Search results for: performance prism model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25955

Search results for: performance prism model

21845 Knowledge Audit Model for Requirement Elicitation Process

Authors: Laleh Taheri, Noraini C. Pa, Rusli Abdullah, Salfarina Abdullah

Abstract:

Knowledge plays an important role to the success of any organization. Software development organizations are highly knowledge-intensive organizations especially in their Requirement Elicitation Process (REP). There are several problems regarding communicating and using the knowledge in REP such as misunderstanding, being out of scope, conflicting information and changes of requirements. All of these problems occurred in transmitting the requirements knowledge during REP. Several researches have been done in REP in order to solve the problem towards requirements. Knowledge Audit (KA) approaches were proposed in order to solve managing knowledge in human resources, financial, and manufacturing. There is lack of study applying the KA in requirements elicitation process. Therefore, this paper proposes a KA model for REP in supporting to acquire good requirements.

Keywords: knowledge audit, requirement elicitation process, KA model, knowledge in requirement elicitation

Procedia PDF Downloads 328
21844 Effect of Various Durations of Type 2 Diabetes on Muscle Performance

Authors: Santosh Kumar Yadav, Shobha Keswani, Nishat Quddus, Sohrab Ahmad Khan, Zuheb Ahmad Shiddiqui, Varsha Chorsiya

Abstract:

Introduction: Early onset diabetes is more aggressive than the late onset diabetes. Diabetic individual has a greater spectrum of life period to suffer from its damage, complications, and long-term disability. This study aimed at assessing knee joint muscle performance under various durations of diabetes. Method and Materials: A total of 30 diabetic subjects (18 male and 12 females) without diabetic neuropathy were included for the study. They were divided into three groups with 5 years, 10 years and 15 years of duration of disease each. Muscle performance was evaluated through strength and flexibility. Peak torque for quadriceps muscle was measured using isokinetic dynamometer. Flexibility for quadriceps and hamstring muscles were measured through Ducan’s Elys test and 90/90 test. Results: The result showed significant difference in muscle strength (p<0.05), flexibility (p≤0.05) between groups. Discussion: Optimal muscle strength and flexibility are vital for musculoskeletal health and functional independence. Conclusion: The reduced muscle performance and functional impairment in nonneuropathic diabetic patients suggest that other mechanism besides neuropathy that contribute to altered biomechanics. These findings of this study project early management of these altered parameters through disease-specific physical therapy and assessment-based intervention. Clinical Relevance: Managing disability is more costly than managing disease. Prompt and timely identification and management strategy can dramatically reduce the cost of care for diabetic patients.

Keywords: muscle flexibility, muscle performance, muscle torque, type 2 diabetes

Procedia PDF Downloads 312
21843 Preference for Housing Services and Rational House Price Bubbles

Authors: Stefanie Jeanette Huber

Abstract:

This paper explores the relevance and implications of preferences for housing services on house price fluctuations through the lens of an overlapping generation’s model. The model implies that an economy whose agents have lower preferences for housing services is characterized with lower expenditure shares on housing services and will tend to experience more frequent and more volatile housing bubbles. These model predictions are tested empirically in the companion paper Housing Booms and Busts - Convergences and Divergences across OECD countries. Between 1970 - 2013, countries who spend less on housing services as a share of total income experienced significantly more housing cycles and the associated housing boom-bust cycles were more violent. Finally, the model is used to study the impact of rental subsidies and help-to-buy schemes on rational housing bubbles. Rental subsidies are found to contribute to the control of housing bubbles, whereas help-to- buy scheme makes the economy more bubble-prone.

Keywords: housing bubbles, housing booms and busts, preference for housing services, expenditure shares for housing services, rental and purchase subsidies

Procedia PDF Downloads 283
21842 Autonomous Quantum Competitive Learning

Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally

Abstract:

Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.

Keywords: competitive learning, quantum gates, quantum gates, winner-take-all

Procedia PDF Downloads 448
21841 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model

Authors: Soudabeh Shemehsavar

Abstract:

In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.

Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process

Procedia PDF Downloads 309
21840 Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors

Authors: João Madureira, Ricardo Lagido, Inês Sousa, Fraunhofer Portugal

Abstract:

Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU.

Keywords: inertial measurement unit (IMU), global positioning system (GPS), smartphone, surfing performance

Procedia PDF Downloads 389
21839 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation

Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi

Abstract:

Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.

Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation

Procedia PDF Downloads 508
21838 The Role of Group Size, Public Employees’ Wages and Control Corruption Institutions in a Game-Theoretical Model of Public Corruption

Authors: Pablo J. Valverde, Jaime E. Fernandez

Abstract:

This paper shows under which conditions public corruption can emerge. The theoretical model includes variables such as the public employee wage (w), a control corruption parameter (c), and the group size of interactions (GS) between clusters of public officers and contractors. The system behavior is analyzed using phase diagrams based on combinations of such parameters (c, w, GS). Numerical simulations are implemented in order to contrast analytic results based on Nash equilibria of the theoretical model. Major findings include the functional relationship between wages and network topology, which attempts to reduce the emergence of corrupt behavior.

Keywords: public corruption, game theory, complex systems, Nash equilibrium.

Procedia PDF Downloads 226
21837 Impact of a Virtual Reality-Training on Real-World Hockey Skill: An Intervention Trial

Authors: Matthew Buns

Abstract:

Training specificity is imperative for successful performance of the elite athlete. Virtual reality (VR) has been successfully applied to a broad range of training domains. However, to date there is little research investigating the use of VR for sport training. The purpose of this study was to address the question of whether virtual reality (VR) training can improve real world hockey shooting performance. Twenty four volunteers were recruited and randomly selected to complete the virtual training intervention or enter a control group with no training. Four primary types of data were collected: 1) participant’s experience with video games and hockey, 2) participant’s motivation toward video game use, 3) participants technical performance on real-world hockey, and 4) participant’s technical performance in virtual hockey. One-way multivariate analysis of variance (ANOVA) indicated that that the intervention group demonstrated significantly more real-world hockey accuracy [F(1,24) =15.43, p <.01, E.S. = 0.56] while shooting on goal than their control group counterparts [intervention M accuracy = 54.17%, SD=12.38, control M accuracy = 46.76%, SD=13.45]. One-way multivariate analysis of variance (MANOVA) repeated measures indicated significantly higher outcome scores on real-world accuracy (35.42% versus 54.17%; ES = 1.52) and velocity (51.10 mph versus 65.50 mph; ES=0.86) of hockey shooting on goal. This research supports the idea that virtual training is an effective tool for increasing real-world hockey skill.

Keywords: virtual training, hockey skills, video game, esports

Procedia PDF Downloads 137
21836 Comparative Performance Study of Steel Plate Shear Wall with Reinforced Concrete Shear Wall

Authors: Amit S. Chauhan, S. Mandal

Abstract:

The structural response of shear walls subjected to various types of loads is difficult to predict precisely. They are incorporated in buildings to resist lateral forces and support the gravity loads. The steel plate shear walls (SPSWs) are used as lateral load resisting systems for buildings and acts as an alternative to reinforced concrete shear walls (RCSWs). This paper compares the behavior of SPSW with the RCSW incorporated in a building frame having G+6 storey, located in Zone III, using the technique of Equivalent Static Method (ESM) as per Indian Standard Criteria For Earthquake Resistant Design of Structures IS 1893:2002. This paper intends to evaluate several parameters such as lateral displacement at tip, inter-storey drift, weight of steel and volume of concrete with the alteration of the shear wall with respect to different types viz., SPSW and RCSW. The strip model employed in this study is a widely accepted analytical tool for SPSW analysis. SPSW can be modelled as truss members by using a series of diagonal tension strips positioned at 45-degree angles. In this paper, by replacing the SPSWs with the tension strips, the G+6 building has been analyzed using STAAD.Pro V8i. Based on the present study, it can be concluded that structure with SPSWs is much better then structure with RCSWs.

Keywords: equivalent static method, inter-storey drift, lateral displacement, Steel plate shear wall, strip model

Procedia PDF Downloads 230
21835 Efficiency of Secondary Schools by ICT Intervention in Sylhet Division of Bangladesh

Authors: Azizul Baten, Kamrul Hossain, Abdullah-Al-Zabir

Abstract:

The objective of this study is to develop an appropriate stochastic frontier secondary schools efficiency model by ICT Intervention and to examine the impact of ICT challenges on secondary schools efficiency in the Sylhet division in Bangladesh using stochastic frontier analysis. The Translog stochastic frontier model was found an appropriate than the Cobb-Douglas model in secondary schools efficiency by ICT Intervention. Based on the results of the Cobb-Douglas model, it is found that the coefficient of the number of teachers, the number of students, and teaching ability had a positive effect on increasing the level of efficiency. It indicated that these are related to technical efficiency. In the case of inefficiency effects for both Cobb-Douglas and Translog models, the coefficient of the ICT lab decreased secondary school inefficiency, but the online class in school was found to increase the level of inefficiency. The coefficients of teacher’s preference for ICT tools like multimedia projectors played a contributor role in decreasing the secondary school inefficiency in the Sylhet division of Bangladesh. The interaction effects of the number of teachers and the classrooms, and the number of students and the number of classrooms, the number of students and teaching ability, and the classrooms and teaching ability of the teachers were recorded with the positive values and these have a positive impact on increasing the secondary school efficiency. The overall mean efficiency of urban secondary schools was found at 84.66% for the Translog model, while it was 83.63% for the Cobb-Douglas model. The overall mean efficiency of rural secondary schools was found at 80.98% for the Translog model, while it was 81.24% for the Cobb-Douglas model. So, the urban secondary schools performed better than the rural secondary schools in the Sylhet division. It is observed from the results of the Tobit model that the teacher-student ratio had a positive influence on secondary school efficiency. The teaching experiences of those who have 1 to 5 years and 10 years above, MPO type school, conventional teaching method have had a negative and significant influence on secondary school efficiency. The estimated value of σ-square (0.0625) was different from Zero, indicating a good fit. The value of γ (0.9872) was recorded as positive and it can be interpreted as follows: 98.72 percent of random variation around in secondary school outcomes due to inefficiency.

Keywords: efficiency, secondary schools, ICT, stochastic frontier analysis

Procedia PDF Downloads 132
21834 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 96
21833 Self-Care Behavior and Performance Level Associated with Algerian Chronically Ill Patients

Authors: S. Aberkane, N. Djabali, S. Fafi, A. Baghezza

Abstract:

Chronic illnesses affect many Algerians. It is possible to investigate the impact of illness representations and coping on quality of life and whether illness representations are indirectly associated with quality of life through their influence on coping. This study aims at investigating the relationship between illness perception, coping strategies and quality of life with chronic illness. Illness perceptions are indirectly associated with the quality of life through their influence on coping mediation. A sample of 316 participants with chronic illness living in the region of Batna, Algeria, has been adopted in this study. A correlation statistical analysis is used to determine the relationship between illness perception, coping strategies, and quality of life. Multiple regression analysis was employed to highlight the predictive ability of the dimensions of illness perception and coping strategies on the dependent variables of quality of life, where mediation analysis is considered in the exploration of the indirect effect significance of the mediator. This study provides insights about the relationship between illness perception, coping strategies and quality of life in the considered sample (r = 0.39, p < 0.01). Therefore, it proves that there is an effect of illness identity perception, external and medical attributions related to emotional role, physical functioning, and mental health perceived, and these were fully mediated by the asking for assistance (c’= 0.04, p < 0.05), the guarding (c’= 0.00, p < 0.05), and the task persistence strategy (c’= 0.05, p < 0.05). The findings imply partial support for the common-sense model of illness representations in a chronic illness population. Directions for future research are highlighted, as well as implications for psychotherapeutic interventions which target unhelpful beliefs and maladaptive coping strategies (e.g., cognitive behavioral therapy).

Keywords: chronic illness, coping, illness perception, quality of life, self- regulation model

Procedia PDF Downloads 214
21832 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 170
21831 Impact of Building Orientation on Energy Performance of Buildings in Kabul, Afghanistan

Authors: Mustafa Karimi, Chikamoto Tomoyuki

Abstract:

The building sector consumes 36% of total global energy used, whereas only residential buildings are responsible for 22% of that. In residential buildings, energy used for space heating and cooling represents the majority part of the total energy consumption. Although Afghanistan is amongst the lowest in energy usage globally, residential buildings’ energy consumption has caused serious environmental issues, especially in the capital city, Kabul. After decades of war in Afghanistan, redevelopment of the built environment started from scratch in the past years; therefore, to create sustainable urban areas, it is critical to find the most energy-efficient design parameters for buildings that will last for decades. This study aims to assess the impact of building orientation on the energy performance of buildings in Kabul. It is found that the optimal orientation for buildings in Kabul is South and South-southeast, while West-northwest and Northeast orientations are the worst in terms of energy performance. The difference in the total energy consumption between the best and the worst orientation is 17.5%.

