Search results for: placement challenges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6243

Search results for: placement challenges

2133 Utilization of Manila Clam Shells (Venerupis Philippinarum) and Raffia Palm Fiber (Raphia Farinifera) as an Additive in Producing Concrete Roof Tiles

Authors: Alfonzo Ramon Burguete, Rica Gatus, Sofina Faith Navarro, Luke Subala

Abstract:

Roof tiles, as integral components of buildings, play a crucial role in protecting structures from many things. The study focuses on the production of sustainable roof tiles that address the waste disposal challenges associated with Manila clam shells and mitigate the environmental impact of conventional roof tile materials. Various concentrations of roof tiles are developed, incorporating different proportions of powdered clam shell that contains calcium carbonate and shredded raffia palm fiber. Subsequently, the roof tiles are cast using standard methods and transported to the University of the Philippines Institute of Civil Engineering (UP-ICE) for flexural strength testing. In conclusion, the research aimed to assess the flexural durability of concrete roof tiles with varying concentrations of Raffia Palm Fiber and Manila Clam Shells additives. The findings indicate notable differences in maximum load capacities among the specimens, with C3.1 emerging as the concentration with the highest load-bearing capacity at 313.59729 N. This concentration, with a flexural strength of 2.15214, is identified as the most durable option, with a slightly heavier weight of 1.10 kg. On the other hand, C2.2, with a flexural strength of 0.366 and a weight of 0.80 kg, is highlighted for its impressive durability performance while maintaining a lighter composition. Therefore, for the production of concrete roof tile C3.1 is recommended for optimal durability, while C2.2 is suggested as a preferable option considering both durability and lightweight characteristics.

Keywords: manila clam shells, raffia palm fiber, flexural strength, lightweightness

Procedia PDF Downloads 62
2132 Becoming a Teacher in Kazakhstan

Authors: D. Shamatov

Abstract:

Becoming a teacher is a journey with significant learning experiences. Exploring teachers’ lives and experiences can provide much-needed insights into the multiple realities of teaching. Teachers’ stories through qualitative narrative studies help understand and appreciate the complexities of the socio-political, economic and practical realities facing teachers. Events and experiences, both past and present, that take place at home, school, and in the broader social sphere help to shape these teachers’ lives and careers. Researchers and educators share the responsibility of listening to these teachers’ stories and life experiences and being sensitive to their voices in order to develop effective models for teacher development. A better understanding of how teachers learn to become teachers can help teacher educators prepare more effective teacher education programs. This paper is based on qualitative research which includes individual and focus group interviews, as well as auto-biography stories of Master of Science in School Leadership students at Graduate School of Education of Nazarbayev University. Twenty five MSc students from across Kazakhstan reflected on their professional journey and wrote their professional autobiographies as teachers. Their autobiographies capture the richness of their experiences and beliefs as a teacher, but also serve as window to understand broader socio-economic and political contexts where these teachers live and work. The study also provides an understanding of the systemic and socio-economic challenges of teachers in the context of post-Soviet Kazakhstan. It helps the reader better understand how wider societal forces interact and frame the development of teachers. The paper presents the findings from these stories of MSc students and offers some practical and policy implications for teacher preparation and teacher development.

Keywords: becoming a teacher, Kazakhstan, teacher stories, teacher development

Procedia PDF Downloads 432
2131 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique

Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu

Abstract:

Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.

Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing

Procedia PDF Downloads 101
2130 Low Students' Access to University Education in Nigeria: Causes and Remedy

Authors: Robert Ogbanje Okwori

Abstract:

The paper explained the causes low students’ access to university education in Nigeria and how it can be remedied. It is discovered that low students’ access to university education in Nigeria is evident despite these number of universities in the country. In 2006/2007 academic session, 806,089 sat for Joint Unified Matriculation Board Examination (JAMB) into Nigerian universities and only 123,626 (15.3%) were admitted while 2011/2012 academic session, a total of 1,493,604 candidates sat for Joint Unified Matriculation Board Examination (JAMB) into Nigerian universities and only 65,073 (43.57%) were admitted. This necessitates for the research. Therefore, the study posed the following research questions. What are causes of low students’ access to university education in Nigeria? What are the challenges of students’ access to university education in Nigeria? How can students’ access to university education in Nigeria be improved? Sample survey research design was adopted for the study. A structured questionnaire was used to gather data for the study. Six hundred and eighty (680) respondents which comprised of 100 level university students; JAMB Officers and University administrators (Vice Chancellors, Registrars and Admission Officers) were used for the study. Stratified random sampling was applied for adequate representation of respondents from universities in the six geopolitical zones of Nigeria. Mean was used to answer research questions while Kuder-Richardson formula 20 was used to check the internal consistency of the instrument. The correlation coefficient of the instrument was 0.87. The major findings include the carrying capacity of each university contributes to low students’ access to university education and academic staff were inadequate. From the analysis of the study, it is concluded that the rate of access to university education is low, therefore, every university should establish distance learning programme to reduce university admission crisis. The training infrastructure in the universities should be improved upon by the owners to increase the carrying capacity of each university.

