Search results for: complex non-linear partial differential equations
9431 Verification of Space System Dynamics Using the MATLAB Identification Toolbox in Space Qualification Test
Authors: Yuri V. Kim
Abstract:
This article presents a new approach to the Functional Testing of Space Systems (SS). It can be considered as a generic test and used for a wide class of SS that from the point of view of System Dynamics and Control may be described by the ordinary differential equations. Suggested methodology is based on using semi-natural experiment- laboratory stand that doesn’t require complicated, precise and expensive technological control-verification equipment. However, it allows for testing system as a whole totally assembled unit during Assembling, Integration and Testing (AIT) activities, involving system hardware (HW) and software (SW). The test physically activates system input (sensors) and output (actuators) and requires recording their outputs in real time. The data is then inserted in laboratory PC where it is post-experiment processed by Matlab/Simulink Identification Toolbox. It allows for estimating system dynamics in form of estimation of system differential equations by the experimental way and comparing them with expected mathematical model prematurely verified by mathematical simulation during the design process.Keywords: system dynamics, space system ground tests and space qualification, system dynamics identification, satellite attitude control, assembling, integration and testing
Procedia PDF Downloads 1639430 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 1629429 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations
Authors: Teng Li, Kamran Mohseni
Abstract:
This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulationsKeywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow
Procedia PDF Downloads 5029428 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes
Authors: Amir T. Payandeh Najafabadi
Abstract:
This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.Keywords: ruin probability, compound poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions
Procedia PDF Downloads 3419427 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance
Authors: Libo Jiang, Huan Li, Rongling Wu
Abstract:
Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance
Procedia PDF Downloads 6409426 Analysis of a Differential System to Get Insights on the Potential Establishment of Microsporidia MB in the Mosquito Population for Malaria Control
Authors: Charlene N. T. Mfangnia, Henri E. Z. Tonnang, Berge Tsanou, Jeremy Herren
Abstract:
Microsporidia MB is a recently discovered symbiont capable of blocking the transmission of Plasmodium from mosquitoes to humans. The symbiont can spread both horizontally and vertically among the mosquito population. This dual transmission gives the symbiont the ability to invade the mosquito population. The replacement of the mosquito population by the population of symbiont-infected mosquitoes then appears as a promising strategy for malaria control. In this context, the present study uses differential equations to model the transmission dynamics of Microsporidia MB in the population of female Anopheles mosquitoes. Long-term propagation scenarios of the symbiont, such as extinction, persistence or total infection, are obtained through the determination of the target and basic reproduction numbers, the equilibria, and the study of their stability. The stability is illustrated numerically, and the contribution of vertical and horizontal transmission in the spread of the symbiont is assessed. Data obtained from laboratory experiments are then used to explain the low prevalence observed in nature. The study also shows that the male death rate, the mating rate and the attractiveness of MB-positive mosquitoes are the factors that most influence the transmission of the symbiont. In addition, the introduction of temperature and the study of bifurcations show the significant influence of the environmental condition in the propagation of Microsporidia MB. This finding proves the necessity of taking into account environmental variables for the potential establishment of the symbiont in a new area.Keywords: differential equations, stability analysis, malaria, microsporidia MB, horizontal transmission, vertical transmission, numerical illustration
Procedia PDF Downloads 1149425 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geosynthetic – Reinforced Earth Bed under Moving Load
Authors: K. Karuppasamy
Abstract:
In this paper analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill - poor soil system overlying soft soil strata under moving the load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at the interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedel iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil – foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include the magnitude of applied load, the velocity of the load, damping, the ultimate resistance of the poor soil and granular fill layer. The range of values of parameters has been considered as per Indian Railways conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil – foundation system. However, for the considered range of velocity, the response has been found to be insensitive towards velocity. The ultimate resistance of granular fill layer has also been found to have no significant influence on the response of the system.Keywords: infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load and nonlinear behavior of poor soil