Keywords: building orientation, energy consumption, residential buildings, Kabul, environmental issues

Procedia PDF Downloads 114
21830 The Flooding Management Strategy in Urban Areas: Reusing Public Facilities Land as Flood-Detention Space for Multi-Purpose

Authors: Hsiao-Ting Huang, Chang Hsueh-Sheng

Abstract:

Taiwan is an island country which is affected by the monsoon deeply. Under the climate change, the frequency of extreme rainstorm by typhoon becomes more and more often Since 2000. When the extreme rainstorm comes, it will cause serious damage in Taiwan, especially in urban area. It is suffered by the flooding and the government take it as the urgent issue. On the past, the land use of urban planning does not take flood-detention into consideration. With the development of the city, the impermeable surface increase and most of the people live in urban area. It means there is the highly vulnerability in the urban area, but it cannot deal with the surface runoff and the flooding. However, building the detention pond in hydraulic engineering way to solve the problem is not feasible in urban area. The land expropriation is the most expensive construction of the detention pond in the urban area, and the government cannot afford it. Therefore, the management strategy of flooding in urban area should use the existing resource, public facilities land. It can archive the performance of flood-detention through providing the public facilities land with the detention function. As multi-use public facilities land, it also can show the combination of the land use and water agency. To this purpose, this research generalizes the factors of multi-use for public facilities land as flood-detention space with literature review. The factors can be divided into two categories: environmental factors and conditions of public facilities. Environmental factors including three factors: the terrain elevation, the inundation potential and the distance from the drainage system. In the other hand, there are six factors for conditions of public facilities, including area, building rate, the maximum of available ratio etc. Each of them will be according to it characteristic to given the weight for the land use suitability analysis. This research selects the rules of combination from the logical combination. After this process, it can be classified into three suitability levels. Then, three suitability levels will input to the physiographic inundation model for simulating the evaluation of flood-detention respectively. This study tries to respond the urgent issue in urban area and establishes a model of multi-use for public facilities land as flood-detention through the systematic research process of this study. The result of this study can tell which combination of the suitability level is more efficacious. Besides, The model is not only standing on the side of urban planners but also add in the point of view from water agency. Those findings may serve as basis for land use indicators and decision-making references for concerned government agencies.

Keywords: flooding management strategy, land use suitability analysis, multi-use for public facilities land, physiographic inundation model

Procedia PDF Downloads 341
21829 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation

Authors: Yoonsuh Jung, Steven N. MacEachern

Abstract:

Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.

Keywords: cross-validation, model selection, quantile regression, tuning parameter selection

Procedia PDF Downloads 421
21828 Uncertainty in Risk Modeling

Authors: Mueller Jann, Hoffmann Christian Hugo

Abstract:

Conventional quantitative risk management in banking is a risk factor of its own, because it rests on assumptions such as independence and availability of data which do not hold when rare events of extreme consequences are involved. There is a growing recognition of the need for alternative risk measures that do not make these assumptions. We propose a novel method for modeling the risk associated with investment products, in particular derivatives, by using a formal language for specifying financial contracts. Expressions in this language are interpreted in the category of values annotated with (a formal representation of) uncertainty. The choice of uncertainty formalism thus becomes a parameter of the model, so it can be adapted to the particular application and it is not constrained to classical probabilities. We demonstrate our approach using a simple logic-based uncertainty model and a case study in which we assess the risk of counter party default in a portfolio of collateralized loans.

Keywords: risk model, uncertainty monad, derivatives, contract algebra

Procedia PDF Downloads 560
21827 Defect Localization and Interaction on Surfaces with Projection Mapping and Gesture Recognition

Authors: Qiang Wang, Hongyang Yu, MingRong Lai, Miao Luo

Abstract:

This paper presents a method for accurately localizing and interacting with known surface defects by overlaying patterns onto real-world surfaces using a projection system. Given the world coordinates of the defects, we project corresponding patterns onto the surfaces, providing an intuitive visualization of the specific defect locations. To enable users to interact with and retrieve more information about individual defects, we implement a gesture recognition system based on a pruned and optimized version of YOLOv6. This lightweight model achieves an accuracy of 82.8% and is suitable for deployment on low-performance devices. Our approach demonstrates the potential for enhancing defect identification, inspection processes, and user interaction in various applications.

