Search results for: learning curve
4147 Achieving 13th Sustainable Development Goal: Urbanization and ICT Empowerment in Pursuit of Carbon Neutrality - Beyond Linear Thinking
Authors: Salim Khan
Abstract:
The attainment of the carbon neutrality objective and Sustainable Development Goal 13 (SDG-13) target, which pertains to climate actions, received widespread attention in developing and emerging nations. Given the increasing pace of urbanization, technological advancements, and rapid growth, it is imperative to examine the linear and nonlinear effects of urbanization and economic growth and the linear impact of information and communication technology (ICT) on carbon emissions (CO2e). This study employs the Dynamic System GMM (DSGMM) and Panel Quantile Regression (PQR) methodologies to investigate the causal relationship between urbanization, ICT, economic growth, and their interplay on CO2e in 39 BRI countries from 2001 to 2020. The study's findings indicate that the impact of urbanization on CO2e exhibits linear and nonlinear patterns. The specific nonlinear impact of urbanization leads to a decrease in CO2e, hence facilitating the achievement of carbon neutrality and contributing to SDG-13. The study highlights the importance of ICT in achieving SDG-13 by reducing CO2e, emphasizing the need for informatization. Simultaneously, the findings support the Environmental Kuznets Curve (EKC) hypothesis and support the pollution haven theory. Finally, based on empirical findings, significant policy implications are suggested for achieving SGD 13 and carbon neutrality.Keywords: urbanization, ICT, CO2 emission, EKC, pollution haven, BRI
Procedia PDF Downloads 294146 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1244145 The Characteristics of Settlement Owing to the Construction of Several Parallel Tunnels with Short Distances
Authors: Lojain Suliman, Xinrong Liu, Xiaohan Zhou
Abstract:
Since most tunnels are built in crowded metropolitan settings, the excavation process must take place in highly condensed locations, including high-density cities. In this way, the tunnels are typically located close together, which leads to more interaction between the parallel existing tunnels, and this, in turn, leads to more settlement. This research presents an examination of the impact of a large-scale tunnel excavation on two forms of settlement: surface settlement and settlement surrounding the tunnel. Additionally, research has been done on the properties of interactions between two and three parallel tunnels. The settlement has been evaluated using three primary techniques: theoretical modeling, numerical simulation, and data monitoring. Additionally, a parametric investigation on how distance affects the settlement characteristic for parallel tunnels with short distances has been completed. Additionally, it has been observed that the sequence of excavation has an impact on the behavior of settlements. Nevertheless, a comparison of the model test and numerical simulation yields significant agreement in terms of settlement trend and value. Additionally, when compared to the FEM study, the suggested analytical solution exhibits reduced sensitivity in the settlement prediction. For example, the settlement of the small tunnel diameter does not appear clearly on the settlement curve, while it is notable in the FEM analysis. It is advised, however, that additional studies be conducted in the future employing analytical solutions for settlement prediction for parallel tunnels.Keywords: settlement, FEM, analytical solution, parallel tunnels
Procedia PDF Downloads 474144 Integrating Wound Location Data with Deep Learning for Improved Wound Classification
Authors: Mouli Banga, Chaya Ravindra
Abstract:
Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.Keywords: wound classification, MobileNetV2, ResNet50, multimodel
Procedia PDF Downloads 384143 Earthquake Retrofitting of Concrete Structures Using Steel Bracing with the Results of Linear and Nonlinear Static Analysis
Authors: Ehsan Sadie
Abstract:
The use of steel braces in concrete structures has been considered by researchers in recent decades due to its easy implementation, economics and the ability to create skylights in braced openings compared to shear wall openings as well as strengthening weak concrete structures to earthquakes. The purpose of this article is to improve and strengthen concrete structures with steel bracing. In addition, cases such as different numbers of steel braces in different openings of concrete structures and interaction between concrete frames and metal braces have been studied. In this paper, by performing static nonlinear analysis and examining ductility, the relative displacement of floors, examining the performance of samples, and determining the coefficient of behavior of composite frames (concrete frames with metal bracing), the behavior of reinforced concrete frames is compared with frame without bracing. The results of analyzes and studies show that the addition of metal bracing increases the strength and stiffness of the frame and reduces the ductility and lateral displacement of the structure. In general, the behavior of the structure against earthquakes will be improved.Keywords: behavior coefficient, bracing, concrete structure, convergent bracing, earthquake, linear static analysis, nonlinear analysis, pushover curve
