Search results for: Hybrid deep learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9953

Search results for: Hybrid deep learning

5843 Teaching Turn-Taking Rules and Pragmatic Principles to Empower EFL Students and Enhance Their Learning in Speaking Modules

Authors: O. F. Elkommos

Abstract:

Teaching and learning EFL speaking modules is one of the most challenging productive modules for both instructors and learners. In a student-centered interactive communicative language teaching approach, learners and instructors should be aware of the fact that the target language must be taught as/for communication. The student must be empowered by tools that will work on more than one level of their communicative competence. Communicative learning will need a teaching and learning methodology that will address the goal. Teaching turn-taking rules, pragmatic principles and speech acts will enhance students' sociolinguistic competence, strategic competence together with discourse competence. Sociolinguistic competence entails the mastering of speech act conventions and illocutionary acts of refusing, agreeing/disagreeing; emotive acts like, thanking, apologizing, inviting, offering; directives like, ordering, requesting, advising, and hinting, among others. Strategic competence includes enlightening students’ consciousness of the various particular turn-taking systemic rules of organizing techniques of opening and closing conversation, adjacency pairs, interrupting, back-channeling, asking for/giving opinion, agreeing/disagreeing, using natural fillers for pauses, gaps, speaker select, self-select, and silence among others. Students will have the tools to manage a conversation. Students are engaged in opportunities of experiencing the natural language not as a mere extra student talking time but rather an empowerment of knowing and using the strategies. They will have the component items they need to use as well as the opportunity to communicate in the target language using topics of their interest and choice. This enhances students' communicative abilities. Available websites and textbooks now use one or more of these tools of turn-taking or pragmatics. These will be students' support in self-study in their independent learning study hours. This will be their reinforcement practice on e-Learning interactive activities. The students' target is to be able to communicate the intended meaning to an addressee that is in turn able to infer that intended meaning. The combination of these tools will be assertive and encouraging to the student to beat the struggle with what to say, how to say it, and when to say it. Teaching the rules, principles and techniques is an act of awareness raising method engaging students in activities that will lead to their pragmatic discourse competence. The aim of the paper is to show how the suggested pragmatic model will empower students with tools and systems that would support their learning. Supporting students with turn taking rules, speech act theory, applying both to texts and practical analysis and using it in speaking classes empowers students’ pragmatic discourse competence and assists them to understand language and its context. They become more spontaneous and ready to learn the discourse pragmatic dimension of the speaking techniques and suitable content. Students showed a better performance and a good motivation to learn. The model is therefore suggested for speaking modules in EFL classes.

Keywords: communicative competence, EFL, empowering learners, enhance learning, speech acts, teaching speaking, turn taking, learner centred, pragmatics

Procedia PDF Downloads 176
5842 [Keynote Speech]: Guiding Teachers to Make Lessons Relevant, Appealing, and Personal (RAP) for Academically-Low-Achieving Students in STEM Subjects

Authors: Nazir Amir

Abstract:

Teaching approaches to present science and mathematics content amongst academically-low-achieving students may need to be different than approaches that are adopted for the more academically-inclined students, primarily due to the different learning needs and learning styles of these students. In crafting out lessons to motivate and engage these students, teachers need to consider the backgrounds of these students and have a good understanding of their interests so that lessons can be presented in ways that appeal to them, and made relevant not just to the world around them, but also to their personal experiences. This presentation highlights how the author worked with a Professional Learning Community (PLC) of teachers in crafting out fun and feasible classroom teaching approaches to present science and mathematics content in ways that are made Relevant, Appealing, and Personal (RAP) to groups of academically-low-achieving students in Singapore. Feedback from the students and observations from their work suggest that they were engaged through the RAP-modes of instruction, and were able to appreciate the role of science and mathematics through a variety of low-cost design-based STEM (Science, Technology, Engineering, and Mathematics) activities. Such results imply that teachers teaching academically-low-achieving students, and those in under-resourced communities, could consider infusing RAP-infused instructions into their lessons in getting students develop positive attitudes towards STEM subjects.