Procedia PDF Downloads 4389424 Magnetohydrodynamic Couette Flow of Fractional Burger’s Fluid in an Annulus
Abstract:
Burgers’ fluid with a fractional derivatives model in an annulus was analyzed. Combining appropriately the basic equations, with the fractionalized fractional Burger’s fluid model allow us to determine the velocity field, temperature and shear stress. The governing partial differential equation was solved using the combine Laplace transformation method and Riemann sum approximation to give velocity field, temperature and shear stress on the fluid flow. The influence of various parameters like fractional parameters, relaxation time and retardation time, are drawn. The results obtained are simulated using Mathcad software and presented graphically. From the graphical results, we observed that the relaxation time and time helps the flow pattern, on the other hand, other material constants resist the fluid flow while fractional parameters effect on fluid flow is opposite to each other.Keywords: sani isa, Ali musaburger’s fluid, Laplace transform, fractional derivatives, annulus
Procedia PDF Downloads 269423 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake
Authors: Daniel S. Brox
Abstract:
Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.Keywords: seismic activation, statistical physics, geodynamics, signal processing
Procedia PDF Downloads 229422 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods
Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin
Abstract:
Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.Keywords: Burgers' equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile
Procedia PDF Downloads 1719421 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 3049420 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems
Authors: Adamu S. Salawu, Ibrahim O. Isah
Abstract:
Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation
Procedia PDF Downloads 1249419 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV
Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol
Abstract:
In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing
Procedia PDF Downloads 4419418 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer
Procedia PDF Downloads 4029417 Assessment of Solid Insulating Material Using Partial Discharge Characteristics
Authors: Qasim Khan, Furkan Ahmad, Asfar A. Khan, M. Saad Alam, Faiz Ahmad
Abstract:
In this paper, partial discharge analysis is performed in cavities artificially created in insulation. The setup is according with Cigre-II Method. Circular Samples created from Perspex Sheet with different configuration with changing number of cavities. Assessment of insulation health can be performed by Partial Discharge measurement as this has been found to be important means of condition monitoring. The experiments are done using MPD 540, which is a modern partial discharge measurement system. By analyzing the PD activity obtained for various voids/cavities, it is observed that the PD voltages show variation for cavity’s diameter, depth even for its ratios. This can be employed for scrutiny of insulation system.Keywords: partial discharges, condition monitoring, insulation defects, degradation and corrosion, PMMA
Procedia PDF Downloads 5189416 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil
Authors: H. Bensouilah, H. Boucherit, M. Lahmar
Abstract:
A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.Keywords: elasto-aerodynamic lubrication, air foil bearing, steady-state deformation, dynamic deformation, stiffness and damping coefficients, perturbation method, fluid-structure interaction, Galerk infinite element method, finite difference method
Procedia PDF Downloads 3929415 A Comparative Evaluation of Finite Difference Methods for the Extended Boussinesq Equations and Application to Tsunamis Modelling
Authors: Aurore Cauquis, Philippe Heinrich, Mario Ricchiuto, Audrey Gailler
Abstract:
In this talk, we look for an accurate time scheme to model the propagation of waves. Several numerical schemes have been developed to solve the extended weakly nonlinear weakly dispersive Boussinesq Equations. The temporal schemes used are two Lax-Wendroff schemes, second or third order accurate, two Runge-Kutta schemes of second and third order and a simplified third order accurate Lax-Wendroff scheme. Spatial derivatives are evaluated with fourth order accuracy. The numerical model is applied to two monodimensional benchmarks on a flat bottom. It is also applied to the simulation of the Algerian tsunami generated by a Mw=6 seism on the 18th March 2021. The tsunami propagation was highly dispersive and propagated across the Mediterranean Sea. We study here the effects of the order of temporal discretization on the accuracy of the results and on the time of computation.Keywords: numerical analysis, tsunami propagation, water wave, boussinesq equations
Procedia PDF Downloads 2429414 Analytic Solutions of Solitary Waves in Three-Level Unbalanced Dense Media
Authors: Sofiane Grira, Hichem Eleuch
Abstract:
We explore the analytical soliton-pair solutions for unbalanced coupling between the two coherent lights and the atomic transitions in a dissipative three-level system in lambda configuration. The two allowed atomic transitions are interacting resonantly with two laser fields. For unbalanced coupling, it is possible to derive an explicit solution for non-linear differential equations describing the soliton-pair propagation in this three-level system with the same velocity. We suppose that the spontaneous emission rates from the excited state to both ground states are the same. In this work, we focus on such case where we consider the coupling between the transitions and the optical fields are unbalanced. The existence conditions for the soliton-pair propagations are determined. We will show that there are four possible configurations of the soliton-pair pulses. Two of them can be interpreted as a couple of solitons with same directions of polarization and the other two as soliton-pair with opposite directions of polarization. Due to the fact that solitons have stable shapes while propagating in the considered media, they are insensitive to noise and dispersion. Our results have potential applications in data transfer with the soliton-pair pulses, where a dissipative three-level medium could be a realistic model for the optical communication media.Keywords: non-linear differential equations, solitons, wave propagations, optical fiber
Procedia PDF Downloads 1379413 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand
Authors: Nadjiba Mahfoudi, Abdelhafid Moummi , Mohammed El Ganaoui
Abstract:
Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented.Keywords: design, thermal modeling, heat transfer enhancement, sand, sensible heat storage
Procedia PDF Downloads 5639412 Effects of Viscous Dissipation on Free Convection Boundary Layer Flow towards a Horizontal Circular Cylinder
Authors: Muhammad Khairul Anuar Mohamed, Mohd Zuki Salleh, Anuar Ishak, Nor Aida Zuraimi Md Noar
Abstract:
In this study, the numerical investigation of viscous dissipation on convective boundary layer flow towards a horizontal circular cylinder with constant wall temperature is considered. The transformed partial differential equations are solved numerically by using an implicit finite-difference scheme known as the Keller-box method. Numerical solutions are obtained for the reduced Nusselt number and the skin friction coefficient as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number and Eckert number are analyzed and discussed. The results in this paper is original and important for the researchers working in the area of boundary layer flow and this can be used as reference and also as complement comparison purpose in future.Keywords: free convection, horizontal circular cylinder, viscous dissipation, convective boundary layer flow
Procedia PDF Downloads 4399411 Tax Competition and Partial Tax Coordination under Fiscal Decentralization
Authors: Patricia Sanz-Cordoba, Bernd Theilen
Abstract:
This article analyzes the conditions where decentralization and partial tax harmonization in a coalition of asymmetric jurisdictions plays a role in the fight of fiscal competition (i.e. the race to bottom). Starting from a centralized economies, we use the ZM-W model to analyze the fiscal competition and coordination among three countries. We find that the asymmetry of jurisdictions facilitates partial tax harmonization between jurisdictions when these asymmetries are not too large. Furthermore, when the asymmetries are large enough, the level of labor tax plays an important role in the decision of decentralize capital tax. Accordingly, decentralization is achievable when labor tax is low. This result indicates that decentralization and partial tax harmonization between jurisdictions can be possible results in order to fight the negative externalities from fiscal competition, and more in the European Union countries where the asymmetries are substantial.Keywords: centralization, decentralization, fiscal competition, partial tax harmonization
Procedia PDF Downloads 2469410 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis
Authors: Boo-Sung Koh, Seung-Eock Kim
Abstract:
In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection
Procedia PDF Downloads 5319409 A Semi-Implicit Phase Field Model for Droplet Evolution
Authors: M. H. Kazemi, D. Salac
Abstract:
A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method
Procedia PDF Downloads 4829408 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface
Authors: Amit Sharma, J. N. Sharma
Abstract:
This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.Keywords: quasilongitudinal, reflection and transmission, semiconductors, acoustics
Procedia PDF Downloads 3929407 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures
Authors: Anny Zambrano, German Gonzalez, Yair Quintero
Abstract:
The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness
Procedia PDF Downloads 3439406 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects
Authors: H. Triki, Y. Hamaizi, A. El-Akrmi
Abstract:
We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution
Procedia PDF Downloads 6369405 A Mixed Finite Element Formulation for Functionally Graded Micro-Beam Resting on Two-Parameter Elastic Foundation
Authors: Cagri Mollamahmutoglu, Aykut Levent, Ali Mercan
Abstract:
Micro-beams are one of the most common components of Nano-Electromechanical Systems (NEMS) and Micro Electromechanical Systems (MEMS). For this reason, static bending, buckling, and free vibration analysis of micro-beams have been the subject of many studies. In addition, micro-beams restrained with elastic type foundations have been of particular interest. In the analysis of microstructures, closed-form solutions are proposed when available, but most of the time solutions are based on numerical methods due to the complex nature of the resulting differential equations. Thus, a robust and efficient solution method has great importance. In this study, a mixed finite element formulation is obtained for a functionally graded Timoshenko micro-beam resting on two-parameter elastic foundation. In the formulation modified couple stress theory is utilized for the micro-scale effects. The equation of motion and boundary conditions are derived according to Hamilton’s principle. A functional, derived through a scientific procedure based on Gateaux Differential, is proposed for the bending and buckling analysis which is equivalent to the governing equations and boundary conditions. Most important advantage of the formulation is that the mixed finite element formulation allows usage of C₀ type continuous shape functions. Thus shear-locking is avoided in a built-in manner. Also, element matrices are sparsely populated and can be easily calculated with closed-form integration. In this framework results concerning the effects of micro-scale length parameter, power-law parameter, aspect ratio and coefficients of partially or fully continuous elastic foundation over the static bending, buckling, and free vibration response of FG-micro-beam under various boundary conditions are presented and compared with existing literature. Performance characteristics of the presented formulation were evaluated concerning other numerical methods such as generalized differential quadrature method (GDQM). It is found that with less computational burden similar convergence characteristics were obtained. Moreover, formulation also includes a direct calculation of the micro-scale related contributions to the structural response as well.Keywords: micro-beam, functionally graded materials, two-paramater elastic foundation, mixed finite element method
Procedia PDF Downloads 1639404 Effect of Non-Invasive Electrical Stimulation on Partial Hearing Loss: Pilot Study
Authors: Geetanjali Saggar
Abstract:
Background: Partial hearing loss is the inability to hear effectively as a normal hearing individual whose hearing threshold is 20 dB or better in both ears. Individuals with partial hearing loss may benefit from non-invasive electrical stimulation as a method of therapy and possible intervention. Objective: The project aims to assess and relate the efficacy of electrical stimulation on individuals with partial hearing loss. The study's goal was to evaluate the different sorts of non-invasive electrical stimulation in tinnitus and hearing loss in order to build the framework for future research. Method: In this pilot study, a total of five patients of age group above 50 years were selected with partial hearing loss. The electrical modality of Repetitive Transcranial Magnetic Stimulation (RTMS) was used among the patients and was evaluated using gold questionnaires- HHIA and APHAB for hearing at intervals of 0-7-14 days. The statistical data was analyzed by SPSS software-16. Results: There were not much significant changes in the hearing of the patients when non-invasive electrical modality was applied as an intervention in the partial hearing loss condition. However, there was minimal change in the daily functioning of the patient with the application of intervention. Conclusion: This study concluded that non-invasive electrical stimulation had minimal to no effect on the partial hearing of the patients.Keywords: non-invasive, hearing loss, transcranial magnetic stimulation, partial deafness, transcranial direct current stimulation, tinnitus
Procedia PDF Downloads 149403 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk
Authors: Paras Ram, Vikas Kumar
Abstract:
The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling.Keywords: ferrofluid, magnetic field, porous medium, rotating disk, Neuringer-Rosensweig Model
Procedia PDF Downloads 4229402 Closed Form Solution for 4-D Potential Integrals for Arbitrary Coplanar Polygonal Surfaces
Authors: Damir Latypov
Abstract:
A closed-form solution for 4-D double surface integrals arising in boundary integrals equations of a potential theory is obtained for arbitrary coplanar polygonal surfaces. The solution method is based on the construction of exact differential forms followed by the application of Stokes' theorem for each surface integral. As a result, the 4-D double surface integral is reduced to a 2-D double line integral. By an appropriate change of variables, the integrand is transformed into a separable function of integration variables. The closed-form solutions to the corresponding 1-D integrals are readily available in the integration tables. Previously closed-form solutions were known only for the case of coincident triangle surfaces and coplanar rectangles. Solutions for these cases were obtained by surface-specific ad-hoc methods, while the present method is general. The method also works for non-polygonal surfaces. As an example, we compute in closed form the 4-D integral for the case of coincident surfaces in the shape of a circular disk. For an arbitrarily shaped surface, the proposed method provides an efficient quadrature rule. Extensions of the method for non-coplanar surfaces and other than 1/R integral kernels are also discussed.Keywords: boundary integral equations, differential forms, integration, stokes' theorem
Procedia PDF Downloads 312