Search results for: apolipoprotein A-1 binding protein
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2819

Search results for: apolipoprotein A-1 binding protein

2429 Genome-Wide Insights into Whole Gut Microbiota of Rainbow Trout, Oncorhynchus Mykiss Associated with Changes in Dietary Composition and Temperature Regimens

Authors: John N. Idenyi, Hadimundeen Abdallah, Abigeal D. Adeyemi, Jonathan C. Eya

Abstract:

Gut microbiomes play a significant role in the growth, metabolism, and health of fish. However, we know very little about the interactive effects of variations in dietary composition and temperature on rainbow trout gut microbiota. Exactly 288 rainbow trout weighing 45.6g ± 0.05 (average ± SD) were fed four isocaloric, isolipidic, and isonitrogenous diets comprising 40% crude protein and 20% crude lipid and formulated as 100 % animal-based protein (AP) and a blend of 50 fish oil (FO)/50 camelina oil (CO), 100 % AP and100 % CO, 100 % plant-based protein (PP) and a blend of 50FO/50CO or 100 % PP and 100 % CO in 14 or 18°C for 150 days. Gut content was analyzed using 16S rRNA gene and shotgun sequencing. The most abundant phyla identified regardless of diet were Tenericutes, Firmicutes, Proteobacteria, Spirochaetes, Bacteroidetes, and Actinobacteria, while Aeromonadaceae and Enterobacteriaceae were dominant families in 18°C. Moreover, gut microbes were dominated by genes relating to an amino acid, carbohydrate, fat, and energy metabolisms and influenced by temperature. The shared functional profiles for all the diets suggest that plant protein sources in combination with CO could be as good as the fish meal with 50/50 FO & CO in rainbow trout farming.

Keywords: aquafeed, aquaculture, microbiome, rainbow trout

Procedia PDF Downloads 67
2428 Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, Langmuir isotherm, mild steel.

Procedia PDF Downloads 326
2427 Modeling of Glycine Transporters in Mammalian Using the Probability Approach

Authors: K. S. Zaytsev, Y. R. Nartsissov

Abstract:

Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.

Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning

Procedia PDF Downloads 93
2426 Influence of κ-Casein Genotype on Milk Productivity of Latvia Local Dairy Breeds

Authors: S. Petrovska, D. Jonkus, D. Smiltiņa

Abstract:

κ-casein is one of milk proteins which are very important for milk processing. Genotypes of κ-casein affect milk yield, fat, and protein content. The main factors which affect local Latvian dairy breed milk yield and composition are analyzed in research. Data were collected from 88 Latvian brown and 82 Latvian blue cows in 2015. AA genotype was 0.557 in Latvian brown and 0.232 in Latvian blue breed. BB genotype was 0.034 in Latvian brown and 0.207 in Latvian blue breed. Highest milk yield was observed in Latvian brown (5131.2 ± 172.01 kg), significantly high fat content and fat yield also was in Latvian brown (p < 0.05). Significant differences between κ-casein genotypes were not found in Latvian brown, but highest milk yield (5057 ± 130.23 kg), protein content (3.42 ± 0.03%), and protein yield (171.9 ± 4.34 kg) were with AB genotype. Significantly high fat content was observed in Latvian blue breed with BB genotype (4.29 ± 0.17%) compared with AA genotypes (3.42 ± 0.19). Similar tendency was found in protein content – 3.27 ± 0.16% with BB genotype and 2.59 ± 0.16% with AA genotype (p < 0.05). Milk yield increases by increasing parity. We did not obtain major tendency of changes of milk fat and protein content according parity.

Keywords: dairy cows, κ-casein, milk productivity, polymorphism

Procedia PDF Downloads 241
2425 Cloning, Expression and Protein Purification of AV1 Gene of Okra Leaf Curl Virus Egyptian Isolate and Genetic Diversity between Whitefly and Different Plant Hosts

Authors: Dalia. G. Aseel

Abstract:

Begomoviruses are economically important plant viruses that infect dicotyledonous plants and exclusively transmitted by the whitefly Bemisia tabaci. Here, replicative form was isolated from Okra, Cotton, Tomato plants and whitefly infected with Begomoviruses. Using coat protein specific primers (AV1), the viral infection was verified with amplicon at 450 bp. The sequence of OLCuV-AV1 gene was recorded and received an accession number (FJ441605) from Genebank. The phylogenetic tree of OLCuV was closely related to Okra leaf curl virus previously isolated from Cameroon and USA with nucleotide sequence identity of 92%. The protein purification was carried out using His-Tag methodology by using Affinity Chromatography. The purified protein was separated on SDS-PAGE analysis and an enriched expected size of band at 30 kDa was observed. Furthermore, RAPD and SDS-PAGE were used to detect genetic variability between different hosts of okra leaf curl virus (OLCuV), cotton leaf curl virus (CLCuV), tomato yellow leaf curl virus (TYLCuV) and the whitefly vector. Finally, the present study would help to understand the relationship between the whitefly and different economical crops in Egypt.

