapezoid. The choice of using a smooth trapezoidal profile is to avoid the infinite acceleration condition encountered in the square wave profile. Our results show that the enhancement in the time-averaged thrust performance at high flapping frequency can be attributed to the delay and reduction in the drag producing valley region in the transient thrust force coefficient when the effective angle of attack profile changes from sinusoidal to trapezoidal.Keywords: two-dimensional flapping airfoil, thrust performance, effective angle of attack, CFD, experiments
Procedia PDF Downloads 3583374 The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam
Authors: Abid Ali Abid
Abstract:
One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone.Keywords: electron acoustic waves, trapping of cold electron, Langmuir waves, particle-in cell simulation
Procedia PDF Downloads 2063373 Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier
Authors: Abhigna Bhatt, Arnab Banerjee
Abstract:
A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system.Keywords: mono coupled system, negative effective mass, negative effective stiffness, inertial amplifier, fourier transform
Procedia PDF Downloads 1263372 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 683371 Visualization of Corrosion at Plate-Like Structures Based on Ultrasonic Wave Propagation Images
Authors: Aoqi Zhang, Changgil Lee Lee, Seunghee Park
Abstract:
A non-contact nondestructive technique using laser-induced ultrasonic wave generation method was applied to visualize corrosion damage at aluminum alloy plate structures. The ultrasonic waves were generated by a Nd:YAG pulse laser, and a galvanometer-based laser scanner was used to scan specific area at a target structure. At the same time, wave responses were measured at a piezoelectric sensor which was attached on the target structure. The visualization of structural damage was achieved by calculating logarithmic values of root mean square (RMS). Damage-sensitive feature was defined as the scattering characteristics of the waves that encounter corrosion damage. The corroded damage was artificially formed by hydrochloric acid. To observe the effect of the location where the corrosion was formed, the both sides of the plate were scanned with same scanning area. Also, the effect on the depth of the corrosion was considered as well as the effect on the size of the corrosion. The results indicated that the damages were successfully visualized for almost cases, whether the damages were formed at the front or back side. However, the damage could not be clearly detected because the depth of the corrosion was shallow. In the future works, it needs to develop signal processing algorithm to more clearly visualize the damage by improving signal-to-noise ratio.Keywords: non-destructive testing, corrosion, pulsed laser scanning, ultrasonic waves, plate structure
Procedia PDF Downloads 3003370 Electron Bernstein Wave Heating in the Toroidally Magnetized System
Authors: Johan Buermans, Kristel Crombé, Niek Desmet, Laura Dittrich, Andrei Goriaev, Yurii Kovtun, Daniel López-Rodriguez, Sören Möller, Per Petersson, Maja Verstraeten
Abstract:
The International Thermonuclear Experimental Reactor (ITER) will rely on three sources of external heating to produce and sustain a plasma; Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), and Electron Cyclotron Resonance Heating (ECRH). ECRH is a way to heat the electrons in a plasma by resonant absorption of electromagnetic waves. The energy of the electrons is transferred indirectly to the ions by collisions. The electron cyclotron heating system can be directed to deposit heat in particular regions in the plasma (https://www.iter.org/mach/Heating). Electron Cyclotron Resonance Heating (ECRH) at the fundamental resonance in X-mode is limited by a low cut-off density. Electromagnetic waves cannot propagate in the region between this cut-off and the Upper Hybrid Resonance (UHR) and cannot reach the Electron Cyclotron Resonance (ECR) position. Higher harmonic heating is hence preferred in heating scenarios nowadays to overcome this problem. Additional power deposition mechanisms can occur above this threshold to increase the plasma density. This includes collisional losses in the evanescent region, resonant power coupling at the UHR, tunneling of the X-wave with resonant coupling at the ECR, and conversion to the Electron Bernstein Wave (EBW) with resonant coupling at the ECR. A more profound knowledge of these deposition mechanisms can help determine the optimal plasma production scenarios. Several ECRH experiments are performed on the TOroidally MAgnetized System (TOMAS) to identify the conditions for Electron Bernstein Wave (EBW) heating. Density and temperature profiles are measured with movable Triple Langmuir Probes in the horizontal and vertical directions. Measurements of the forwarded and reflected power allow evaluation of the coupling efficiency. Optical emission spectroscopy and camera images also contribute to plasma characterization. The influence of the injected power, magnetic field, gas pressure, and wave polarization on the different deposition mechanisms is studied, and the contribution of the Electron Bernstein Wave is evaluated. The TOMATOR 1D hydrogen-helium plasma simulator numerically describes the evolution of current less magnetized Radio Frequency plasmas in a tokamak based on Braginskii’s legal continuity and heat balance equations. This code was initially benchmarked with experimental data from TCV to determine the transport coefficients. The code is used to model the plasma parameters and the power deposition profiles. The modeling is compared with the data from the experiments.Keywords: electron Bernstein wave, Langmuir probe, plasma characterization, TOMAS