Keywords: defect localization, projection mapping, gesture recognition, YOLOv6

Procedia PDF Downloads 68
21826 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that it is not linked to planning software such as Microsoft Project, which lacks the database required for data storage. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, HR reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: primavera P6, SQL, Power BI, EVM, integration management

Procedia PDF Downloads 91
21825 Gender Recognition with Deep Belief Networks

Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang

Abstract:

A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.

Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs

Procedia PDF Downloads 431
21824 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 74
21823 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons

Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum

Abstract:

CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength, and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage.

Keywords: carbon fiber reinforced polymer (CFRP), tendon, anchor, tensile property, bond strength

Procedia PDF Downloads 233
21822 Performance Evaluation of Polyethyleneimine/Polyethylene Glycol Functionalized Reduced Graphene Oxide Membranes for Water Desalination via Forward Osmosis

Authors: Mohamed Edokali, Robert Menzel, David Harbottle, Ali Hassanpour

Abstract:

Forward osmosis (FO) process has stood out as an energy-efficient technology for water desalination and purification, although the practical application of FO for desalination still relies on RO-based Thin Film Composite (TFC) and Cellulose Triacetate (CTA) polymeric membranes which have a low performance. Recently, graphene oxide (GO) laminated membranes have been considered an ideal selection to overcome the bottleneck of the FO-polymeric membranes owing to their simple fabrication procedures, controllable thickness and pore size and high water permeability rates. However, the low stability of GO laminates in wet and harsh environments is still problematic. The recent developments of modified GO and hydrophobic reduced graphene oxide (rGO) membranes for FO desalination have demonstrated attempts to overcome the ongoing trade-off between desalination performance and stability, which is yet to be achieved prior to the practical implementation. In this study, acid-functionalized GO nanosheets cooperatively reduced and crosslinked by the hyperbranched polyethyleneimine (PEI) and polyethylene glycol (PEG) polymers, respectively, are applied for fabrication of the FO membrane, to enhance the membrane stability and performance, and compared with other functionalized rGO-FO membranes. PEI/PEG doped rGO membrane retained two compacted d-spacings (0.7 and 0.31 nm) compared to the acid-functionalized GO membrane alone (0.82 nm). Besides increasing the hydrophilicity, the coating layer of PEG onto the PEI-doped rGO membrane surface enhanced the structural integrity of the membrane chemically and mechanically. As a result of these synergetic effects, the PEI/PEG doped rGO membrane exhibited a water permeation of 7.7 LMH, salt rejection of 97.9 %, and reverse solute flux of 0.506 gMH at low flow rates in the FO desalination process.

Keywords: desalination, forward osmosis, membrane performance, polyethyleneimine, polyethylene glycol, reduced graphene oxide, stability

Procedia PDF Downloads 82
21821 A Multistep Broyden’s-Type Method for Solving Systems of Nonlinear Equations

Authors: M. Y. Waziri, M. A. Aliyu

Abstract:

The paper proposes an approach to improve the performance of Broyden’s method for solving systems of nonlinear equations. In this work, we consider the information from two preceding iterates rather than a single preceding iterate to update the Broyden’s matrix that will produce a better approximation of the Jacobian matrix in each iteration. The numerical results verify that the proposed method has clearly enhanced the numerical performance of Broyden’s Method.

Keywords: mulit-step Broyden, nonlinear systems of equations, computational efficiency, iterate

Procedia PDF Downloads 621
21820 The Promotion of AI Technology to Financial Development in China

Authors: Li Yong

Abstract:

Using the data of 135 financial institutions in China from 2018 to 2022, this paper deeply analyzes the underlying theoretical mechanism of artificial intelligence (AI) technology promoting financial development and examines the impact of AI technology on the digital transformation performance of financial enterprises. It is found that the level of AI technology has a significant positive impact on the development of finance. Compared with the impact on the expansion of financial scale, AI technology plays a greater role in improving the performance of financial institutions, reflecting the trend characteristics of the current AI technology to promote the evolution of financial structure. By investigating the intermediary transmission effects, we found that AI technology plays a positive role in promoting the performance of financial institutions by reducing operating costs and improving customer satisfaction, but its function in innovating financial products and mitigating financial risks is relatively limited. In addition, the promotion of AI technology in financial development has significant heterogeneity in terms of the type, scale, and attributes of financial institutions.