Keywords: STEM Education, STEAM Education, Curriculum Instruction, Academically At-Risk Students, Singapore

Procedia PDF Downloads 304
5841 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 139
5840 Graphic Calculator Effectiveness in Biology Teaching and Learning

Authors: Nik Azmah Nik Yusuff, Faridah Hassan Basri, Rosnidar Mansor

Abstract:

The purpose of the study is to find out the effectiveness of using Graphic calculators (GC) with Calculator Based Laboratory 2 (CBL2) in teaching and learning of form four biology for these topics: Nutrition, Respiration and Dynamic Ecosystem. Sixty form four science stream students were the participants of this study. The participants were divided equally into the treatment and control groups. The treatment group used GC with CBL2 during experiments while the control group used the ordinary conventional laboratory apparatus without using GC with CBL2. Instruments in this study were a set of pre-test and post-test and a questionnaire. T-Test was used to compare the student’s biology achievement while a descriptive statistic was used to analyze the outcome of the questionnaire. The findings of this study indicated the use of GC with CBL2 in biology had significant positive effect. The highest mean was 4.43 for item stating the use of GC with CBL2 had saved collecting experiment result’s time. The second highest mean was 4.10 for item stating GC with CBL2 had saved drawing and labelling graphs. The outcome from the questionnaire also showed that GC with CBL2 were easy to use and save time. Thus, teachers should use GC with CBL2 in support of efforts by Malaysia Ministry of Education in encouraging technology-enhanced lessons.

Keywords: biology experiments, Calculator-Based Laboratory 2 (CBL2), graphic calculators, Malaysia Secondary School, teaching/learning

Procedia PDF Downloads 403
5839 The Effect of Disseminating Basic Knowledge on Radiation in Emergency Distance Learning of COVID-19

Authors: Satoko Yamasaki, Hiromi Kawasaki, Kotomi Yamashita, Susumu Fukita, Kei Sounai

Abstract:

People are susceptible to rumors when the cause of their health problems is unknown or invisible. In order for individuals to be unaffected by rumors, they need basic knowledge and correct information. Community health nursing classes use cases where basic knowledge of radiation can be utilized on a regular basis, thereby teaching that basic knowledge is important in preventing anxiety caused by rumors. Nursing students need to learn that preventive activities are essential for public health nursing care. This is the same methodology used to reduce COVID-19 anxiety among individuals. This study verifies the learning effect concerning the basic knowledge of radiation necessary for case consultation by emergency distance learning. Sixty third-year nursing college students agreed to participate in this research. The knowledge tests conducted before and after classes were compared, with the chi-square test used for testing. There were five knowledge questions regarding distance lessons. This was considered to be 5% significant. The students’ reports which describe the results of responding to health consultations, were analyzed qualitatively and descriptively. In this case study, a person living in an area not affected by radiation was anxious about drinking water and, thus, consulted with a student. The contents of the lecture were selected the minimum amount of knowledge used for the answers of the consultant; specifically hot spots, internal exposure risk, food safety, characteristics of cesium-137, and precautions for counselors. Before taking the class, the most correctly answered question by students concerned daily behavior at risk of internal exposure (52.2%). The question with the fewest correct answers was the selection of places that are likely to be hot spots (3.4%). All responses increased significantly after taking the class (p < 0.001). The answers to the counselors, as written by the students, were 'Cesium is strongly bound to the soil, so it is difficult to transfer to water' and 'Water quality test results of tap water are posted on the city's website.' These were concrete answers obtained by using specialized knowledge. Even in emergency distance learning, the students gained basic knowledge regarding radiation and created a document to utilize said knowledge while assuming the situation concretely. It was thought that the flipped classroom method, even if conducted remotely, could maintain students' learning. It was thought that setting specific knowledge and scenes to be used would enhance the learning effect. By changing the case to concern that of the anxiety caused by infectious diseases, students may be able to effectively gain the basic knowledge to decrease the anxiety of residents due to infectious diseases.