Procedia PDF Downloads 963369 Seismic Impact and Design on Buried Pipelines
Authors: T. Schmitt, J. Rosin, C. Butenweg
Abstract:
Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.Keywords: buried pipeline, earthquake, seismic impact, transient displacement
Procedia PDF Downloads 1873368 First Principle Study of Electronic and Optical Properties of YNi₄Si-Type HoNi₄Si Compound
Authors: D. K. Maurya, S. M. Saini
Abstract:
We investigate theoretically the electronic and optical properties of YNi₄Si-type HoNi₄Si compound from first principle calculations. Calculations are performed using full-potential augmented plane wave (FPLAPW) method in the frame work of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Analysis of the calculated band structure of HoNi₄Si compound demonstrates their metallic character. We found Ni-3d states mainly contribute to density of states from -5.0 eV to the Fermi level while the Ho-f states peak stands tall in comparison to the small contributions made by the Ni-d and Ho-d states above Fermi level, which is consistent with experiment, in HoNi4Si compound. Our calculated optical conductivity compares well with the experimental data and the results are analyzed in the light of band to band transitions.Keywords: electronic properties, density of states, optical properties, LSDA+U approximation, YNi₄Si-type HoNi4Si compound
Procedia PDF Downloads 2463367 Terminal Ballistic Analysis of Non-Filled and Water-Filled Tank
Authors: M. R. Aziz, W. Kuntjoro, N. V. David
Abstract:
This paper presents the ballistic terminal study of the non-filled and water-filled aluminum tank. The objective was to determine the failure stages for both cases. The tank was impacted by fragment simulating projectile (FSP) with 260 m/s for non-filled and 972 m/s for water-filled. The aluminum tank was 3 mm thick, 150 mm wide and 750 mm long. The ends of the tank were closed with two polymethyl methacrylate (PMMA) windows. The test was conducted at the Science and Technology Research Institute for Defense (STRIDE) Batu Arang, Selangor, Malaysia. The results showed four main stages for non-filled tank, which were first contact between FSP and the tank, partially perforated, fully perforated with FSP and plug still intact and lastly fully perforated with FSP and plug separated. Meanwhile, for the water-filled tank, there were seven main stages, which were first contact between FSP and the tank, partial perforation, full perforation, drag phase, cavity phase, bounce wave event and the collapse of the cavity.Keywords: fragment simulating projectile, high speed camera, tensile test, terminal ballistic
Procedia PDF Downloads 3043366 A Unified Ghost Solid Method for the Elastic Solid-Solid Interface
Authors: Abouzar Kaboudian, Boo Cheong Khoo
Abstract:
The Ghost Solid Method (GSM) based algorithms have been extensively used for numerical calculation of wave propagation in the limit of abrupt changes in materials. In this work, we present a unified version of the GSMs that can be successfully applied to both abrupt as well as smooth changes of the material properties in a medium. The application of this method enables us to use the previously-matured numerical algorithms which were developed to be applied to homogeneous mediums, with only minor modifications. This method is developed for one-dimensional settings and its extension to multi-dimensions is briefly discussed. Various numerical experiments are presented to show the applicability of this unified GSM to wave propagation problems in sharply as well as smoothly varying mediums.Keywords: elastic solid, functionally graded material, ghost solid method, solid-solid interaction
Procedia PDF Downloads 4143365 Study and Design of Novel Structure of Circularly Polarized Dual Band Microstrip Antenna Fed by Hybrid Coupler for RFID Applications
Authors: M. Taouzari, A. Sardi, J. El Aoufi, Ahmed Mouhsen
Abstract:
The purpose of this work is to design a reader antenna fed by 90° hybrid coupler that would ensure a tag which is detected regardless of its orientation for the radio frequency identification system covering the UHF and ISM bands frequencies. Based on this idea, the proposed work is dividing in two parts, first part is about study and design hybrid coupler using the resonators planar called T-and Pi networks operating in commercial bands. In the second part, the proposed antenna fed by the hybrid coupler is designed on FR4 substrate with dielectric permittivity 4.4, thickness dielectric 1.6mm and loss tangent 0.025. The T-slot is inserted in patch of the proposed antenna fed by the hybrid coupler is first designed, optimized and simulated using electromagnetic simulator ADS and then simulated in a full wave simulation software CST Microwave Studio. The simulated antenna by the both softwares achieves the expected performances in terms of matching, pattern radiation, phase shifting, gain and size.Keywords: dual band antenna, RFID, hybrid coupler, polarization, radiation pattern
Procedia PDF Downloads 1313364 Implementation of Integrated Multi-Channel Analysis of Surface Waves and Waveform Inversion Techniques for Seismic Hazard Estimation with Emphasis on Associated Uncertainty: A Case Study at Zafarana Wind Turbine Towers Farm, Egypt
