Search results for: leafy green processing
1658 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 21657 A Rapid Reinforcement Technique for Columns by Carbon Fiber/Epoxy Composite Materials
Authors: Faruk Elaldi
Abstract:
There are lots of concrete columns and beams around in our living cities. Those columns are mostly open to aggressive environmental conditions and earthquakes. Mostly, they are deteriorated by sand, wind, humidity and other external applications at times. After a while, these beams and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, and they were put into the axial compression test to determine load-carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load-carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load-carrying capacity. To reinforce these damaged columns, two methods were applied, “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to the axial compression test and the results obtained were analyzed. Cost and load-carrying performance comparisons were made and it was found that even though the carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load-carrying capacity and reduces the reinforcement processing period.Keywords: column reinforcement, composite, earth quake, carbon fiber reinforced
Procedia PDF Downloads 1831656 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 601655 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 521654 Roller Pump-Induced Tubing Rupture during Cardiopulmonary Bypass
Abstract:
We analyzed the effects of variations in the diameter of silicone rubber and polyvinyl chloride (PVC) tubings on the likelihood of tubing rupture during modeling of accidental arterial line clamping in cardiopulmonary bypass with a roller pump. A closed CPB circuit constructed with a roller pump was tested with both PVC and silicone rubber tubings of 1/2, 3/8, and 1/4 inch internal diameter. Arterial line pressure was monitored, and an occlusive clamp was placed across the tubing distal to the pressure monitor site to model an accidental arterial line occlusion. A CCD camera with 512(H) x 492(V) pixels was installed above the roller pump to measure tubing diameters at pump outlet, where the maximum deformations (distension) of the tubings occurred. Quantitative measurement of the changes of tubing diameters with the change of arterial line pressure was performed using computerized image processing techniques. A visible change of tubing diameter was generally noticeable by around 250 psi of arterial line pressure, which was already very high. By 1500 psi, the PVC tubings showed an increase of diameter of between 5-10 %, while the silicone rubber tubings showed an increase between 20-25 %. Silicone rubber tubings of all sizes showed greater distensibility than PVC tubings of equivalent size. In conclusion, although roller-pump induced tubing rupture remains a theoretical problem during cardiopulmonary bypass in terms of the inherent mechanism of the pump, in reality such an occurrence is impossible in real clinical conditions.Keywords: roller pump, tubing rupture, cardiopulmonary bypass, arterial line
Procedia PDF Downloads 2931653 Path Planning for Orchard Robot Using Occupancy Grid Map in 2D Environment
Authors: Satyam Raikwar, Thomas Herlitzius, Jens Fehrmann
Abstract:
In recent years, the autonomous navigation of orchard and field robots is an emerging technology of the mobile robotics in agriculture. One of the core aspects of autonomous navigation builds upon path planning, which is still a crucial issue. Generally, for simple representation, the path planning for a mobile robot is performed in a two-dimensional space, which creates a path between the start and goal point. This paper presents the automatic path planning approach for robots used in orchards and vineyards using occupancy grid maps with field consideration. The orchards and vineyards are usually structured environment and their topology is assumed to be constant over time; therefore, in this approach, an RGB image of a field is used as a working environment. These images undergone different image processing operations and then discretized into two-dimensional grid matrices. The individual grid or cell of these grid matrices represents the occupancy of the space, whether it is free or occupied. The grid matrix represents the robot workspace for motion and path planning. After the grid matrix is described, a probabilistic roadmap (PRM) path algorithm is used to create the obstacle-free path over these occupancy grids. The path created by this method was successfully verified in the test area. Furthermore, this approach is used in the navigation of the orchard robot.Keywords: orchard robots, automatic path planning, occupancy grid, probabilistic roadmap
Procedia PDF Downloads 1551652 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Authors: Manisha A. Hira, Arup Rakshit
Abstract:
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns
Procedia PDF Downloads 3021651 Extraction of Nutraceutical Bioactive Compounds from the Native Algae Using Solvents with a Deep Natural Eutectic Point and Ultrasonic-assisted Extraction