Keywords: okra leaf curl virus, AV1 gene, sequencing, phylogenetic, cloning, purified protein, genetic diversity and viral proteins

Procedia PDF Downloads 121
2424 CMPD: Cancer Mutant Proteome Database

Authors: Po-Jung Huang, Chi-Ching Lee, Bertrand Chin-Ming Tan, Yuan-Ming Yeh, Julie Lichieh Chu, Tin-Wen Chen, Cheng-Yang Lee, Ruei-Chi Gan, Hsuan Liu, Petrus Tang

Abstract:

Whole-exome sequencing focuses on the protein coding regions of disease/cancer associated genes based on a priori knowledge is the most cost-effective method to study the association between genetic alterations and disease. Recent advances in high throughput sequencing technologies and proteomic techniques has provided an opportunity to integrate genomics and proteomics, allowing readily detectable mutated peptides corresponding to mutated genes. Since sequence database search is the most widely used method for protein identification using Mass spectrometry (MS)-based proteomics technology, a mutant proteome database is required to better approximate the real protein pool to improve disease-associated mutated protein identification. Large-scale whole exome/genome sequencing studies were launched by National Cancer Institute (NCI), Broad Institute, and The Cancer Genome Atlas (TCGA), which provide not only a comprehensive report on the analysis of coding variants in diverse samples cell lines but a invaluable resource for extensive research community. No existing database is available for the collection of mutant protein sequences related to the identified variants in these studies. CMPD is designed to address this issue, serving as a bridge between genomic data and proteomic studies and focusing on protein sequence-altering variations originated from both germline and cancer-associated somatic variations.

Keywords: TCGA, cancer, mutant, proteome

Procedia PDF Downloads 566
2423 Beta-Carotene Attenuates Cognitive and Hepatic Impairment in Thioacetamide-Induced Rat Model of Hepatic Encephalopathy via Mitigation of MAPK/NF-κB Signaling Pathway

Authors: Marawan Abd Elbaset Mohamed, Hanan A. Ogaly, Rehab F. Abdel-Rahman, Ahmed-Farid O.A., Marwa S. Khattab, Reham M. Abd-Elsalam

Abstract:

Liver fibrosis is a severe worldwide health concern due to various chronic liver disorders. Hepatic encephalopathy (HE) is one of its most common complications affecting liver and brain cognitive function. Beta-Carotene (B-Car) is an organic, strongly colored red-orange pigment abundant in fungi, plants, and fruits. The study attempted to know B-Car neuroprotective potential against thioacetamide (TAA)-induced neurotoxicity and cognitive decline in HE in rats. Hepatic encephalopathy was induced by TAA (100 mg/kg, i.p.) three times per week for two weeks. B-Car was given orally (10 or 20 mg/kg) daily for two weeks after TAA injections. Organ body weight ratio, Serum transaminase activities, liver’s antioxidant parameters, ammonia, and liver histopathology were assessed. Also, the brain’s mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), antioxidant parameters, adenosine triphosphate (ATP), adenosine monophosphate (AMP), norepinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) cAMP response element-binding protein (CREB) expression and B-cell lymphoma 2 (Bcl-2) expression were measured. The brain’s cognitive functions (Spontaneous locomotor activity, Rotarod performance test, Object recognition test) were assessed. B-Car prevented alteration of the brain’s cognitive function in a dose-dependent manner. The histopathological outcomes supported these biochemical evidences. Based on these results, it could be established that B-Car could be assigned to treat the brain’s neurotoxicity consequences of HE via downregualtion of MAPK/NF-κB signaling pathways.

Keywords: beta-carotene, liver injury, MAPK, NF-κB, rat, thioacetamide

Procedia PDF Downloads 133
2422 Comparative Analysis of Fused Deposition Modeling and Binding-Jet 3D Printing Technologies

Authors: Mohd Javaid, Shahbaz Khan, Abid Haleem

Abstract:

Purpose: Large numbers of 3D printing technologies are now available for sophisticated applications in different fields. Additive manufacturing has established its dominance in design, development, and customisation of the product. In the era of developing technologies, there is a need to identify the appropriate technology for different application. In order to fulfil this need, two widely used printing technologies such as Fused Deposition Modeling (FDM), and Binding-Jet 3D Printing are compared for effective utilisation in the current scenario for different applications. Methodology: Systematic literature review conducted for both technologies with applications and associated factors enabling for the same. Appropriate MCDM tool is used to compare critical factors for both the technologies. Findings: Both technologies have their potential and capabilities to provide better direction to the industry. Additionally, this paper is helpful to develop a decision support system for the proper selection of technologies according to their continuum of applications and associated research and development capability. The vital issue is raw materials, and research-based material development is key to the sustainability of the developed technologies. FDM is a low-cost technology which provides high strength product as compared to binding jet technology. Researcher and companies can take benefits of this study to achieve the required applications in lesser resources. Limitations: Study has undertaken the comparison with the opinion of experts, which may not always be free from bias, and some own limitations of each technology. Originality: Comparison between these technologies will help to identify best-suited technology as per the customer requirements. It also provides development in this different field as per their extensive capability where these technologies can be successfully adopted. Conclusion: FDM and binding jet technology play an active role in industrial development. These help to assist the customisation and production of personalised parts cost-effectively. So, there is a need to understand how these technologies can provide these developments rapidly. These technologies help in easy changes or in making revised versions of the product, which is not easily possible in the conventional manufacturing system. High machine cost, the requirement of skilled human resources, low surface finish, and mechanical strength of product and material changing option is the main limitation of this technology. However, these limitations vary from technology to technology. In the future, these technologies are to be commercially viable for efficient usage in direct manufacturing of varied parts.