Keywords: access, causes, low, university

Procedia PDF Downloads 468
2129 Influence of Travel Time Reliability on Elderly Drivers Crash Severity

Authors: Ren Moses, Emmanuel Kidando, Eren Ozguven, Yassir Abdelrazig

Abstract:

Although older drivers (defined as those of age 65 and above) are less involved with speeding, alcohol use as well as night driving, they are more vulnerable to severe crashes. The major contributing factors for severe crashes include frailty and medical complications. Several studies have evaluated the contributing factors on severity of crashes. However, few studies have established the impact of travel time reliability (TTR) on road safety. In particular, the impact of TTR on senior adults who face several challenges including hearing difficulties, decreasing of the processing skills and cognitive problems in driving is not well established. Therefore, this study focuses on determining possible impacts of TTR on the traffic safety with focus on elderly drivers. Historical travel speed data from freeway links in the study area were used to calculate travel time and the associated TTR metrics that is, planning time index, the buffer index, the standard deviation of the travel time and the probability of congestion. Four-year information on crashes occurring on these freeway links was acquired. The binary logit model estimated using the Markov Chain Monte Carlo (MCMC) sampling technique was used to evaluate variables that could be influencing elderly crash severity. Preliminary results of the analysis suggest that TTR is statistically significant in affecting the severity of a crash involving an elderly driver. The result suggests that one unit increase in the probability of congestion reduces the likelihood of the elderly severe crash by nearly 22%. These findings will enhance the understanding of TTR and its impact on the elderly crash severity.

Keywords: highway safety, travel time reliability, elderly drivers, traffic modeling

Procedia PDF Downloads 493
2128 Application of Metric Dimension of Graph in Unraveling the Complexity of Hyperacusis

Authors: Hassan Ibrahim

Abstract:

The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. We constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.

Keywords: auditory condition, connected graph, hyperacusis, metric dimension

Procedia PDF Downloads 38
2127 Understanding the Complexity of Corruption and Anti-Corruption in Indonesia's Mining Industry: Challenges and Opportunities

Authors: Ahmad Khoirul Umam, Iin Mayasari

Abstract:

Indonesia is blessed with rich natural resources and frequently dubbed as the 6th richest country in the world in terms of mining resources, including minerals and coal. Mining can contribute to the socio-economic development by generating state revenue for development, elevating poverty through employment, opening and developing remote areas, putting in basic infrastructure and creating new centres of developments. However, favouritism and rent-seeking behaviour committed by government officials, politicians, and business players in licensing and permit giving in mining and forestry sectors have resisted reforms. Even though Indonesia’s Corruption Eradication Commission (KPK) successfully targeted untouchable actors, public criticism continues to focus on questions of why corruption apparently remains systemic in mining industry in the country? This paper revealed that structural anomalies, as well as legacies of the Soeharto era’s power inequities, have severely inhibited Indonesia’s bureaucratic arrangements that continue to influence adversely the elements of transparency and accountability in mining industry governance. In the more liberalized and decentralized political system, the deficiencies have gradually assisted vested interest groups to band together, thus creating a coalition that can challenge, resist, and contain anti-graft actions. Therefore, Indonesia needs much more serious anti-corruption actions that would require eliminating the monopoly over power, enhancing competition, limiting discretion, and clarifying the rules of business and political competition in the mining sector in the country.