Keywords: effect of class, emergency distance learning, nursing student, radiation

Procedia PDF Downloads 114
5838 Improving Reading Comprehension Skills of Elementary School Students through Cooperative Integrated Reading and Composition Model Using Padlet

Authors: Neneng Hayatul Milah

Abstract:

The most important reading skill for students is comprehension. Understanding the reading text will have an impact on learning outcomes. However, reading comprehension instruction in Indonesian elementary schools is lacking. A more effective learning model is needed to enhance students' reading comprehension. This study aimed to evaluate the effectiveness of the CIRC (Cooperative Integrated Reading and Composition) model with Padlet integration in improving the reading comprehension skills of grade IV students in elementary schools in Cimahi City, Indonesia. This research methodology was quantitative with a pre-experiment research type and one group pretest-posttest research design. The sample of this study consisted of 30 students. The results of statistical analysis showed that there was a significant effect of using the CIRC learning model using Padlet on improving students' reading comprehension skills of narrative text. The mean score of students' pretest was 67.41, while the mean score of the posttest increased to 84.82. The paired sample t-test resulted in a t-count score of -13.706 with a significance score of <0.001, which is smaller than α = 0.05. This research is expected to provide useful insights for educational practitioners on how the use of the CIRC model using Padlet can improve the reading comprehension skills of elementary school students.

Keywords: reading comprehension skills, CIRC, Padlet, narrative text

Procedia PDF Downloads 33
5837 Instructional Coaches' Perceptions of Professional Development: An Exploration of the School-Based Support Program

Authors: Youmen Chaaban, Abdallah Abu-Tineh

Abstract:

This article examines the development of a professional development (PD) model for educator growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge, and skills of both school leadership and teachers in an attempt to improve students’ learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents the results of a qualitative study examining the perceptions of nineteen instructional coaches about the strengths of the PD program, the challenges they face in their day-to-day implementation of the program, and their suggestions for the betterment of the program’s implementation and outcomes. Data were collected from the instructional coaches through open-ended surveys followed by focus group interviews. The instructional coaches reported several strengths, which were compatible with the literature on effective PD. However, the challenges they faced were deeply rooted within the structure of the program, in addition to external factors operating at the school and Ministry of Education levels. Thus, a general consensus on the way the program should ultimately develop was reached.

Keywords: situated professional development, school reform, instructional coach, school based support program

Procedia PDF Downloads 356
5836 Digital Storytelling in the ELL Classroom: A Literature Review

Authors: Nicholas Jobe

Abstract:

English Language Learners (ELLs) often struggle in a classroom setting, too embarrassed at their skill level to write or speak in front of peers and too lacking in confidence to practice. Storytelling is an age-old method of teaching that allows learners to remember important details while listening or sharing a narrative. In the modern world, digital storytelling through the use of technological tools such as podcasts and videos allow students to safely interact with each other to build skills in a fun and engaging way that also works as a confidence booster. Specifically using a constructionist approach to learning, digital storytelling allows ELL students to grow and build new and prior knowledge by creating stories via these technological means. Research herein suggests, through the use of case studies and mixed methodologies, that digital storytelling mainly yields positive results for effective learning in an ELL classroom setting.

Keywords: digital storytelling, ELL, narrative, podcast

Procedia PDF Downloads 138
5835 Teacher’s Self-Efficacy and Self-Perception of Teaching Professional Competences

Authors: V. Biasi, A. M. Ciraci, G. Domenici, N. Patrizi

Abstract:

We present two studies centered on the teacher’s perception of self-efficacy and professional competences. The first study aims to evaluate the levels of self-efficacy as attitude in 200 teachers of primary and secondary schools. Teacher self-efficacy is related to many educational outcomes: such as teachers’ persistence, enthusiasm, commitment and instructional behavior. High level of teacher self-efficacy beliefs enhance student motivation and pupil’s learning level. On this theoretical and empirical basis we are planning a second study oriented to assess teacher self-perception of competences that are linked to teacher self-efficacy. With the CDVR Questionnaire, 287 teachers graduated in Education Sciences in e-learning mode, showed an increase in their self-perception of didactic-evaluation and relational competences and an increased confidence also in their own professionalism.