Authors: Seyedeh Bahar Hashemi, Alireza Rahimi, Mehdi Arjmand
Abstract:
Food is the source of energy and growth through the breakdown of its vital components and plays a vital role in human health and nutrition. Many natural compounds found in plant and animal materials play a special role in biological systems and the origin of many such compounds directly or indirectly is algae. Algae is an enormous source of polysaccharides and have gained much interest in human flourishing. In this study, algae biomass extraction is conducted using deep eutectic-based solvents (NADES) and Ultrasound-assisted extraction (UAE). The aim of this research is to extract bioactive compounds including total carotenoid, antioxidant activity, and polyphenolic contents. For this purpose, the influence of three important extraction parameters namely, biomass-to-solvent ratio, temperature, and time are studied with respect to their impact on the recovery of carotenoids, and phenolics, and on the extracts’ antioxidant activity. Here we employ the Response Surface Methodology for the process optimization. The influence of the independent parameters on each dependent is determined through Analysis of Variance. Our results show that Ultrasound-assisted extraction (UAE) for 50 min is the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts show the highest total phenolic contents (50.00 ± 0.70 mgGAE/gdw) and antioxidant activity [60.00 ± 1.70 mgTE/gdw, 70.00 ± 0.90 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)]. Our results confirm that the combination of UAE and NADES provides an excellent alternative to organic solvents for sustainable and green extraction and has huge potential for use in industrial applications involving the extraction of bioactive compounds from algae. This study is among the first attempts to optimize the effects of ultrasonic-assisted extraction, ultrasonic devices, and deep natural eutectic point and investigate their application in bioactive compounds extraction from algae. We also study the future perspective of ultrasound technology which helps to understand the complex mechanism of ultrasonic-assisted extraction and further guide its application in algae.Keywords: natural deep eutectic solvents, ultrasound-assisted extraction, algae, antioxidant activity, phenolic compounds, carotenoids
Procedia PDF Downloads 1771650 Design of the Ice Rink of the Future
Authors: Carine Muster, Prina Howald Erika
Abstract:
Today's ice rinks are important energy consumers for the production and maintenance of ice. At the same time, users demand that the other rooms should be tempered or heated. The building complex must equally provide cooled and heated zones, which does not translate as carbon-zero ice rinks. The study provides an analysis of how the civil engineering sector can significantly impact minimizing greenhouse gas emissions and optimizing synergies across an entire ice rink complex. The analysis focused on three distinct aspects: the layout, including the volumetric layout of the premises present in an ice rink; the materials chosen that can potentially use the most ecological structural approach; and the construction methods based on innovative solutions to reduce carbon footprint. The first aspect shows that the organization of the interior volumes and defining the shape of the rink play a significant role. Its layout makes the use and operation of the premises as efficient as possible, thanks to the differentiation between heated and cooled volumes while optimising heat loss between the different rooms. The sprayed concrete method, which is still little known, proves that it is possible to achieve the strength of traditional concrete for the structural aspect of the load-bearing and non-load-bearing walls of the ice rink by using materials excavated from the construction site and providing a more ecological and sustainable solution. The installation of an empty sanitary space underneath the ice floor, making it independent of the rest of the structure, provides a natural insulating layer, preventing the transfer of cold to the rest of the structure and reducing energy losses. The addition of active pipes as part of the foundation of the ice floor, coupled with a suitable system, gives warmth in the winter and storage in the summer; this is all possible thanks to the natural heat in the ground. In conclusion, this study provides construction recommendations for future ice rinks with a significantly reduced energy demand, using some simple preliminary design concepts. By optimizing the layout, materials, and construction methods of ice rinks, the civil engineering sector can play a key role in reducing greenhouse gas emissions and promoting sustainability.Keywords: climate change, energy optimization, green building, sustainability
Procedia PDF Downloads 671649 Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt
Authors: Sammar Zain Allam
Abstract:
Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects.Keywords: carbon emissions, air quality measurements, arteries air quality, airflow or air velocity, particulate matter, clean air, urban density