Keywords: anti-corruption, public integrity, private integrity, mining industry, democratization

Procedia PDF Downloads 111
2126 Exploiting Identity Grievances: Al-Shabaab Propaganda Targeting Individuals Abroad

Authors: Mustafa Mabruk

Abstract:

Groups such as Al-Shabaab have managed to radicalize many individuals abroad, including the first American citizen to ever be radicalized. Yet the pathways of radicalization for these foreign individuals are understudied. Moreover, current measures to prevent foreign radicalization are ineffective, with privacy, screening and profiling implications that render current counter-radicalization efforts counterproductive. Such measures exhibit strictness, political bias, and harshness. As confirmed by recent studies, such counter-radicalization issues exacerbate existing grievances and channel fresh recruits to Al-Shabaab. Addressing these challenges is paramount, requiring alternative strategies to effectively reduce radicalization without triggering further harm. The development of counter-narratives emerges as a potential measure with minimal risk of exacerbating grievances, yet the development of such counter-narratives necessitates a thorough understanding of the radicalization pathways of foreign individuals that are understudied. This study investigates the success of Al-Shabaab in recruiting individuals abroad by analyzing their propaganda in conjunction with analyzing identity-focused theories of radicalization, including Framing Theory and Social Identity Theory. Qualitative content analysis is used to analyze various propaganda material, including tweets, speeches, and webpages. The analysis reveals that issues of identity are of major significance in the radicalization patterns identified and that grievances of Muslims worldwide are used to exploit identity-related grievances. Based on these findings, the paper argues that such evidence enhances our understanding of potential deradicalization pathways and present counter-narratives based on Islamic scripture.

Keywords: counter-narratives, foreign radicalization, identity grievances, propaganda analysis

Procedia PDF Downloads 41
2125 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 64
2124 Mapping of Geological Structures Using Aerial Photography

Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash

Abstract:

Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.

Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures

Procedia PDF Downloads 686
2123 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
2122 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok

Authors: Noriyuki Suyama

Abstract:

The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.

Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior

Procedia PDF Downloads 89
2121 Inactivation and Stress Response of Salmonella enterica Serotype Typhimurium lt21 upon Cold Gas-Phase Plasma Treatment

Authors: Zoran Herceg, Tomislava Vukušić, Anet Režek Jambrak, Višnja Stulić

Abstract:

Today one of the greatest challenges are directed to the safety of food supply. If food pathogens are ingested they can cause human illnesses. Because of that new technologies that are effective in microbial reduction are developing to be used in food industries. One of such technology is cold gas phase plasma. Salmonella enterica was studied as one of the pathogenes that can be found in food. The aim of this work was to examine the inactivation rate and stress response of plasma treated cells of Salmonella enterica inoculated in apple juice. After the treatment cellular leakage, phenotypic changes in plasma treated cells-biofilm formation and degree of recovery were conducted. Sample volume was inoculated with 5 mL of pure culture of Salmonella enterica and 15 mL of apple juice. Statgraphics Centurion software (StatPoint Technologies, Inc., VA, USA) was used for experimental design and statistical analyses. Treatment time (1, 3, 5 min) and gas flow (40, 60, 80 L/min) were changed. Complete inactivation and 0 % of recovery after the 48 h was observed at these experimental treatments: 3 min; 40 L/min, 3 min; 80 L/min, 5 min; 40 L/min. Biofilm reduction was observed at all treated samples. Also, there was an increase in cellular leakage with a longer plasma treatment. Although there were a significant reduction and 0 % of recovery after the plasma treatments further investigation of the method is needed to clarify whether there are sensorial, physical and chemical changes in juices after the plasma treatment. Acknowledgments: The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for the preservation of liquid foods'.

Keywords: salmonella enterica serotype typhimurium lt21, gas-phase plasma treatment, inactivation, stress response

Procedia PDF Downloads 314
2120 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
2119 Research Progress of the Relationship between Urban Rail Transit and Residents' Travel Behavior during 1999-2019: A Scientific Knowledge Mapping Based on Citespace and Vosviewer

Authors: Zheng Yi

Abstract:

Among the attempts made worldwide to foster urban and transport sustainability, transit-oriented development certainly is one of the most successful. Residents' travel behavior is a concern in the researches about the impacts of transit-oriented development. The study takes 620 English journal papers in the core collection database of Web of Science as the study objects; the paper tries to map out the scientific knowledge mapping in the field and draw the basic conditions by co-citation analysis, co-word analysis, a total of citation network analysis and visualization techniques. This study teases out the research hotspots and evolution of the relationship between urban rail transit and resident's travel behavior from 1999 to 2019. According to the results of the analysis of the time-zone view and burst-detection, the paper discusses the trend of the next stage of international study. The results show that in the past 20 years, the research focuses on these keywords: land use, behavior, model, built environment, impact, travel behavior, walking, physical activity, smart card, big data, simulation, perception. According to different research contents, the key literature is further divided into these topics: the attributes of the built environment, land use, transportation network, transportation policies. The results of this paper can help to understand the related researches and achievements systematically. These results can also provide a reference for identifying the main challenges that relevant researches need to address in the future.