Keywords: teacher competence, teacher self-efficacy, selfperception, self-report evaluation

Procedia PDF Downloads 520
5834 Early Childhood Education in a Depressed Economy in Nigeria: Implication in the Classroom

Authors: Ogunnaiya Racheal Taiwo

Abstract:

Children's formative years are crucial to their growth; it is, therefore, necessary for all the stakeholders to ensure that the pupils have an enabling quality of life which is essential for realizing their potential. For children to live and grow, they need a secure home, nutritious food, good health care, and quality education. This paper, therefore, investigates the implications of a depressed economy on the classroom learning of Nigerian children as it is clear that Nigeria is currently experiencing the worst economic depression in several decades, which affects a substantial proportion of children. The study is qualitative research, and it adopts a phenomenological approach where the experiences of respondents are examined qualitatively. Three senatorial districts in Oyo State were considered, and 50 teachers, both male, and female were chosen from each senatorial district for an interview through conversational key informants' interviews. The interviewees were recorded, transcribed, and presented using thematic analysis. Findings showed that more children have dropped out since the beginning of the year than in previous years. It was also recorded that learning has become challenging as children now find it harder to acquire learning materials. It was recommended that the government should reimburse early childhood schools to lessen the effect of the inability to purchase materials and pay school fees. It was also recommended that an intervention be made to approach and resolve issues associated with out-of-school children.

Keywords: childhood, classroom, education, depressed economy, poverty

Procedia PDF Downloads 106
5833 Simple Ways to Enhance the Security of Web Services

Authors: Majid Azarniush, Soroush Mokallaei

Abstract:

Although robust security software, including anti-viruses, anti spy wares, anti-spam and firewalls, are amalgamated with new technologies such as Safe Zone, Hybrid Cloud, Sand Box etc., and it can be said that they have managed to prepare highest level of security against viruses, spy wares and other malwares in 2012, but in fact hackers' attacks to websites are increasingly becoming more and more complicated. Because of security matters and developments, it can be said that it was expected to happen so. Here in this work, we try to point out to some functional and vital notes to enhance security on the web enabling the user to browse safely in no limit web world and to use virtual space securely.

Keywords: firewalls, security, web services, software

Procedia PDF Downloads 512
5832 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 127
5831 Building a Blockchain-based Internet of Things

Authors: Rob van den Dam

Abstract:

Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.

Keywords: IoT, internet, wired, wireless

Procedia PDF Downloads 336
5830 A CORDIC Based Design Technique for Efficient Computation of DCT

Authors: Deboraj Muchahary, Amlan Deep Borah Abir J. Mondal, Alak Majumder

Abstract:

A discrete cosine transform (DCT) is described and a technique to compute it using fast Fourier transform (FFT) is developed. In this work, DCT of a finite length sequence is obtained by incorporating CORDIC methodology in radix-2 FFT algorithm. The proposed methodology is simple to comprehend and maintains a regular structure, thereby reducing computational complexity. DCTs are used extensively in the area of digital processing for the purpose of pattern recognition. So the efficient computation of DCT maintaining a transparent design flow is highly solicited.

Keywords: DCT, DFT, CORDIC, FFT

Procedia PDF Downloads 478
5829 Derivation of Trigonometric Identities and Solutions through Baudhayan Numbers

Authors: Rakesh Bhatia

Abstract:

Students often face significant challenges in understanding and applying trigonometric identities, primarily due to the overwhelming need to memorize numerous formulas. This often leads to confusion, frustration, and difficulty in effectively using these formulas across diverse types of problems. Traditional methods of learning trigonometry demand considerable time and effort, which can further hinder comprehension and application. Vedic Mathematics offers an innovative and simplified approach to overcoming these challenges. This paper explores how Baudhayan Numbers, can be used to derive trigonometric identities and simplify calculations related to height and distance. Unlike conventional approaches, this method minimizes the need for extensive paper-based calculations, promoting a conceptual understanding. Using Vedic Mathematics Sutras such as Anurupyena and Vilokanam, this approach enables the derivation of over 100 trigonometric identities through a single, unified approach. The simplicity and efficiency of this technique not only make learning trigonometry more accessible but also foster computational thinking. Beyond academics, the practical applications of this method extend to engineering fields such as bridge design and construction, where precise trigonometric calculations are critical. This exploration underscores the potential of Vedic Mathematics to revolutionize the learning and application of trigonometry by offering a streamlined, intuitive, and versatile framework.