Keywords: 3D printing, comparison, fused deposition modeling, FDM, binding jet technology

Procedia PDF Downloads 86
2421 The Effect of Probiotic Bacteria on Aflatoxin M1 Detoxification in Phosphate Buffer Saline

Authors: Sumeyra Sevim, Gulsum Gizem Topal, Mercan Merve Tengilimoglu-Metin, Mevlude Kizil

Abstract:

Aflatoxin M1 (AFM1) is a major toxic and carcinogenic molecule in milk and milk products. Therefore, it poses a risk for public health. Probiotics can be biological agent to remove AFM1. The aim of this study is to evaluate the effect of probiotic bacteria on AFM1 detoxification in phosphate buffer saline. The PBS samples artificially contaminated with AFM1 at concentration 100 pg/ml were prepared with probiotics bacteria that including monoculture (L. plantarum, B. bifidum ATCC, B. animalis ATCC 27672) and binary culture (L. bulgaricus + S. thermophiles, B. bifidum ATCC + B. animalis ATCC 27672, L. plantarum+B. bifidum ATCC, L. plantarum+ B. animalis ATCC 27672). The samples were incubated at 37°C for 4 hours and stored for 1, 5 and 10 days. The toxin was measured by the ELISA. The highest levels of AFM1 binding ability (63.6%) in PBS were detected yoghurt starter bacteria, while L. plantarum had the lowest levels of AFM1 binding ability (35.5%) in PBS. In addition, it was found that there was significant effect of storage on AFM1 binding ability in all groups except the one including B. animalis (p < 0.05). Consequently, results demonstrate that AFM1 detoxification by probiotic bacteria has a potential application to reduce toxin concentrations in yoghurt. Moreover, probiotic strains can react with itself as synergic or antagonist.

Keywords: aflatoxin M1, ELISA, probiotics, storage

Procedia PDF Downloads 298
2420 The Molecular Rationale for Steroid Based Therapy of Leukemia: Diagnostic and Therapeutic Implications

Authors: Eitan Yefenof

Abstract:

Glucocorticoid (GC) hormones, e.g. Dexamethasone and Prednisone, are widely used in the therapy of leukemia and lymphoma owing to their apoptogenic effect on lymphoid cells. However, the emergence of GC resistant cells during therapy is a major cause for treatment failure, urging the need for novel strategies that maintain leukemia sensitivity to the pro-apoptotic activity of GCs. GCs act by binding to the GC receptor (GR), which, in its inactive state, is sequestered in the cytosol by a multi-subunit complex of heat shock proteins. Upon ligand binding, the complex dissociates, allowing GR activation and translocation to the nucleus, where it regulates transcription of multiple genes. We demonstrated that in addition to gene expression, GR also regulates microRNA (miR) expression. Deep-sequencing analysis revealed 14 miRs that are regulated in GC-sensitive but resistant leukemias upon treatment with GC. GC up-regulates miR-103, miR-15~16 and miR-30e/d, while down-regulates miR-17, mir-18a, miR-19a, miR-19b, miR-20a and miR-92a (members of the miR-17∼92a multi-cistron). Upon transfection, miR-103 confers GC apoptotic sensitivity to otherwise GC-resistant cell. Furthermore, knocking down miR-103 expression reduces the GC apoptotic response of sensitive cells. miR-103 abrogates c-Myc expression, an oncogenic transcription factor which is deregulated in many cancers. In addition, miR-103 up-regulates Bim, a pro-apoptotic protein crucial for GC-induced death. Activated glycogen synthase kinase 3 (GSK3) is also crucial for GC-induced apoptosis. GSK3 is active in GC-sensitive but not in GC-resistant cells. We found that GSK3 associates with the GR multi-subunit complex. Upon GC exposure, it dissociates from the GR and interacts with Bim to enable activation of the mitochondrial apoptosis pathway. miR-103 mediated c-Myc ablation is followed by down-regulation of the multi-cistron miR-17~92a, in particular miR-18a and miR-20a. miR-18a targets GR for degradation whereas miR-20a targets Bim degradation. Hence, miR-103 acts, in concert with Bim and GR, as a "tumor suppressor" that leads to reduced proliferation, cell-cycle arrest and cell death. We suggest that miR-103 can provide a diagnostic tool that predicts the sensitivity of leukemia to GC based therapy. Furthermore, exosomal delivery of miR-103 or up-regulation of the endogenous miR-103 could confer apoptotic sensitivity to resistant cells at the outset, thus becoming a useful therapeutic tool combined with GCs.

Keywords: apoptosis, leukemia, micro-RNA, steroids

Procedia PDF Downloads 228
2419 Heat Capacity of a Soluble in Water Protein: Equilibrium Molecular Dynamics Simulation

Authors: A. Rajabpour, A. Hadizadeh Kheirkhah

Abstract:

Heat transfer is of great importance to biological systems in order to function properly. In the present study, specific heat capacity as one of the most important heat transfer properties is calculated for a soluble in water Lysozyme protein. Using equilibrium molecular dynamics (MD) simulation, specific heat capacities of pure water, dry lysozyme, and lysozyme-water solution are calculated at 300K for different weight fractions. It is found that MD results are in good agreement with ideal binary mixing rule at small weight fractions. Results of all simulations have been validated with experimental data.