Keywords: urban rail transit, travel behavior, knowledge map, evolution of researches

Procedia PDF Downloads 110
2118 Analyzing the Perceptions of Accounting Practitioners regarding Communication Skills of Distance-Learning Graduates

Authors: Carol S. Binnekade, Deon Scott, Christina C. Shuttleworth, Annelien A. Van Rooyen

Abstract:

Higher education institutions are constantly challenged to deliver skilled graduates into the workplace. Employers expect graduates to have the required technical knowledge as well as various pervasive skills. This also applies to accountants who need to know the technical requirements of financial reporting and be able to communicate with individuals, teams and clients at a high level. Accountants need to develop effective business conversational skills and use these skills to communicate up, down and across organizations, taking into consideration cultural and gender diversity. In addition, they need to master business writing and presentation skills. However, providing students with these skills in a distance-learning environment where interaction between students and instructors is limited, is a challenge for academics. The study on which this paper reports, forms part of a larger body of research, which explored the perceptions of accounting practitioners of the communication skills (or lack thereof) of recently qualified accounting students. Feedback (qualitative and quantitative) was obtained from various accounting practitioners in South Africa. Taking into consideration that distance learners communicate mainly with their instructors via email communication and their assignments are submitted using various word processor software, the researchers were of the opinion that the accounting graduates would be capable of communicating effectively once they entered the workplace. However, the research findings, inter alia, suggested that the accounting graduates lacked communication skills and that training was needed to differentiate between business and social communication once they entered the workplace. Recommendations on how these communication challenges may be addressed by higher education institutions are provided.

Keywords: accounting practitioners, communication skills, distance education, pervasive skills

Procedia PDF Downloads 204
2117 Unveiling Irregular Migration: An Evaluation of Airport Interventions and Geographic Trends in Sri Lanka

Authors: Abewardhana Arachchi Bandula Dimuthu Priyadarshana Abewardhana, Rasika Nirosh Gonapinuwala Vithanage, Karawe Thanthreege Amila Madusanka Perera, Asanka Sanjeewa Karunarathne, Navullage Mayuri Radhika Perera

Abstract:

The phenomenon of irregular migration and human trafficking presents multifaceted challenges to Sri Lanka, with specific focus on the migration routes to the United Arab Emirates (UAE), the Sultanate of Oman, and Malaysia. This research critically assesses the efficacy of a pilot project instituted at Bandaranaike International Airport aimed at the identification and deterrence of potential irregular migrants. Additionally, the study conducts a nuanced analysis of the geographical tendencies pertaining to passengers who revise their migration intentions at the airport. Pertinently, the findings indicate that Colombo and Gampaha Districts emerge as the most susceptible to human trafficking, with Galle, Nuwaraeliya, Rathnapura, and Polonnaruwa Districts following as areas of elevated concern, particularly within the framework of the 'visit visa' scenario. These insights emanate from an extensive data collection period spanning 50 days of the pilot project, encompassing 1,479 passengers, of which 46 returnees reported to the Safe Migration Promotion Unit. The research is founded on the twin objectives of comprehending the motivations of passengers and evaluating the effectiveness of interventions, with a view to devising precision-targeted prevention strategies. Through this endeavor, the study actively contributes to the safeguarding of the rights and welfare of migrants, significantly advancing the ongoing battle against irregular migration.

Keywords: irregular migration, human trafficking, airport interventions, geographic trends

Procedia PDF Downloads 82
2116 Exploring Sense of Belonging in Toronto: A Multigenerational Perspective and Social Sustainability

Authors: Homa Hedayat

Abstract:

In the dynamic urban landscape of Toronto, the concept of belonging assumes paramount importance. As global challenges—such as the pandemic, financial instability, and geopolitical shifts—reshape our world, understanding how different generations of immigrants establish connections within this multicultural metropolis becomes increasingly vital. Our research delves into forming a sense of belonging in urban spaces, specifically focusing on the experiences of Iranian immigrants residing in Toronto. By examining their perceptions of public places, attachment to residential neighborhoods, and the impact of the urban environment, we contribute to a more holistic understanding of social sustainability and community well-being. We unravel the intricate interplay between individual characteristics, housing context, and neighborhood dynamics through qualitative interviews and a quantitative survey. This research presents a study of the perception of public places and sense of belonging in residential neighbourhoods by younger and older Iranian immigrants living in the Toronto metropolitan area. Few works in the existing literature have investigated the relationship immigrants develop with the shared spaces of the city and their residential environment and how that relationship can impact the development of a ‘sense of belonging’ in the city. Ultimately, our findings pave the way for inclusive and cohesive urban environments, fostering connections across generations and enhancing Toronto’s resilience and harmony. As Toronto continues to evolve, nurturing a sense of belonging becomes paramount. Our research emphasizes the importance of social cohesion and community well-being. By fostering connections across generations, we pave the way for a more resilient and harmonious city.

Keywords: sense of belonging, multigenerational, urban spaces, social sustainability

Procedia PDF Downloads 59
2115 Efficient Chess Board Representation: A Space-Efficient Protocol

Authors: Raghava Dhanya, Shashank S.

Abstract:

This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.

Keywords: chess, optimisation, encoding, bit manipulation

Procedia PDF Downloads 50
2114 Feasibility Study of Women’s Participation in the Renovation of the Worn-Out Texture: A Case Study Investigation of the Worn-Out Urban Texture of the Tehran Helal-Ahmar Region

Authors: Bahram Siavashpor, Zeynab Haji Abdolhadi

Abstract:

The issue of the worn out textures is one of the urban community challenges in which, undoubtedly, the intervention is impossible without the social involvement. Some believe that in the worn out areas the most important intervention challenge is the social issues, and the most important social issue, in the intervention in the worn out areas, is how to attract public participation. Participation by itself has a widespread literature and despite relative acceptance, it should be said that planners, managers and designers are not always successful in attracting public participation. If participation means the intervention of all the residents in the neighborhood, women’s community forms half of these residents, but they are neglected in the participatory planning. It is important to know that to what extent the presence of women’s community in the related participation to the worn out textures affects the success of the projects. The present study hypotheses emphasize the effectiveness of women than men in involvement of the renovation and reforming projects. A case study was selected to investigate this hypothesis in order to test it through doing a questionnaire and visiting the place. Tehran Helal Ahmar region located in district 11 has 2740 households in which 51% are men and 49% women. The statistical population consists of 150 men and women of this area selected randomly. In the present study, interview technique with the executives was used as well as questionnaire along collecting the related research. The hypothesis analysis was carried out through SPSS and Excel software, in which two tests ‘Man-Whitney’ and ‘chi-square’ were used. The results indicate that women are empowered in the participation and renovation of the area, but it is necessary to rectify men’s attitude towards women’s ability in terms of women participation.

Keywords: renovation, social involvement, women’s participation, worn out texture

Procedia PDF Downloads 198
2113 The Agri-Environmental Instruments in Agricultural Policy to Reduce Nitrogen Pollution

Authors: Flavio Gazzani

Abstract:

Nitrogen is an important agricultural input that is critical for the production. However, the introduction of large amounts of nitrogen into the environment has a number of undesirable impacts such as: the loss of biodiversity, eutrophication of waters and soils, drinking water pollution, acidification, greenhouse gas emissions, human health risks. It is a challenge to sustain or increase food production and at the same time reduce losses of reactive nitrogen to the environment, but there are many potential benefits associated with improving nitrogen use efficiency. Reducing nutrient losses from agriculture is crucial to the successful implementation of agricultural policy. Traditional regulatory instruments applied to implement environmental policies to reduce environmental impacts from nitrogen fertilizers, despite some successes, failed to address many environmental challenges and imposed high costs on the society to achieve environmental quality objectives. As a result, economic instruments started to be recognized for their flexibility and cost-effectiveness. The objective of the research project is to analyze the potential for increased use of market-based instruments in nitrogen control policy. The report reviews existing knowledge, bringing different studies together to assess the global nitrogen situation and the most relevant environmental management policy that aims to reduce pollution in a sustainable way without affect negatively agriculture production and food price. This analysis provides some guidance on how different market based instruments might be orchestrated in an overall policy framework to the development and assessment of sustainable nitrogen management from the economics, environmental and food security point of view.