Keywords: baudhayan numbers, anurupyena, vilokanam, sutras

Procedia PDF Downloads 8
5828 Trainees' Perception of Virtual Learning Skills in Setting up the Simulator Welding Technology

Authors: Mohd Afif Md Nasir, Mohd Faizal Amin Nur, Jamaluddin Hasim, Abd Samad Hasan Basari, Mohd Halim Sahelan

Abstract:

This study is aimed to investigate the suitability of Computer-Based Training (CBT) as one of the approaches in skills competency development at the Centre of Instructor and Advanced Skills Training (CIAST) Shah Alam Selangor and National Youth Skills Institute (NYSI) Pagoh Muar Johor. This study has also examined the perception among trainees toward Virtual Learning Environment (VLE) as to realize the development of skills in Welding Technology. The significance of the study is to create a computer-based skills development approach in welding technology among new trainees in CIAST and IKBN as well as to cultivate the element of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-Workers) working in manufacturing industry in order to achieve the national vision which is to be an industrial nation in the year 2020. The design is a survey of research which using questionnaires as the instruments and is conducted towards 136 trainees from CIAST and IKBN. Data from the questionnaires is proceeding in a Statistical Package for Social Science (SPSS) in order to find the frequency, mean and chi-square testing. The findings of the study show the welding technology skills have developed in the trainees as a result of the application of the Virtual Reality simulator at a high level (mean=3.90) and the respondents agreed the skills could be embedded through the application of the Virtual Reality simulator (78.01%). The Study also found that there is a significant difference between trainee skill characteristics through the application of the Virtual Reality simulator (p<0.05). Thereby, the Virtual Reality simulator is suitable to be used in the development of welding skills among trainees through the skills training institute.

Keywords: computer-based training, virtual learning environment, welding technology, virtual reality simulator, virtual learning environment

Procedia PDF Downloads 427
5827 Factors Impeding Learners’ Use of the Blackboard System in Kingdom of Saudi Arabia

Authors: Omran Alharbi, Victor Lally

Abstract:

In recent decades, a number of educational institutions around the world have come to depend on technology such as the Blackboard system to improve their educational environment. On the other hand, there are many factors that delay the usage of this technology, especially in developing nations such as Saudi Arabia. The goal of this study was to investigate learner’s views of the use of Blackboard in one Saudi university in order to gain a comprehensive view of the factors that delay the implementation of technology in Saudi institutions. This study utilizes a qualitative approach, with data being collected through semi-structured interviews. Six participants from different disciplines took part in this study. The findings indicated that there are two levels of factors that affect students’ use of the Blackboard system. These are factors at the institutional level, such as lack of technical support and lack of training support, which lead to insufficient training related to the Blackboard system. The second level of factors is at the individual level, for example, a lack of teacher motivation and encouragement. In addition, students do not have sufficient levels of skills or knowledge related to how to use the Blackboard in their learning. Conclusion: learners confronted and faced two main types of factors (at the institution level and individual level) that delayed and impeded their learning. Institutions in KSA should take steps and implement strategies to remove or reduce these factors in order to allow students to benefit from the latest technology in their learning.

Keywords: blackboard, factors, KSA, learners

Procedia PDF Downloads 214
5826 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study

Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang

Abstract:

Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.

Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks

Procedia PDF Downloads 203
5825 Simulations in Structural Masonry Walls with Chases Horizontal Through Models in State Deformation Plan (2D)

Authors: Raquel Zydeck, Karina Azzolin, Luis Kosteski, Alisson Milani

Abstract:

This work presents numerical models in plane deformations (2D), using the Discrete Element Method formedbybars (LDEM) andtheFiniteElementMethod (FEM), in structuralmasonrywallswith horizontal chasesof 20%, 30%, and 50% deep, located in the central part and 1/3 oftheupperpartofthewall, withcenteredandeccentricloading. Differentcombinationsofboundaryconditionsandinteractionsbetweenthemethodswerestudied.