Keywords: specific heat capacity, molecular dynamics simulation, lysozyme protein, equilibrium

Procedia PDF Downloads 281
2418 Bioinformatics Identification of Rare Codon Clusters in Proteins Structure of HBV

Authors: Abdorrasoul Malekpour, Mohammad Ghorbani Mojtaba Mortazavi, Mohammadreza Fattahi, Mohammad Hassan Meshkibaf, Ali Fakhrzad, Saeid Salehi, Saeideh Zahedi, Amir Ahmadimoghaddam, Parviz Farzadnia Dr., Mohammadreza Hajyani Asl Bs

Abstract:

Hepatitis B as an infectious disease has eight main genotypes (A–H). The aim of this study is to Bioinformatically identify Rare Codon Clusters (RCC) in proteins structure of HBV. For detection of protein family accession numbers (Pfam) of HBV proteins; used of uni-prot database and Pfam search tool were used. Obtained Pfam IDs were analyzed in Sherlocc program and RCCs in HBV proteins were detected. In further, the structures of TrEMBL entries proteins studied in PDB database and 3D structures of the HBV proteins and locations of RCCs were visualized and studied using Swiss PDB Viewer software. Pfam search tool have found nine significant hits and 0 insignificant hits in 3 frames. Results of Pfams studied in the Sherlocc program show this program not identified RCCs in the external core antigen (PF08290) and truncated HBeAg protein (PF08290). By contrast the RCCs become identified in Hepatitis core antigen (PF00906) Large envelope protein S (PF00695), X protein (PF00739), DNA polymerase (viral) N-terminal domain (PF00242) and Protein P (Pf00336). In HBV genome, seven RCC identified that found in hepatitis core antigen, large envelope protein S and DNA polymerase proteins and proteins structures of TrEMBL entries sequences that reported in Sherlocc program outputs are not complete. Based on situation of RCC in structure of HBV proteins, it suggested those RCCs are important in HBV life cycle. We hoped that this study provide a new and deep perspective in protein research and drug design for treatment of HBV.

Keywords: rare codon clusters, hepatitis B virus, bioinformatic study, infectious disease

Procedia PDF Downloads 454
2417 Prevalence of Anemia and Iron Deficiency in Women of Childbearing Age in the North-West of Libya

Authors: Mustafa Ali Abugila, Basma Nuri Kajruba, Hanan Elhadi, Rehab Ramadan Wali

Abstract:

Iron deficiency anemia is characterized by a decrease of Hb (hemoglobin), serum iron, ferritin, and RBC (red blood cells) (shape and size). Also, it is characterized by an increase in total iron binding capacity (TIBC). Red blood cells become microctytic and hypochromic due to a decrease in iron content. This study was conducted in the north west of Libya and included 210 women in childbearing age (18-45 years) who were visiting women clinic. After filling the questionnaire, blood samples were taken and analyzed for hematological and biochemical profiles. Biochemical tests included measurement of serum iron, ferritin, and total iron binding capacity (TIBC). Among the total sample (210 women), there were 87 (41.42%) pregnant and 123 (58.57%) non-pregnant women (includes married and single). Pregnant women (87) were classified according to the gestational age into first, second, and third trimesters. The means of biochemical and hematological parameters in the studied samples were: Hb = 10.37± 2.02 g/dl, RBC = 3.78± 1.037 m/m3, serum iron 61.86± 40.28 µg/dl, and TIBC = 386.01 ± 94.91 µg/dl. In this study, we considered that any women have hemoglobin below 11.5 g/dl is anemic. 89.1%, 69.5%, and 47.8% of pregnant women who belong to third trimester had low (below normal value) Hb, serum iron, and ferritin, i.e. iron deficiency anemia was more common in third trimester among the first and the second trimesters. Third trimester pregnant women also had high TIBC more than first and second trimesters.

Keywords: red blood cells, hemoglobin, total iron binding capacity, ferritin

Procedia PDF Downloads 500
2416 Altered Gene Expression: Induction/Suppression of some Pathogenesis Related Protein Genes in an Egyptian Isolate of Potato Leafroll Virus (PLRV)

Authors: Dalia G. Aseel

Abstract:

The potato (Solanum tubersum, L.) has become one of the major vegetable crops in Egypt and all over the world. Potato leafroll virus(PLRV) was observed on potato plants collected from different governorates in Egypt. Three cultivars, Spunta, Diamont, and Cara, infected with PLRV were collected; RNA was extracted and subjected to Real-Time PCR using the coat protein gene primers. The results showed that the expression of the coat protein was 39.6-fold, 12.45-fold, and 47.43-fold, respectively, for Spunta, Diamont, and Cara cultivars. Differential Display Polymerase Chain Reaction (DD-PCR) using pathogenesis-related protein 1 (PR-1), β-1,3-glucanases (PR-2), chitinase (PR-3), peroxidase (POD), and polyphenol oxidase (PPO) forward primers for pathogenesis-related proteins (PR). The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, 58 up-regulated and 19 down-regulated genes were detected. Sequence analysis of the up-and down-regulated genes revealed that infected plants were observed in comparison with the healthy control. Sequence analysis of the up-regulated gene was performed, and the encoding sequence analysis showed that the obtained genes include: induced stolen tip protein. On the other hand, two down-regulated genes were identified: disease resistance RPP-like protein and non-specific lipid-transfer protein. In this study, the expressions of PR-1, PR-2, PR-3, POD, and PPO genes in the infected leaves of three potato cultivars were estimated by quantitative real-time PCR. We can conclude that the PLRV-infection of potato plants inhibited the expression of the five PR genes. On the contrary, infected leaves by PLRV elevated the expression of some defense genes. This interaction may also induce and/or suppress the expression of some genes responsible for the plant's defense mechanisms.