Authors: Abd El-Aziz Khairy Abd El-Aal, Yuji Yagi, Heba Kamal
Abstract:
In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion methods and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20%) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels.Keywords: MASW, seismic hazard, wind turbine towers, Zafarana wind farm
Procedia PDF Downloads 4033363 Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity
Authors: Muna Alghabshi, Edmana Krishnan
Abstract:
A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method.Keywords: Jacobi elliptic function, mapping methods, nonlinear Schrodinger Equation, tanh method
Procedia PDF Downloads 3153362 Dynamics of Light Induced Current in 1D Coupled Quantum Dots
Authors: Tokuei Sako
Abstract:
Laser-induced current in a quasi-one-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to a pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation directly by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the lifetime of the quasi-bound states formed when the static bias voltage is applied.Keywords: pulsed laser field, nanowire, electron wave packet, quantum dots, time-dependent Schrödinger equation
Procedia PDF Downloads 3573361 Search for APN Permutations in Rings ℤ_2×ℤ_2^k
Authors: Daniel Panario, Daniel Santana de Freitas, Brett Stevens
Abstract:
Almost Perfect Nonlinear (APN) permutations with optimal resistance against differential cryptanalysis can be found in several domains. The permutation used in the standard for symmetric cryptography (the AES), for example, is based on a special kind of inversion in GF(28). Although very close to APN (2-uniform), this permutation still contains one number 4 in its differential spectrum, which means that, rigorously, it must be classified as 4-uniform. This fact motivates the search for fully APN permutations in other domains of definition. The extremely high complexity associated to this kind of problem precludes an exhaustive search for an APN permutation with 256 elements to be performed without the support of a suitable mathematical structure. On the other hand, in principle, there is nothing to indicate which mathematically structured domains can effectively help the search, and it is necessary to test several domains. In this work, the search for APN permutations in rings ℤ2×ℤ2k is investigated. After a full, exhaustive search with k=2 and k=3, all possible APN permutations in those rings were recorded, together with their differential profiles. Some very promising heuristics in these cases were collected so that, when used as a basis to prune backtracking for the same search in ℤ2×ℤ8 (search space with size 16! ≅244), just a few tenths of a second were enough to produce an APN permutation in a single CPU. Those heuristics were empirically extrapolated so that they could be applied to a backtracking search for APNs over ℤ2×ℤ16 (search space with size 32! ≅2117). The best permutations found in this search were further refined through Simulated Annealing, with a definition of neighbors suitable to this domain. The best result produced with this scheme was a 3-uniform permutation over ℤ2×ℤ16 with only 24 values equal to 3 in the differential spectrum (all the other 968 values were less than or equal 2, as it should be the case for an APN permutation). Although far from being fully APN, this result is technically better than a 4-uniform permutation and demanded only a few seconds in a single CPU. This is a strong indication that the use of mathematically structured domains, like the rings described in this work, together with heuristics based on smaller cases, can lead to dramatic cuts in the computational resources involved in the complexity of the search for APN permutations in extremely large domains.Keywords: APN permutations, heuristic searches, symmetric cryptography, S-box design
Procedia PDF Downloads 1593360 A Full Factorial Analysis of Microhardness Variation in Bead Welds Deposited by the Process Cold Wire Gas Metal Arc Welding (CW-GMAW)
Authors: R. A. Ribeiro, P. D. Angelo Assunção, E. M. Braga
Abstract:
The microhardness in weld beads is a function of the microstructure obtained in the welding process, and this by its time is dependent of the input variables established at the outset of the process. In this study the influence of angle between the plate and the cold wire, the position in which the cold wire is introduced and the rate in which this introduction is made are assessed as input parameters in CW-GMAW process. This paper looks to show that ordinary changes in the frame of CW-GMAW can improve microhardness, which is expected to vary as the input parameters change. To properly correlate the changes in the input parameters to consequent changes in microhardness of the weld bead, a full factorial design was employed. In fact, changes in the operational parameters improved the overall microhardness of the weld bead, which in turns can be an indication of improvement in the resistance to abrasive wear, constituting a cheap way to augment the abrasion wear resistance of welds used for cladding.Keywords: abrasion, CW-GMAW, full factorial design, microhardness
Procedia PDF Downloads 5473359 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source
Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev
Abstract:
One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement
Procedia PDF Downloads 469