Keywords: chases in structural masonry walls, discrete element method formed by bars, finite element method, numerical models, boundary condition

Procedia PDF Downloads 168
5824 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 186
5823 Science Process Skill and Interest Preschooler in Learning Early Science through Mobile Application

Authors: Seah Siok Peh, Hashimah Mohd Yunus, Nor Hashimah Hashim, Mariam Mohamad

Abstract:

A country needs a workforce that encompasses knowledge, skilled labourers to generate innovation, productivity and being able to solve problems creatively via technology. Science education experts believe that the mastery of science skills help preschoolers to generate such knowledge on scientific concepts by providing constructive experiences. Science process skills are skills used by scientists to study or investigate a problem, issue, problem or phenomenon of science. In line with the skills used by scientists. The purpose of this study is to investigate the basic science process skill and interest in learning early science through mobile application. This study aimed to explore six spesific basic science process skills by the use of a mobile application as a learning support tool. The descriptive design also discusses on the extent of the use of mobile application in improving basic science process skill in young children. This study consists of six preschoolers and two preschool teachers from two different classes located in Perak, Malaysia. Techniques of data collection are inclusive of observations, interviews and document analysis. This study will be useful to provide information and give real phenomena to policy makers especially Ministry of education in Malaysia.

Keywords: science education, basic science process skill, interest, early science, mobile application

Procedia PDF Downloads 245
5822 Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration

Authors: Husnain Yousaf, Rudy Swennen, Hannes Claes, Muhammad Amjad

Abstract:

In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD.

Keywords: reservoir quality, diagenesis, porosity, permeability, depositional environments, Buntsandstein, Netherlands

Procedia PDF Downloads 63
5821 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association

Authors: Jacky Liu

Abstract:

This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.

Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation

Procedia PDF Downloads 102
5820 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis

Authors: Yoshio Kurosawa

Abstract:

The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.

Keywords: vibration, noise, road noise, statistical energy analysis

Procedia PDF Downloads 351
5819 Factors Afecting the Academic Performance of In-Service Students in Science Educaction

Authors: Foster Chilufya

Abstract:

This study sought to determine factors that affect academic performance of mature age students in Science Education at University of Zambia. It was guided by Maslow’s Hierarchy of Needs. The theory provided relationship between achievement motivation and academic performance. A descriptive research design was used. Both Qualitative and Quantitative research methods were used to collect data from 88 respondents. Simple random and purposive sampling procedures were used to collect from the respondents. Concerning factors that motivate mature-age students to choose Science Education Programs, the following were cited: need for self-actualization, acquisition of new knowledge, encouragement from friends and family members, good performance at high school and diploma level, love for the sciences, prestige and desire to be promoted at places of work. As regards factors that affected the academic performance of mature-age students, both negative and positive factors were identified. These included: demographic factors such as age and gender, psychological characteristics such as motivation and preparedness to learn, self-set goals, self esteem, ability, confidence and persistence, student prior academic performance at high school and college level, social factors, institutional factors and the outcomes of the learning process. In order to address the factors that negatively affect academic performance of mature-age students, the following measures were identified: encouraging group discussions, encouraging interactive learning process, providing a conducive learning environment, reviewing Science Education curriculum and providing adequate learning materials. Based on these factors, it is recommended that, the School of Education introduces a program in Science Education specifically for students training to be teachers of science. Additionally, introduce majors in Physics Education, Biology Education, Chemistry Education and Mathematics Education relevant to what is taught in high schools.

Keywords: academic, performance, in-service, science

Procedia PDF Downloads 311
5818 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 205
5817 Constructing Notation for Music Learning in Athletes: Identifying Key Concepts in Music and Body Movements

Authors: Fung Chiat Loo, Fung Ying Loo

Abstract:

This paper discusses, suggests, and constructs a notation system to facilitate the learning and understanding of the two aspects of music and movement in a sports routine. This model serves to provide a simple and logical notation that does not require training in both music and choreography. Notation is an important medium in many art forms, particularly in music and dance, transmitting information that cannot easily be expressed using words or language. Another field that is closely associated with dance and music is sports routine, which equally requires choreography and music. However, from the perspective of music, it is common to observe many incongruencies appearing between the music used and the choreography that impede an optimal perception of the performance. The concept of the notation proceeds with a discussion and review of existing dance notations that could contribute to sports routines, along with rules and a code of points in selected sports routines. The author's involvement as an insider of numerous musical theatre productions also contributed to this study. The notation constructed includes time (tempo), significances of musical accents, direction, and phrasing, along with significances of movements (jump, punch, shape). It is believed that the level of congruence between music and movement will provide optimal visualization, and in that, the notation serves to provide adequate information on both entities for the understanding of athletes and coaches.