Keywords: PLRV, pathogenesis-related proteins (PRs), DD-PCR, sequence, real-time PCR

Procedia PDF Downloads 113
2415 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 39
2414 In-silico DFT Study, Molecular Docking, ADMET Predictions, and DMS of Isoxazolidine and Isoxazoline Analogs with Anticancer Properties

Authors: Moulay Driss Mellaoui, Khadija Zaki, Khalid Abbiche, Abdallah Imjjad, Rachid Boutiddar, Abdelouahid Sbai, Aaziz Jmiai, Souad El Issami, Al Mokhtar Lamsabhi, Hanane Zejli

Abstract:

This study presents a comprehensive analysis of six isoxazolidine and isoxazoline derivatives, leveraging a multifaceted approach that combines Density Functional Theory (DFT), AdmetSAR analysis, and molecular docking simulations to explore their electronic, pharmacokinetic, and anticancer properties. Through DFT analysis, using the B3LYP-D3BJ functional and the 6-311++G(d,p) basis set, we optimized molecular geometries, analyzed vibrational frequencies, and mapped Molecular Electrostatic Potentials (MEP), identifying key sites for electrophilic attacks and hydrogen bonding. Frontier Molecular Orbital (FMO) analysis and Density of States (DOS) plots revealed varying stability levels among the compounds, with 1b, 2b, and 3b showing slightly higher stability. Chemical potential assessments indicated differences in binding affinities, suggesting stronger potential interactions for compounds 1b and 2b. AdmetSAR analysis predicted favorable human intestinal absorption (HIA) rates for all compounds, highlighting compound 3b superior oral effectiveness. Molecular docking and molecular dynamics simulations were conducted on isoxazolidine and 4-isoxazoline derivatives targeting the EGFR receptor (PDB: 1JU6). Molecular docking simulations confirmed the high affinity of these compounds towards the target protein 1JU6, particularly compound 3b, among the isoxazolidine derivatives, compound 3b exhibited the most favorable binding energy, with a g score of -8.50 kcal/mol. Molecular dynamics simulations over 100 nanoseconds demonstrated the stability and potential of compound 3b as a superior candidate for anticancer applications, further supported by structural analyses including RMSD, RMSF, Rg, and SASA values. This study underscores the promising role of compound 3b in anticancer treatments, providing a solid foundation for future drug development and optimization efforts.

Keywords: isoxazolines, DFT, molecular docking, molecular dynamic, ADMET, drugs.

Procedia PDF Downloads 16
2413 Combating Malaria: A Drug Discovery Approach Using Thiazole Derivatives Against Prolific Parasite Enzyme PfPKG

Authors: Hari Bezwada, Michelle Cheon, Ryan Divan, Hannah Escritor, Michelle Kagramian, Isha Korgaonkar, Maya MacAdams, Udgita Pamidigantam, Richard Pilny, Eleanor Race, Angadh Singh, Nathan Zhang, LeeAnn Nguyen, Fina Liotta

Abstract:

Malaria is a deadly disease caused by the Plasmodium parasite, which continues to develop resistance to current antimalarial drugs. In this research project, the effectiveness of numerous thiazole derivatives was explored in inhibiting the PfPKG, a crucial part of the Plasmodium life cycle. This study involved the synthesis of six thiazole-derived amides to inhibit the PfPKG pathway. Nuclear Magnetic Resonance (NMR) spectroscopy and Infrared (IR) spectroscopy were used to characterize these compounds. Furthermore, AutoDocking software was used to predict binding affinities of these thiazole-derived amides in silico. In silico, compound 6 exhibited the highest predicted binding affinity to PfPKG, while compound 5 had the lowest affinity. Compounds 1-4 displayed varying degrees of predicted binding affinity. In-vitro, it was found that compound 4 had the best percent inhibition, while compound 5 had the worst percent inhibition. Overall, all six compounds had weak inhibition (approximately 30-39% at 10 μM), but these results provide a foundation for future drug discovery experiments.

Keywords: Medicinal Chemistry, Malaria, drug discovery, PfPKG, Thiazole, Plasmodium

Procedia PDF Downloads 64
2412 Interaction of Phytochemicals Present in Green Tea, Honey and Cinnamon to Human Melanocortin 4 Receptor

Authors: Chinmayee Choudhury

Abstract:

Human Melanocortin 4 Receptor (HMC4R) is one of the most potential drug targets for the treatment of obesity which controls the appetite. A deletion of the residues 88-92 in HMC4R is sometimes the cause of severe obesity in the humans. In this study, two homology models are constructed for the normal as well as mutated HMC4Rs and some phytochemicals present in Green Tea, Honey and Cinnamon have been docked to them to study their differential binding to the normal and mutated HMC4R as compared to the natural agonist α- MSH. Two homology models have been constructed for the normal as well as mutated HMC4Rs using the Modeller9v7. Some of the phytochemicals present in Green Tea, Honey, and Cinnamon, which have appetite suppressant activities are constructed, minimized and docked to these normal and mutated HMC4R models using ArgusLab 4.0.1. The mode of binding of the phytochemicals with the Normal and Mutated HMC4Rs have been compared. Further, the mode of binding of these phytochemicals with that of the natural agonist α- Melanocyte Stimulating Hormone(α-MSH) to both normal and mutated HMC4Rs have also been studied. It is observed that the phytochemicals Kaempherol, Epigallocatechin-3-gallate (EGCG) present in Green Tea and Honey, Isorhamnetin, Chlorogenic acid, Chrysin, Galangin, Pinocambrin present in Honey, Cinnamaldehyde, Cinnamyl acetate and Cinnamyl alcohol present in Cinnamon have capacity to form more stable complexes with the Mutated HMC4R as compared to α- MSH. So they may be potential agonists of HMC4R to suppress the appetite.