Keywords: artificial intelligence technology, financial development, China, heterogeneity

Procedia PDF Downloads 46
21819 The Effect of a Probiotic: Leuconostoc mesenteroides B4, and Its Products on Growth Performance and Disease Resistance of Orange-Spotted Grouper Epinephelus coioides

Authors: Mei-Ying Huang, Huei-Jen Ju, Liang-Wei Tseng, Chin-Jung Hsu

Abstract:

The aim of this study was to investigate a probiotic, Leuconostoc mesenteroides B4, and its products, isomaltooligosaccharide and dextran, on growth performance, digestive enzymes, immune responses, and pathogen resistance of spotted grouper Epinephelus coioides. The grouper were fed control and diets supplemented with L. mesenteroides B4 (107 CFU/g), isomaltooligosaccharide (0.15%), isomaltooligosaccharide (0.15%) + L. mesenteroides B4 (107 CFU/g) (I + B4), and dextran (0.15%) + L. mesenteroides B4 (107 CFU/g) (D + B4) for 8 weeks. The result showed that final weights and percent weight gains of the grouper fed diets supplemented with L. mesenteroides B4 and I + B4 were significantly higher than that of the control group (p < 0.05). The activities of digestive enzymes in the grouper fed with I + B4 were significantly higher than the control group (p < 0.05), too. After challenge with Vibrio harveyi, the enzyme activities of antiprotease and lysozyme as well as of respiratory burst of the fish fed with I + B4 and D + B4 were significantly higher than that of the control group (p < 0.05). The grouper fed with the both diets also had higher survival rates than that of the control group after the challenge. Overall, the study indicated that feeding diets supplemented with L. mesenteroides B4, and its products, isomaltooligosaccharide, and dextran could be an effective method for enhancing the growth performance and disease resistance in orange-spotted grouper.

Keywords: orange-spotted grouper, probiotic Leuconostoc mesenteroides B4, isomaltooligosaccharide, dextran, growth performance, pathogen resistance

Procedia PDF Downloads 249
21818 Effect of Injection Strategy on the Performance and Emission of E85 in a Heavy-Duty Engine under Partially Premixed Combustion

Authors: Amir Aziz, Martin Tuner, Sebastian Verhelst, Oivind Andersson

Abstract:

Partially Premixed Combustion (PPC) is a combustion concept which aims to simultaneously achieve high efficiency and low engine-out emissions. Extending the ignition delay to promote the premixing, has been recognized as one of the key factor to achieve PPC. Fuels with high octane number have been proven to be a good candidates to extend the ignition delay. In this work, E85 (85% ethanol) has been used as a PPC fuel. The aim of this work was to investigate a suitable injection strategy for PPC combustion fueled with E85 in a single-cylinder heavy-duty engine. Single and double injection strategy were applied with different injection timing and the ratio between different injection pulses was varied. The performance and emission were investigated at low load. The results show that the double injection strategy should be preferred for PPC fueled with E85 due to low emissions and high efficiency, while keeping the pressure raise rate at very low levels.

Keywords: E85, partially premixed combustion, injection strategy, performance and emission

Procedia PDF Downloads 164
21817 Verification of a Simple Model for Rolling Isolation System Response

Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly

Abstract:

Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.

Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system

Procedia PDF Downloads 237
21816 Performance Evaluation of a Prioritized, Limited Multi-Server Processor-Sharing System that Includes Servers with Various Capacities

Authors: Yoshiaki Shikata, Nobutane Hanayama

Abstract:

We present a prioritized, limited multi-server processor sharing (PS) system where each server has various capacities, and N (≥2) priority classes are allowed in each PS server. In each prioritized, limited server, different service ratio is assigned to each class request, and the number of requests to be processed is limited to less than a certain number. Routing strategies of such prioritized, limited multi-server PS systems that take into account the capacity of each server are also presented, and a performance evaluation procedure for these strategies is discussed. Practical performance measures of these strategies, such as loss probability, mean waiting time, and mean sojourn time, are evaluated via simulation. In the PS server, at the arrival (or departure) of a request, the extension (shortening) of the remaining sojourn time of each request receiving service can be calculated by using the number of requests of each class and the priority ratio. Utilising a simulation program which executes these events and calculations, the performance of the proposed prioritized, limited multi-server PS rule can be analyzed. From the evaluation results, most suitable routing strategy for the loss or waiting system is clarified.

Keywords: processor sharing, multi-server, various capacity, N-priority classes, routing strategy, loss probability, mean sojourn time, mean waiting time, simulation

Procedia PDF Downloads 319