Procedia PDF Downloads 1824142 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 944141 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 154140 Disaggregation the Daily Rainfall Dataset into Sub-Daily Resolution in the Temperate Oceanic Climate Region
Authors: Mohammad Bakhshi, Firas Al Janabi
Abstract:
High resolution rain data are very important to fulfill the input of hydrological models. Among models of high-resolution rainfall data generation, the temporal disaggregation was chosen for this study. The paper attempts to generate three different rainfall resolutions (4-hourly, hourly and 10-minutes) from daily for around 20-year record period. The process was done by DiMoN tool which is based on random cascade model and method of fragment. Differences between observed and simulated rain dataset are evaluated with variety of statistical and empirical methods: Kolmogorov-Smirnov test (K-S), usual statistics, and Exceedance probability. The tool worked well at preserving the daily rainfall values in wet days, however, the generated data are cumulated in a shorter time period and made stronger storms. It is demonstrated that the difference between generated and observed cumulative distribution function curve of 4-hourly datasets is passed the K-S test criteria while in hourly and 10-minutes datasets the P-value should be employed to prove that their differences were reasonable. The results are encouraging considering the overestimation of generated high-resolution rainfall data.Keywords: DiMoN Tool, disaggregation, exceedance probability, Kolmogorov-Smirnov test, rainfall
Procedia PDF Downloads 2054139 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks
Procedia PDF Downloads 3574138 Education for Sustainability Using PBL on an Engineering Course at the National University of Colombia
Authors: Hernán G. Cortés-Mora, José I. Péna-Reyes, Alfonso Herrera-Jiménez
Abstract:
This article describes the implementation experience of Project-Based Learning (PBL) in an engineering course of the Universidad Nacional de Colombia, with the aim of strengthening student skills necessary for the exercise of their profession under a sustainability framework. Firstly, we present a literature review on the education for sustainability field, emphasizing the skills and knowledge areas required for its development, as well as the commitment of the Faculty of Engineering of the Universidad Nacional de Colombia, and other engineering faculties of the country, regarding education for sustainability. This article covers the general aspects of the course, describes how students team were formed, and how their experience was during the first semester of 2017. During this period two groups of students decided to develop their course project aiming to solve a problem regarding a Non-Governmental Organization (NGO) that works with head-of-household mothers in a low-income neighborhood in Bogota (Colombia). Subsequently, we show how sustainability is involved in the course, how tools are provided to students, and how activities are developed as to strengthen their abilities, which allows them to incorporate sustainability in their projects while also working on the methodology used to develop said projects. Finally, we introduce the results obtained by the students who sent the prototypes of their projects to the community they were working on and the conclusions reached by them regarding the course experience.Keywords: sustainability, project-based learning, engineering education, higher education for sustainability
Procedia PDF Downloads 3564137 The Art and Science of Trauma-Informed Psychotherapy: Guidelines for Inter-Disciplinary Clinicians
Authors: Daphne Alroy-Thiberge
Abstract:
Trauma-impacted individuals present unique treatment challenges that include high reactivity, hyper-and hypo-arousal, poor adherence to therapy, as well as powerful transference and counter-transference experiences in therapy. This work provides an overview of the clinical tenets most often encountered in trauma-impacted individuals. Further, it provides readily applicable clinical techniques to optimize therapeutic rapport and facilitate accelerated positive mental health outcomes. Finally, integrated neuroscience and clinical evidence-based data are discussed to shed new light on crisis states in trauma-impacted individuals. This knowledge is utilized to provide effective and concrete interventions towards rapid and successful de-escalation of the impacted individual. A highly interactive, adult-learning-principles-based modality is utilized to provide an organic learning experience for participants. The information and techniques learned aim to increase clinical effectiveness, reduce staff injuries and burnout, and significantly enhance positive mental health outcomes and self-determination for the trauma-impacted individuals treated.Keywords: clinical competencies, crisis interventions, psychotherapy techniques, trauma informed care
Procedia PDF Downloads 1154136 Improving the Students’ Writing Skill by Using Brainstorming Technique
Authors: M. Z. Abdul Rofiq Badril Rizal
Abstract:
This research is aimed to know the improvement of students’ English writing skill by using brainstorming technique. The technique used in writing is able to help the students’ difficulties in generating ideas and to lead the students to arrange the ideas well as well as to focus on the topic developed in writing. The research method used is classroom action research. The data sources of the research are an English teacher who acts as an observer and the students of class X.MIA5 consist of 35 students. The test result and observation are collected as the data in this research. Based on the research result in cycle one, the percentage of students who reach minimum accomplishment criteria (MAC) is 76.31%. It shows that the cycle must be continued to cycle two because the aim of the research has not accomplished, all of the students’ scores have not reached MAC yet. After continuing the research to cycle two and the weaknesses are improved, the process of teaching and learning runs better. At the test which is conducted in the end of learning process in cycle two, all of the students reach the minimum score and above 76 based on the minimum accomplishment criteria. It means the research has been successful and the percentage of students who reach minimum accomplishment criteria is 100%. Therefore, the writer concludes that brainstorming technique is able to improve the students’ English writing skill at the tenth grade of SMAN 2 Jember.Keywords: brainstorming technique, improving, writing skill, knowledge and innovation engineering
Procedia PDF Downloads 3694135 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 794134 A Shared Space: A Pioneering Approach to Interprofessional Education in New Zealand
Authors: Maria L. Ulloa, Ruth M. Crawford, Stephanie Kelly, Joey Domdom
Abstract:
In recent decades health and social service delivery have become more collaborative and interdisciplinary. Emerging trends suggest the need for an integrative and interprofessional approach to meet the challenges faced by professionals navigating the complexities of health and social service practice environments. Terms such as multidisciplinary practice, interprofessional collaboration, interprofessional education and transprofessional practice have become the common language used across a range of social services and health providers in western democratic systems. In Aotearoa New Zealand, one example of an interprofessional collaborative approach to curriculum design and delivery in health and social service is the development of an innovative Masters of Professional Practice programme. This qualification is the result of a strategic partnership between two tertiary institutions – Whitireia New Zealand (NZ) and the Wellington Institute of Technology (Weltec) in Wellington. The Master of Professional Practice programme was designed and delivered from the perspective of a collaborative, interprofessional and relational approach. Teachers and students in the programme come from a diverse range of cultural, professional and personal backgrounds and are engaged in courses using a blended learning approach that incorporates the values and pedagogies of interprofessional education. Students are actively engaged in professional practice while undertaking the programme. This presentation describes the themes of exploratory qualitative formative observations of engagement in class and online, student assessments, student research projects, as well as qualitative interviews with the programme teaching staff. These formative findings reveal the development of critical practice skills around the common themes of the programme: research and evidence based practice, education, leadership, working with diversity and advancing critical reflection of professional identities and interprofessional practice. This presentation will provide evidence of enhanced learning experiences in higher education and learning in multi-disciplinary contexts.Keywords: diversity, exploratory research, interprofessional education, professional identity
Procedia PDF Downloads 3034133 Reliability Indices Evaluation of SEIG Rotor Core Magnetization with Minimum Capacitive Excitation for WECs
Authors: Lokesh Varshney, R. K. Saket
Abstract:
This paper presents reliability indices evaluation of the rotor core magnetization of the induction motor operated as a self-excited induction generator by using probability distribution approach and Monte Carlo simulation. Parallel capacitors with calculated minimum capacitive value across the terminals of the induction motor operating as a SEIG with unregulated shaft speed have been connected during the experimental study. A three phase, 4 poles, 50Hz, 5.5 hp, 12.3A, 230V induction motor coupled with DC Shunt Motor was tested in the electrical machine laboratory with variable reactive loads. Based on this experimental study, it is possible to choose a reliable induction machine operating as a SEIG for unregulated renewable energy application in remote area or where grid is not available. Failure density function, cumulative failure distribution function, survivor function, hazard model, probability of success and probability of failure for reliability evaluation of the three phase induction motor operating as a SEIG have been presented graphically in this paper.Keywords: residual magnetism, magnetization curve, induction motor, self excited induction generator, probability distribution, Monte Carlo simulation
Procedia PDF Downloads 5614132 The Long-Run Impact of Financial Development on Greenhouse Gas Emissions in India: An Application of Regime Shift Based Cointegration Approach
Authors: Javaid Ahmad Dar, Mohammad Asif
Abstract:
The present study investigates the long-run impact of financial development, energy consumption and economic growth on greenhouse gas emissions for India, in presence of endogenous structural breaks, over a period of 1971-2013. Autoregressive distributed lag bounds testing procedure and Hatemi-J threshold cointegration technique have been used to test the variables for cointegration. ARDL bounds test did not confirm any cointegrating relationship between the variables. The threshold cointegration test establishes the presence of long-run impact of financial development, energy use and economic growth on greenhouse gas emissions in India. The results reveal that the long-run relationship between the variables has witnessed two regime shifts, in 1978 and 2002. The empirical evidence shows that financial sector development and energy consumption in India degrade environment. Unlike previous studies, this paper finds no statistical evidence of long-run relationship between economic growth and environmental deterioration. The study also challenges the existence of environmental Kuznets curve in India.Keywords: cointegration, financial development, global warming, greenhouse gas emissions, regime shift, unit root
Procedia PDF Downloads 3854131 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations
Authors: Shank Kulkarni, Alireza Tabarraei
Abstract:
The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test
Procedia PDF Downloads 2474130 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 3104129 Learning Chinese Suprasegmentals for a Better Communicative Performance
Authors: Qi Wang
Abstract:
Chinese has become a powerful worldwide language and millions of learners are studying it all over the words. Chinese is a tone language with unique meaningful characters, which makes foreign learners master it with more difficulties. On the other hand, as each foreign language, the learners of Chinese first will learn the basic Chinese Sound Structure (the initials and finals, tones, Neutral Tone and Tone Sandhi). It’s quite common that in the following studies, teachers made a lot of efforts on drilling and error correcting, in order to help students to pronounce correctly, but ignored the training of suprasegmental features (e.g. stress, intonation). This paper analysed the oral data based on our graduation students (two-year program) from 2006-2013, presents the intonation pattern of our graduates to speak Chinese as second language -high and plain with heavy accents, without lexical stress, appropriate stop endings and intonation, which led to the misunderstanding in different real contexts of communications and the international official Chinese test, e.g. HSK (Chinese Proficiency Test), HSKK (HSK Speaking Test). This paper also demonstrated how the Chinese to use the suprasegmental features strategically in different functions and moods (declarative, interrogative, imperative, exclamatory and rhetorical intonations) in order to train the learners to achieve better Communicative Performance.Keywords: second language learning, suprasegmental, communication, HSK (Chinese Proficiency Test)
Procedia PDF Downloads 4394128 Service Information Integration Platform as Decision Making Tools for the Service Industry Supply Chain-Indonesia Service Integration Project
Authors: Haikal Achmad Thaha, Pujo Laksono, Dhamma Nibbana Putra
Abstract:
Customer service is one of the core interest in a service sector of a company, whether as the core business or as service part of the operation. Most of the time, the people and the previous research in service industry is focused on finding the best business model solution for the service sector, usually to decide between total in house customer service, outsourcing, or something in between. Conventionally, to take this decision is some important part of the management job, and this is a process that usually takes some time and staff effort, meanwhile market condition and overall company needs may change and cause loss of income and temporary disturbance in the companies operation . However, in this paper we have offer a new concept model to assist decision making process in service industry. This model will featured information platform as central tool to integrate service industry operation. The result is service information model which would ideally increase response time and effectivity of the decision making. it will also help service industry in switching the service solution system quickly through machine learning when the companies growth and the service solution needed are changing.Keywords: service industry, customer service, machine learning, decision making, information platform
Procedia PDF Downloads 6254127 Automatic Detection Of Diabetic Retinopathy
Authors: Zaoui Ismahene, Bahri Sidi Mohamed, Abbassa Nadira
Abstract:
Diabetic Retinopathy (DR) is a leading cause of vision impairment and blindness among individuals with diabetes. Early diagnosis is crucial for effective treatment, yet current diagnostic methods rely heavily on manual analysis of retinal images, which can be time-consuming and prone to subjectivity. This research proposes an automated system for the detection of DR using Jacobi wavelet-based feature extraction combined with Support Vector Machines (SVM) for classification. The integration of wavelet analysis with machine learning techniques aims to improve the accuracy, efficiency, and reliability of DR diagnosis. In this study, retinal images are preprocessed through normalization, resizing, and noise reduction to enhance the quality of the images. The Jacobi wavelet transform is then applied to extract both global and local features, effectively capturing subtle variations in retinal images that are indicative of DR. These extracted features are fed into an SVM classifier, known for its robustness in handling high-dimensional data and its ability to achieve high classification accuracy. The SVM classifier is optimized using parameter tuning to improve performance. The proposed methodology is evaluated using a comprehensive dataset of retinal images, encompassing a range of DR severity levels. The results show that the proposed system outperforms traditional wavelet-based methods, demonstrating significantly higher accuracy, sensitivity, and specificity in detecting DR. By leveraging the discriminative power of Jacobi wavelet features and the robustness of SVM, the system provides a promising solution for the automatic detection of DR, which could assist ophthalmologists in early diagnosis and intervention, ultimately improving patient outcomes. This research highlights the potential of combining wavelet-based image processing with machine learning for advancing automated medical diagnostics.Keywords: iabetic retinopathy (DR), Jacobi wavelets, machine learning, feature extraction, classification
Procedia PDF Downloads 134126 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method
Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi
Abstract:
The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)
Procedia PDF Downloads 2654125 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation
Authors: Nguyen Thu Huong, Nguyen Quang Bau
Abstract:
The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.Keywords: hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation
Procedia PDF Downloads 4894124 Iranian Students’ and Teachers’ Perceptions of Effective Foreign Language Teaching
Authors: Mehrnoush Tajnia, Simin Sadeghi-Saeb
Abstract:
Students and teachers have different perceptions of effectiveness of instruction. Comparing students’ and teachers’ beliefs and finding the mismatches between them can increase L2 students’ satisfaction. Few studies have taken into account the beliefs of both students and teachers on different aspects of pedagogy and the effect of learners’ level of education and contexts on effective foreign language teacher practices. Therefore, the present study was conducted to compare students’ and teachers’ perceptions on effective foreign language teaching. A sample of 303 learners and 54 instructors from different private language institutes and universities participated in the study. A questionnaire was developed to elicit participants’ beliefs on effective foreign language teaching and learning. The analysis of the results revealed that: a) there is significant difference between the students’ beliefs about effective teacher practices and teachers’ belief, b) Class level influences students’ perception of effective foreign language teacher, d) There is a significant difference of opinion between those learners who study foreign languages at university and those who study foreign language in private institutes with respect to effective teacher practices. The present paper concludes that finding the gap between students’ and teachers’ beliefs would help both of the groups to enhance their learning and teaching.Keywords: effective teacher, effective teaching, students’ beliefs, teachers’ beliefs
Procedia PDF Downloads 3214123 Utilising Sociodrama as Classroom Intervention to Develop Sensory Integration in Adolescents who Present with Mild Impaired Learning
Authors: Talita Veldsman, Elzette Fritz
Abstract:
Many children attending special education present with sensory integration difficulties that hamper their learning and behaviour. These learners can benefit from therapeutic interventions as part of their classroom curriculum that can address sensory development and allow for holistic development to take place. A research study was conducted by utilizing socio-drama as a therapeutic intervention in the classroom in order to develop sensory integration skills. The use of socio-drama as therapeutic intervention proved to be a successful multi-disciplinary approach where education and psychology could build a bridge of growth and integration. The paper describes how socio-drama was used in the classroom and how these sessions were designed. The research followed a qualitative approach and involved six Afrikaans-speaking children attending special secondary school in the age group 12-14 years. Data collection included observations during the session, reflective art journals, semi-structured interviews with the teacher and informal interviews with the adolescents. The analysis found improved self-confidence, better social relationships, sensory awareness and self-regulation in the participants after a period of a year.Keywords: education, sensory integration, sociodrama, classroom intervention, psychology
Procedia PDF Downloads 5824122 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 1724121 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 774120 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 1814119 Using Deep Learning in Lyme Disease Diagnosis
Authors: Teja Koduru
Abstract:
Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash
Procedia PDF Downloads 2464118 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior
Authors: Burak Bal
Abstract:
Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure
Procedia PDF Downloads 158