Keywords: HMC4R, α-MSH, docking, photochemical, appetite suppressant, homology modelling

Procedia PDF Downloads 169
2411 Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples

Authors: H. Abu-Ali, A. Nabok, T. Smith

Abstract:

Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration.

Keywords: aptamer, based, biosensor, DNA, electrochemical, highly, specific

Procedia PDF Downloads 136
2410 Associations between Polymorphism of Growth Hormone Gene on Milk Production, Fat and Protein Content in Friesian Holstein Cattle

Authors: Tety Hartatik, Dian Kurniawati, Adiarto

Abstract:

The aim of the research was to determine the associations between polymorphism of the bovine growth hormone (GH) gene (Leu/Val, L/V) and milk production of Friesian Holstein Cattle. A total of 62 cows which consist of two Friesian Holstein groups (cattle from New Zealand are 19 heads and cattle from Australia are 43 heads). We perform the PCR and RFLP method for analyzing the genotype of the target gene GH 211 bp in the part of intron 4 and exon 5 of GH gene. The frequencies of genotypes LL were higher than genotype LV. The number of genotype LL in New Zealand and Australia groups are 84% and 79%, respectively. The number of genotype LV in New Zealand and Australia groups are 16% and 21%, respectively. The association between Leu/Val polymorphism on milk production, fat and protein content in both groups does not show the significant effect. However base on the groups (cows from New Zealand compare with those from Australia) show the significant effect on fat and protein content.

Keywords: Friesian Holstein, fat content, growth hormone gene, milk production, PCR-RLFP, protein content

Procedia PDF Downloads 631
2409 Comparison of Physicochemical Properties of Catfish Myofibrillar and Sarcoplasmic Protein Hydrolysates and Characterization of Their Bioactive Peptides

Authors: Leila Najafian

Abstract:

Sarcoplasmic protein hydrolysates (SPHs) and myofibrillar protein hydrolysates (MPHs) from patin (Pangasius sutchi) were produced using two types of proteases: Papain and Alcalase. 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging activities and metal chelating activity assays for antioxidant activities were carried out on the SPHs and MPHs. The hydrolysates were isolated and purified by ultrafiltration, gel filtration and reverse phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography with tandem mass spectrometry detection (LC-MS/MS) was used in identifying peptide sequences. The results showed that when the DH of MPHs increased, the protein solubility increased, while the highest amount of the protein solubility of SPHs was after 60 min incubation. The effect of DH on antioxidant activities of SPHs and MPHs was investigated. Among the hydrolysates, papain-MPH and Alcalase-SPH, which had the highest antioxidant activities, were purified. The potent fractions obtained from RP-HPLC of sarcoplasmic (SI 3 fraction) and myofibrillar (MI 4 fraction) hydrolysates showed the highest DPPH radical scavenging activity. The FVNQPYLLYSVHMK peptide for MPH and the LVVDIPAALQHA peptide for SPH exhibited the highest antioxidant activity. The presence of hydrophobic and hydrophilic amino acids, namely leucine (L), valine (V), phenylalanine (F), histidine (H) and proline (P), in the peptide sequences of SPH and MPH are believed to contribute to high antioxidant activity. Hence, SPH and MPH from patin have the potential as a natural functional ingredient in food and pharmaceutical industry.

Keywords: patin (Pangasius sutchi), protein hydrolysates, antioxidative peptides, mass spectrometry

Procedia PDF Downloads 241
2408 DNA Fragmentation and Apoptosis in Human Colorectal Cancer Cell Lines by Sesamum indicum Dried Seeds

Authors: Mohd Farooq Naqshbandi

Abstract:

The four fractions of aqueous extract of Sesame Seeds (Sesamum indicum L.) were studied for invitro DNA fragmentation, cell migration, and cellular apoptosis on SW480 and HTC116 human colorectal cancer cell lines. The seeds of Sesamum indicum were extracted with six solvents, including Methanol, Ethanol, Aqueous, Chloroform, Acetonitrile, and Hexane. The aqueous extract (IC₅₀ value 154 µg/ml) was found to be the most active in terms of cytotoxicity with SW480 human colorectal cancer cell lines. Further fractionation of this aqueous extract on flash chromatography gave four fractions. These four fractions were studied for anticancer and DNA binding studies. Cell viability was assessed by colorimetric assay (MTT). IC₅₀ values for all these four fractions ranged from 137 to 548 µg/mL for the HTC116 cancer cell line and 141 to 402 µg/mL for the SW480 cancer cell line. The four fractions showed good anticancer and DNA binding properties. The DNA binding constants ranged from 10.4 ×10⁴ 5 to 28.7 ×10⁴, showing good interactions with DNA. The DNA binding interactions were due to intercalative and π-π electron forces. The results indicate that aqueous extract fractions of sesame showed inhibition of cell migration of SW480 and HTC116 human colorectal cancer cell lines and induced DNA fragmentation and apoptosis. This was demonstrated by calculating the low wound closure percentage in cells treated with these fractions as compared to the control (80%). Morphological features of nuclei of cells treated with fractions revealed chromatin compression, nuclear shrinkage, and apoptotic body formation, which indicate cell death by apoptosis. The flow cytometer of fraction-treated cells of SW480 and HTC116 human colorectal cancer cell lines revealed death due to apoptosis. The results of the study indicate that aqueous extract of sesame seeds may be used to treat colorectal cancer.