Keywords: nitrogen emissions, chemical fertilizers, eutrophication, non-point of source pollution, dairy farm

Procedia PDF Downloads 329
2112 Unraveling the Complexity of Hyperacusis: A Metric Dimension of a Graph Concept

Authors: Hassan Ibrahim

Abstract:

The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. it constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.

Keywords: auditory condition, connected graph, hyperacusis, metric dimension

Procedia PDF Downloads 24
2111 Digital Twin Smart Hospital: A Guide for Implementation and Improvements

Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar

Abstract:

This study investigates the application of Digital Twins (DT) in Smart Hospital Environments (SHE), through a bibliometric study and literature review, including comparison with the principles of Industry 4.0. It aims to analyze the current state of the implementation of digital twins in clinical and non-clinical operations in healthcare settings, identifying trends and challenges, comparing these practices with Industry 4.0 concepts and technologies, in order to present a basic framework including stages and maturity levels. The bibliometric methodology will allow mapping the existing scientific production on the theme, while the literature review will synthesize and critically analyze the relevant studies, highlighting pertinent methodologies and results, additionally the comparison with Industry 4.0 will provide insights on how the principles of automation, interconnectivity and digitalization can be applied in healthcare environments/operations, aiming at improvements in operational efficiency and quality of care. The results of this study will contribute to a deeper understanding of the potential of Digital Twins in Smart Hospitals, in addition to the future potential from the effective integration of Industry 4.0 concepts in this specific environment, presented through the practical framework, after all, the urgent need for changes addressed in this article is undeniable, as well as all their value contribution to human sustainability, designed in SDG3 – Health and well-being: ensuring that all citizens have a healthy life and well-being, at all ages and in all situations. We know that the validity of these relationships will be constantly discussed, and technology can always change the rules of the game.

Keywords: digital twin, smart hospital, healthcare operations, industry 4.0, SDG3, technology

Procedia PDF Downloads 53
2110 Data-Driven Simulations Tools for Der and Battery Rich Power Grids

Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili

Abstract:

Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.

Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools

Procedia PDF Downloads 103
2109 Effects of Political, Economic and Educational Considerations on Medium of Instruction (MOI) Policy in Asia: A Hong Kong Example

Authors: Edward Y. W. Chu

Abstract:

This paper exemplifies how the political and educational considerations have shaped the heavy-handed MOI policy in Hong Kong after its handover to China in 1997. Its result, a significant degeneration of English standard among the non-elite students, will be reported based on a detailed analysis of the public exam statistics available and other empirical studies. The remedial action taken by the Education Bureau out of the economic and educational considerations will be reported with reference to the official documents. The political, economic and educational considerations exemplified in different stages of Mother-tongue MOI policy in Hong Kong are found to be influential in the MOI policy in other Asian countries as well. For example, out of rapid internationalization and marketization, there has been increasing adoption of English as the MOI in post-secondary institutions in China, Japan & South Korea. On the other hand, while colonial languages were firmly made as the MOI in former colonies such as Vietnam and India, they were greatly retrieved upon independence for political and educational reasons. Malaysia also followed the same pattern upon independence but re-introduced partial English MOI policy in late 90s hoping to capitalize favourable globalization benefits. The short-lived policy was abandoned in 2009 because of the perceived political threat of national identity as well as the lack of educational effectiveness. Based on the great majority of Asian countries studied, this paper argues that MOI policy in Asia is much more than an educational issue, and that there is a clear pattern of how decisions of MOI matters are made. Studying the history and development of MOI in Hong Kong and other Asian countries provides a unique angle to view of how Asian countries prepare for the political, economic and educational challenges nowadays.

Keywords: economics, Hong Kong, medium of instruction, politics

Procedia PDF Downloads 498
2108 The Use of Polar Substituent Groups for Promoting Azo Disperse Dye Solubility and Reactivity for More Economic and Environmental Benign Applications: A Computational Study

Authors: Olaide O. Wahab, Lukman O. Olasunkanmi, Krishna K. Govender, Penny P. Govender

Abstract:

The economic and environmental challenges associated with azo disperse dyes applications are due to poor aqueous solubility and low degradation tendency which stems from low chemical reactivity. Poor aqueous solubility property of this group of dyes necessitates the use of dispersing agents which increase operational costs and also release toxic chemical components into the environment, while their low degradation tendency is due to the high stability of the azo functional group (-N=N-) in their chemical structures. To address these problems, this study investigated theoretically the effects of some polar substituents on the aqueous solubility and reactivity properties of disperse yellow (DY) 119 dye with a view to theoretically develop new azo disperse dyes with improved solubility in water and higher degradation tendency in the environment using DMol³ computational code. All calculations were carried out using the Becke and Perdew version of Volsko-Wilk-Nusair (VWN-BP) level of density functional theory in conjunction with double numerical basis set containing polarization function (DNP). The aqueous solubility determination was achieved with conductor-like screening model for realistic solvation (COSMO-RS) in conjunction with known empirical solubility model, while the reactivity was predicted using frontier molecular orbital calculations. Most of the new derivatives studied showed evidence of higher aqueous solubility and degradation tendency compared to the parent dye. We conclude that these derivatives are promising alternative dyes for more economic and environmental benign dyeing practice and therefore recommend them for synthesis.

Keywords: aqueous solubility, azo disperse dye, degradation, disperse yellow 119, DMol³, reactivity

Procedia PDF Downloads 204
2107 A Network Optimization Study of Logistics for Enhancing Emergency Preparedness in Asia-Pacific

Authors: Giuseppe Timperio, Robert De Souza

Abstract:

The combination of factors such as temperamental climate change, rampant urbanization of risk exposed areas, political and social instabilities, is posing an alarming base for the further growth of number and magnitude of humanitarian crises worldwide. Given the unique features of humanitarian supply chain such as unpredictability of demand in space, time, and geography, spike in the number of requests for relief items in the first days after the calamity, uncertain state of logistics infrastructures, large volumes of unsolicited low-priority items, a proactive approach towards design of disaster response operations is needed to achieve high agility in mobilization of emergency supplies in the immediate aftermath of the event. This paper is an attempt in that direction, and it provides decision makers with crucial strategic insights for a more effective network design for disaster response. Decision sciences and ICT are integrated to analyse the robustness and resilience of a prepositioned network of emergency strategic stockpiles for a real-life case about Indonesia, one of the most vulnerable countries in Asia-Pacific, with the model being built upon a rich set of quantitative data. At this aim, a network optimization approach was implemented, with several what-if scenarios being accurately developed and tested. Findings of this study are able to support decision makers facing challenges related with disaster relief chains resilience, particularly about optimal configuration of supply chain facilities and optimal flows across the nodes, while considering the network structure from an end-to-end in-country distribution perspective.

Keywords: disaster preparedness, humanitarian logistics, network optimization, resilience

Procedia PDF Downloads 176
2106 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain

Authors: Nitish Suvarna, Anjali Awasthi

Abstract:

In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.

Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix

Procedia PDF Downloads 75
2105 Perspectives of charitable organisations on the impact of the COVID-19 pandemic on family carers of people with profound and multiple intellectual disabilities.

Authors: Mark Linden, Trisha Forbes, Michael Brown, Lynne Marsh, Maria Truesdale, Stuart Todd, Nathan Hughes

Abstract:

Background The COVID-19 pandemic resulted in a reduction of health care services for many family carers of people with profound and multiple intellectual disabilities (PMID). Due to lack of services, family carers turned to charities for support during the pandemic. We explored the views of charity workers across the UK and Ireland who supported family carers during the COVID-19 pandemic and explored their views on effective online support programmes for family carers. Methods This was a qualitative study using online focus groups with participants (n = 24) from five charities across the UK and Ireland. Questions focused on challenges, supports, coping and resources which helped during lockdown restrictions. Focus groups were audio recorded, transcribed verbatim, and analysed through thematic analysis. Findings Four themes were identified (i) ‘mental and emotional health’, (ii) ‘they who shout the loudest’ (fighting for services), (iii) ‘lack of trust in statutory services’ and (iv) ‘creating an online support programme’. Mental and emotional health emerged as the most prominent theme and included three subthemes named as ‘isolation’, ‘fear of COVID-19’ and ‘the exhaustion of caring’. Conclusions The withdrawal of many services during the COVID-19 pandemic further isolated and placed strain on family carers. Even after the end of the pandemic family cares continue to report on the struggle to receive adequate support. There is a critical need to design services, including online support programmes, in partnership with family carers which adequately address their needs.

Keywords: intellectual disability, family carers, COVID-19, charities

Procedia PDF Downloads 74
2104 Real-Time Inventory Management and Operational Efficiency in Manufacturing

Authors: Tom Wanyama

Abstract:

We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.

Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing

Procedia PDF Downloads 35