Keywords: notation, choreography, music learning, sports routines, congruence

Procedia PDF Downloads 83
5816 Immersive Block Scheduling in Higher Education: A Case Study in Curriculum Reform and Increased Student Success

Authors: Thomas Roche, Erica Wilson, Elizabeth Goode

Abstract:

Universities across the globe are considering how to effect meaningful change in their higher education (HE) delivery in the face of increasingly diverse student cohorts and shifting student learning preferences. This paper reports on a descriptive case study of whole-of-institution curriculum reform at one regional Australian university, where more traditional 13-week semesters were replaced with a 6-week immersive block model drawing on active learning pedagogy. Based on a synthesis of literature in best practice HE pedagogy and principles, the case study draws on student performance data and senior management staff interviews (N = 5) to outline the key changes necessary for successful HE transformation to deliver increased student pass rates and retention. The findings from this case study indicate that an institutional transformation to an immersive block model requires both a considered change in institutional policy and process as well as the appropriate resourcing of roles, governance committees, technical solutions, and, importantly, communities of practice. Implications for practice at higher education institutions considering reforming their curriculum model are also discussed.

Keywords: student retention, immersive scheduling, block model, curriculum reform, active learning, higher education pedagogy, higher education policy

Procedia PDF Downloads 77
5815 On the Use of Machine Learning for Tamper Detection

Authors: Basel Halak, Christian Hall, Syed Abdul Father, Nelson Chow Wai Kit, Ruwaydah Widaad Raymode

Abstract:

The attack surface on computing devices is becoming very sophisticated, driven by the sheer increase of interconnected devices, reaching 50B in 2025, which makes it easier for adversaries to have direct access and perform well-known physical attacks. The impact of increased security vulnerability of electronic systems is exacerbated for devices that are part of the critical infrastructure or those used in military applications, where the likelihood of being targeted is very high. This continuously evolving landscape of security threats calls for a new generation of defense methods that are equally effective and adaptive. This paper proposes an intelligent defense mechanism to protect from physical tampering, it consists of a tamper detection system enhanced with machine learning capabilities, which allows it to recognize normal operating conditions, classify known physical attacks and identify new types of malicious behaviors. A prototype of the proposed system has been implemented, and its functionality has been successfully verified for two types of normal operating conditions and further four forms of physical attacks. In addition, a systematic threat modeling analysis and security validation was carried out, which indicated the proposed solution provides better protection against including information leakage, loss of data, and disruption of operation.

Keywords: anti-tamper, hardware, machine learning, physical security, embedded devices, ioT

Procedia PDF Downloads 153
5814 Developing Digital Skills in Museum Professionals through Digital Education: International Good Practices and Effective Learning Experiences

Authors: Antonella Poce, Deborah Seid Howes, Maria Rosaria Re, Mara Valente

Abstract:

The Creative Industries education contexts, Museum Education in particular, generally presents a low emphasis on the use of new digital technologies, digital abilities and transversal skills development. The spread of the Covid-19 pandemic has underlined the importance of these abilities and skills in cultural heritage education contexts: gaining digital skills, museum professionals will improve their career opportunities with access to new distribution markets through internet access and e-commerce, new entrepreneurial tools, or adding new forms of digital expression to their work. However, the use of web, mobile, social, and analytical tools is becoming more and more essential in the Heritage field, and museums, in particular, to face the challenges posed by the current worldwide health emergency. Recent studies highlight the need for stronger partnerships between the cultural and creative sectors, social partners and education and training providers in order to provide these sectors with the combination of skills needed for creative entrepreneurship in a rapidly changing environment. Considering the above conditions, the paper presents different examples of digital learning experiences carried out in Italian and USA contexts with the aim of promoting digital skills in museum professionals. In particular, a quali-quantitative research study has been conducted on two international Postgraduate courses, “Advanced Studies in Museum Education” (2 years) and “Museum Education” (1 year), in order to identify the educational effectiveness of the online learning strategies used (e.g., OBL, Digital Storytelling, peer evaluation) for the development of digital skills and the acquisition of specific content. More than 50 museum professionals participating in the mentioned educational pathways took part in the learning activity, providing evaluation data useful for research purposes.

Keywords: digital skills, museum professionals, technology, education

Procedia PDF Downloads 177