Keywords: Sesamum indicum, cell migration inhibition, apoptosis induction, anticancer activity, colorectal cancer

Procedia PDF Downloads 65
2407 Development of selective human matrix metalloproteinases-9 (hMMP-9) inhibitors as potent diabetic wound healing agents

Authors: Geetakshi Arora, Danish Malhotra

Abstract:

Diabetic wounds are serious health issues and often fail to heal, leading to limb amputation that makes the life of the patient miserable. Delayed wound healing has been characterized by an increase in matrix metalloproteinase-9 (MMP-9). Thus research throughout the world has been going on to develop selective MMP-9 inhibitors for aiding diabetic wound healing. Bioactive constituents from natural sources always served as potential leads in drug development with high rates of success. Considering the need for novel selective MMP-9 inhibitors and the importance of natural bioactive compounds in drug development, we have screened a library of bioactive constituents from plant sources that were effective in diabetic wound healing on human MMP-9 (hMMP-9) using molecular docking studies. Screened constituents are ranked according to their dock score, ∆G value (binding affinity), and Ligand efficiency evaluated from FleXX docking and Hyde scoring modules available with drug designing platform LeadIT. Rhamnocitrin showed the highest correlation between dock score, ∆G value (binding affinity), and Ligand efficiency was further explored for binding interactions with hMMP-9. The overall study suggest that Rhamnocitrin is sufficiently decorated with both hydrophilic and hydrophobic substitutions that perfectly block hMMP-9 and act as a potential lead in the design and development of selective hMMP-9 inhibitors.

Keywords: MMP-9, diabetic wound, molecular docking, phytoconstituents

Procedia PDF Downloads 102
2406 Novel Aminoglycosides to Target Resistant Pathogens

Authors: Nihar Ranjan, Derrick Watkins, Dev P. Arya

Abstract:

Current methods in the study of antibiotic activity of ribosome targeted antibiotics are dependent on cell based bacterial inhibition assays or various forms of ribosomal binding assays. These assays are typically independent of each other and little direct correlation between the ribosomal binding and bacterial inhibition is established with the complementary assay. We have developed novel high-throughput capable assays for ribosome targeted drug discovery. One such assay examines the compounds ability to bind to a model ribosomal RNA A-site. We have also coupled this assay to other functional orthogonal assays. Such analysis can provide valuable understanding of the relationships between two complementary drug screening methods and could be used as standard analysis to correlate the affinity of a compound for its target and the effect the compound has on a cell.

Keywords: bacterial resistance, aminoglycosides, screening, drugs

Procedia PDF Downloads 342
2405 Identification of Analogues to EGCG for the Inhibition of HPV E7: A Fundamental Insights through Structural Dynamics Study

Authors: Murali Aarthy, Sanjeev Kumar Singh

Abstract:

High risk human papillomaviruses are highly associated with the carcinoma of the cervix and the other genital tumors. Cervical cancer develops through the multistep process in which increasingly severe premalignant dysplastic lesions called cervical intraepithelial neoplastic progress to invasive cancer. The oncoprotein E7 of human papillomavirus expressed in the lower epithelial layers drives the cells into S-phase creating an environment conducive for viral genome replication and cell proliferation. The replication of the virus occurs in the terminally differentiating epithelium and requires the activation of cellular DNA replication proteins. To date, no suitable drug molecule is available to treat HPV infection whereas identification of potential drug targets and development of novel anti-HPV chemotherapies with unique mode of actions are expected. Hence, our present study aimed to identify the potential inhibitors analogous to EGCG, a green tea molecule which is considered to be safe to use for mammalian systems. A 3D similarity search on the natural small molecule library from natural product database using EGCG identified 11 potential hits based on their similarity score. The structure based docking strategies were implemented in the potential hits and the key interacting residues of protein with compounds were identified through simulation studies and binding free energy calculations. The conformational changes between the apoprotein and the complex were analyzed with the simulation and the results demonstrated that the dynamical and structural effects observed in the protein were induced by the compounds and indicated the dominance to the oncoprotein. Overall, our study provides the basis for the structural insights of the identified potential hits and EGCG and hence, the analogous compounds identified can be potent inhibitors against the HPV 16 E7 oncoprotein.

Keywords: EGCG, oncoprotein, molecular dynamics simulation, analogues

Procedia PDF Downloads 103
2404 The Role of Il-6-Mediated NS5ATP9 Expression in Autophagy of Liver Cancer Cells

Authors: Hongping Lu, Kelbinur Tursun, Yaru Li, Yu Zhang, Shunai Liu, Ming Han

Abstract:

Objective: To investigate whether NS5ATP9 is involved in IL-6 mediated autophagy and the relationship between IL-6 and NS5ATP9 in liver cancer cells. Methods: 1. Detect the mRNA and protein levels of Beclin 1 after HepG2 cells were treated with or without recombinant human IL-6 protein. 2. Measure and compare of the changes of autophagy-related genes with their respective control, after IL-6 was silenced or neutralized with monoclonal antibody against human IL-6. 3. HepG2 cells were incubated with 50 ng/ml of IL-6 in the presence or absence of PDTC. The expression of NS5ATP9 was analyzed by Western blot after 48 h. 4. After NS5ATP9-silenced HepG2 cells had been treated with 50 ng/ml recombinant IL-6 protein, we detected the Beclin 1 and LC3B (LC3Ⅱ/Ⅰ) expression. 5. HepG2 cells were transfected with pNS5ATP9, si-NS5ATP9, and their respective control. Total RNA was isolated from cells and analyzed for IL-6. 6. Silence or neutralization of IL-6 in HepG2 cells which has been transfected with NS5ATP9. Beclin 1 and LC3 protein levels were analyzed by Western blot. Result: 1. After HepG2 were treated with recombinant human IL-6 protein, the expression of endogenous Beclin 1 was up-regulated at mRNA and protein level, and the conversion of endogenous LC3-I to LC3-II was also increased. These results indicated that IL-6 could induce autophagy. 2. When HepG2 cells were treated with IL-6 siRNA or monoclonal antibody against human IL-6, the expression of autophagy-related genes were decreased. 3. Exogenous human IL-6 recombinant protein up-regulated NS5ATP9 via NF-κB activation. 4. The expression of Beclin 1 and LC3B was down-regulated after IL-6 treated NS5ATP9-silenced HepG2 cells. 5. NS5ATP9 could reverse regulates IL-6 expression in HepG2 cells. 6. Silence or neutralization of IL-6 attenuates NS5ATP9-induced autophagy slightly. Conclusion: Our results implied that in HCC patients, maybe the higher level of IL-6 in the serum promoted the expression of NS5ATP9 and induced autophagy in cancer cells. And the over-expression of NS5ATP9 which induced by IL-6, in turn, increased IL-6 expression, further, promotes the IL-6/NS5ATP9-mediated autophagy and affects the progression of tumor. Therefore, NS5ATP9 silence might be a potential target for HCC therapy.

Keywords: autophagy, Hepatocellular carcinoma, IL-6, microenvironment, NS5ATP9

Procedia PDF Downloads 232
2403 Cellular Degradation Activity is Activated by Ambient Temperature Reduction in an Annual Fish (Nothobranchius rachovii)

Authors: Cheng-Yen Lu, Chin-Yuan Hsu

Abstract:

Ambient temperature reduction (ATR) can extend the lifespan of an annual fish (Nothobranchius rachovii), but the underlying mechanism is unknown. In this study, the expression, concentration, and activity of cellular-degraded molecules were evaluated in the muscle of N. rachovii reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures by biochemical techniques. The results showed that (i) the activity of the 20S proteasome, the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), the expression of lysosome-associated membrane protein type 2a (Lamp 2a), and lysosome activity increased with ATR; (ii) the expression of the 70 kD heat shock cognate protein (Hsc 70) decreased with ATR; (iii) the expression of the 20S proteasome, the expression of lysosome-associated membrane protein type 1 (Lamp 1), the expression of molecular target of rapamycin (mTOR), the expression of phosphorylated mTOR (p-mTOR), and the p-mTOR/mTOR ratio did not change with ATR. These findings indicated that ATR activated the activity of proteasome, macroautophagy, and chaperone-mediated autophagy. Taken together these data reveal that ATR likely activates cellular degradation activity to extend the lifespan of N. rachovii.

Keywords: ambient temperature reduction, autophagy, degradation activity, lifespan, proteasome

Procedia PDF Downloads 431
2402 Re-Engineering of Traditional Indian Wadi into Ready-to-Use High Protein Quality and Fibre Rich Chunk

Authors: Radhika Jain, Sangeeta Goomer

Abstract:

In the present study an attempt has been made to re-engineer traditional wadi into wholesome ready-to-use cereal-pulse-based chunks rich in protein quality and fibre content. Chunks were made using extrusion-dehydration combination. Two formulations i.e., whole green gram dhal with instant oats and washed green gram dhal with whole oats were formulated. These chunks are versatile in nature as they can be easily incorporated in day-to-day home-made preparations such as pulao, potato curry and kadhi. Cereal-pulse ratio was calculated using NDpCal%. Limiting amino acids such as lysine, tryptophan, methionine, cysteine and threonine were calculated for maximum amino acid profile in cereal-pulse combination. Time-temperature combination for extrusion at 130oC and dehydration at 65oC for 7 hours and 15 minutes were standardized to obtain maximum protein and fibre content. Proximate analysis such as moisture, fat and ash content were analyzed. Protein content of formulation was 62.10% and 68.50% respectively. Fibre content of formulations was 2.99% and 2.45%, respectively. Using a 5-point hedonic scale, consumer preference trials of 102 consumers were conducted and analyzed. Evaluation of chunks prepared in potato curry, kadi and pulao showed preferences for colour 82%, 87%, 86%, texture and consistency 80%, 81%, 88%, flavour and aroma 74%, 82%, 86%, after taste 70%, 75%, 86% and overall acceptability 77%, 75%, 88% respectively. High temperature inactivates antinutritional compounds such as trypsin inhibitors, lectins, saponins etc. Hence, availability of protein content was increased. Developed products were palatable and easy to prepare.

Keywords: extrusion, NDpCal%, protein quality, wadi

Procedia PDF Downloads 208
2401 Toward Understanding the Glucocorticoid Receptor Network in Cancer

Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden

Abstract:

The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.

Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor

Procedia PDF Downloads 204
2400 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors

Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills

Abstract:

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.

Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO

Procedia PDF Downloads 438