Procedia PDF Downloads 4261648 Acoustic Echo Cancellation Using Different Adaptive Algorithms
Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil
Abstract:
An adaptive filter is a filter that self-adjusts its transfer function according to an optimization algorithm driven by an error signal. Because of the complexity of the optimization algorithms, most adaptive filters are digital filters. Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications, including adaptive noise cancellation and echo cancellation. Acoustic echo cancellation is a common occurrence in today’s telecommunication systems. The signal interference caused by acoustic echo is distracting to both users and causes a reduction in the quality of the communication. In this paper, we review different techniques of adaptive filtering to reduce this unwanted echo. In this paper, we see the behavior of techniques and algorithms of adaptive filtering like Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step-Size Least Mean Square (VSLMS), Variable Step-Size Normalized Least Mean Square (VSNLMS), New Varying Step Size LMS Algorithm (NVSSLMS) and Recursive Least Square (RLS) algorithms to reduce this unwanted echo, to increase communication quality.Keywords: adaptive acoustic, echo cancellation, LMS algorithm, adaptive filter, normalized least mean square (NLMS), variable step-size least mean square (VSLMS)
Procedia PDF Downloads 781647 Value Chain Analysis of Melon “Egusi” (Citrullus lanatus Thunb. Mansf) among Rural Farm Enterprises in South East, Nigeria
Authors: Chigozirim Onwusiribe, Jude Mbanasor
Abstract:
Egusi Melon (Citrullus Lanatus Thunb. Mansf ) is a very important oil seed that serves a major ingredient in the diet of most of the households in Nigeria. Egusi Melon is very nutritious and very important in meeting the food security needs of Nigerians. Egusi Melon is cultivated in most farm enterprise in South East Nigeria but the profitability of its value chain needs to be investigated. This study analyzed the profitability of the Egusi Melon value chain. Specifically this study developed a value chain map for Egusi Melon, analysed the profitability of each stage of the Egusi Melon Value chain and analysed the determinants of the profitability of the Egusi Melon at each stage of the value chain. Multi stage sampling technique was used to select 125 farm enterprises with similar capacity and characteristics. Questionnaire and interview were used to elicit the required data while descriptive statistics, Food and Agriculture Organization Value Chain Analysis Tool, profitability ratios and multiple regression analysis were used for the data analysis. One of the findings showed that the stages of the Egusi Melon value chain are very profitable. Based on the findings, we recommend the provision of grants by government and donor agencies to the farm enterprises through their cooperative societies, this will provide the necessary funds for the local fabrication of value addition and processing equipment to suit their unique value addition needs not met by the imported equipment.Keywords: value, chain, melon, farm, enterprises
Procedia PDF Downloads 1331646 Integrating of Multi-Criteria Decision Making and Spatial Data Warehouse in Geographic Information System
Authors: Zohra Mekranfar, Ahmed Saidi, Abdellah Mebrek
Abstract:
This work aims to develop multi-criteria decision making (MCDM) and spatial data warehouse (SDW) methods, which will be integrated into a GIS according to a ‘GIS dominant’ approach. The GIS operating tools will be operational to operate the SDW. The MCDM methods can provide many solutions to a set of problems with various and multiple criteria. When the problem is so complex, integrating spatial dimension, it makes sense to combine the MCDM process with other approaches like data mining, ascending analyses, we present in this paper an experiment showing a geo-decisional methodology of SWD construction, On-line analytical processing (OLAP) technology which combines both basic multidimensional analysis and the concepts of data mining provides powerful tools to highlight inductions and information not obvious by traditional tools. However, these OLAP tools become more complex in the presence of the spatial dimension. The integration of OLAP with a GIS is the future geographic and spatial information solution. GIS offers advanced functions for the acquisition, storage, analysis, and display of geographic information. However, their effectiveness for complex spatial analysis is questionable due to their determinism and their decisional rigor. A prerequisite for the implementation of any analysis or exploration of spatial data requires the construction and structuring of a spatial data warehouse (SDW). This SDW must be easily usable by the GIS and by the tools offered by an OLAP system.Keywords: data warehouse, GIS, MCDM, SOLAP
Procedia PDF Downloads 1751645 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation
Procedia PDF Downloads 3231644 TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs
Authors: Siddharth Sarma, Ayush Majumdar, Nidhi Sabu, Mufaddal Jiruwaala, Shilpa Paygude
Abstract:
Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling.Keywords: DEM, ESRGAN, image upscaling, super resolution, computer vision
Procedia PDF Downloads 61643 A Comparative Study of Global Power Grids and Global Fossil Energy Pipelines Using GIS Technology
Authors: Wenhao Wang, Xinzhi Xu, Limin Feng, Wei Cong
Abstract:
This paper comprehensively investigates current development status of global power grids and fossil energy pipelines (oil and natural gas), proposes a standard visual platform of global power and fossil energy based on Geographic Information System (GIS) technology. In this visual platform, a series of systematic visual models is proposed with global spatial data, systematic energy and power parameters. Under this visual platform, the current Global Power Grids Map and Global Fossil Energy Pipelines Map are plotted within more than 140 countries and regions across the world. Using the multi-scale fusion data processing and modeling methods, the world’s global fossil energy pipelines and power grids information system basic database is established, which provides important data supporting global fossil energy and electricity research. Finally, through the systematic and comparative study of global fossil energy pipelines and global power grids, the general status of global fossil energy and electricity development are reviewed, and energy transition in key areas are evaluated and analyzed. Through the comparison analysis of fossil energy and clean energy, the direction of relevant research is pointed out for clean development and energy transition.Keywords: energy transition, geographic information system, fossil energy, power systems
Procedia PDF Downloads 1491642 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD
Authors: Mehdi Montakhabrazlighi, Ercan Balikci
Abstract:
The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.Keywords: neural network, rupture strength, superalloy, thermocalc
Procedia PDF Downloads 3121641 Genome Sequencing of the Yeast Saccharomyces cerevisiae Strain 202-3
Authors: Yina A. Cifuentes Triana, Andrés M. Pinzón Velásco, Marío E. Velásquez Lozano
Abstract:
In this work the sequencing and genome characterization of a natural isolate of Saccharomyces cerevisiae yeast (strain 202-3), identified with potential for the production of second generation ethanol from sugarcane bagasse hydrolysates is presented. This strain was selected because its capability to consume xylose during the fermentation of sugarcane bagasse hydrolysates, taking into account that many strains of S. cerevisiae are incapable of processing this sugar. This advantage and other prominent positive aspects during fermentation profiles evaluated in bagasse hydrolysates made the strain 202-3 a candidate strain to improve the production of second-generation ethanol, which was proposed as a first step to study the strain at the genomic level. The molecular characterization was carried out by genome sequencing with the Illumina HiSeq 2000 platform paired end; the assembly was performed with different programs, finally choosing the assembler ABYSS with kmer 89. Gene prediction was developed with the approach of hidden Markov models with Augustus. The genes identified were scored based on similarity with public databases of nucleotide and protein. Records were organized from ontological functions at different hierarchical levels, which identified central metabolic functions and roles of the S. cerevisiae strain 202-3, highlighting the presence of four possible new proteins, two of them probably associated with the positive consumption of xylose.Keywords: cellulosic ethanol, Saccharomyces cerevisiae, genome sequencing, xylose consumption
Procedia PDF Downloads 3181640 Cladding Technology for Metal-Hybrid Composites with Network-Structure
Authors: Ha-Guk Jeong, Jong-Beom Lee
Abstract:
Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics
Procedia PDF Downloads 1781639 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes
Authors: Ahmed Al-Adaileh
Abstract:
Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process
Procedia PDF Downloads 1991638 Roughness Discrimination Using Bioinspired Tactile Sensors
Authors: Zhengkun Yi
Abstract:
Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination
Procedia PDF Downloads 3101637 Utilization of Sludge in the Manufacturing of Fired Clay Bricks
Authors: Anjali G. Pillai, S. Chadrakaran
Abstract:
The extensive amount of sludge generated throughout the world, as a part of water treatment works, have caused various social and economic issues, such as a demand on landfill spaces, increase in environmental pollution and raising the waste management cost. With growing social awareness about toxic incinerator emissions and the increasing concern over the disposal of sludge on the agricultural land, the recovery of sewage sludge as a building and construction raw material can be considered as an innovative approach to tackle the sludge disposal problem. The proposed work aims at studying the recycling ability of the sludge, generated from the water treatment process, by incorporating it into the fired clay brick units. The work involves initial study of the geotechnical characteristics of the brick-clay and the sludge. Chemical compatibility of both the materials will be analyzed by X-ray fluorescence technique. The variation in the strength aspects with varying proportions of sludge i.e. 10%, 20%, 30% and 40% in the sludge-clay mix will also be determined by the proctor density test. Based on the optimum moisture content, the sludge-clay bricks will be manufactured in a brick manufacturing plant and the modified brick units will be tested to determine the variation in compressive strength, bulk density, firing shrinkage, shrinkage loss and initial water absorption rate with respect to the conventional clay bricks. The results will be compared with the specifications given in Indian Standards to arrive at the potential use of the new bricks. The durability aspect will be studied by conducting the leachate analysis test using atomic adsorption spectrometry. The lightweight characteristics of the sludge modified bricks will be ascertained with the scanning electron microscope technique which will be indicative of the variation in pore structure with the increase in sludge content within the bricks. The work will determine the suitable proportion of the sludge – clay mix in the brick which can then be effectively implemented. The feasibility aspect of the work will be determined for commercial production of the units. The work involves providing a strategy for conversion of waste to resource. Moreover, it provides an alternative solution to the problem of growing scarcity of brick-clay for the manufacturing of fired clay bricks.Keywords: eco-bricks, green construction material, sludge amended bricks, sludge disposal, waste management
Procedia PDF Downloads 3041636 Bakla Po Ako (I Am Gay): A Case Study on the Communication Styles of Selected Filipino Gays in Disclosing Their Sexual Orientation to Their Parents
Authors: Bryan Christian Baybay, M. Francesca Ronario
Abstract:
This study is intended to answer the question “What are the communication styles of selected Filipino gays in breaking their silence on their sexual orientation to their parents?” In this regard, six cases of Filipino gay disclosures were examined through in-depth interviews. The participants were selected through purposive sampling and snowball technique. The theories, Rhetorical Sensitivity of Roderick Hart and Communicator Style of Robert Norton were used to analyze the gathered data and to give support to the communication attitudes, message processing, message rendering and communication styles exhibited in each disclosure. As secondary data and validation, parents and experts in the field of communication, sociology, and psychology were also interviewed and consulted. The study found that Filipino gays vary in the communication styles they use during the disclosure with their parents. All communication styles: impression-leaving, contentious, open, dramatic, dominant, precise, relaxed, friendly, animated, and communicator image were observed by the gays depending on their motivation, relationship and thoughts contemplated. These results lend ideas for future researchers to look into the communication patterns and/or styles of lesbians, bisexuals, transgenders and queers or expand researches on the same subject and the utilization of Social Judgment and Relational Dialectics theories in determining and analyzing LGBTQ communication.Keywords: communication attitudes, communication styles, Filipino gays, self-disclosure, sexual orientation
Procedia PDF Downloads 5221635 Phytoremediation of Heavy Metals by the Perennial Tussock Chrysopogon Zizanioides Grown on Zn and Cd Contaminated Soil Amended with Biochar
Authors: Dhritilekha Deka, Deepak Patwa, Ravi K., Archana M. Nair
Abstract:
Bioaccumulation of heavy metal contaminants due to intense anthropogenic interference degrades the environment and ecosystem functions. Conventional physicochemical methods involve energy-intensive and costly methodologies. Phytoremediation, on the other hand, provides an efficient nature-based strategy for the reclamation of heavy metal-contaminated sites. However, the slow process and adaptation to high-concentration contaminant sequestration often limit the efficiency of the method. This necessitates natural amendments such as biochar to improve phytoextraction and stabilize the green cover. Biochar is a highly porous structure with high carbon sequestration potential and containing negatively charged functional groups that provide binding sites for the positively charged metals. This study aims to develop and determine the synergy between sugarcane bagasse biochar content and phytoremediation. A 60-day pot experiment using perennial tussock vetiver grass (Chrysopogon zizanioides) was conducted for different biochar contents of 1%, 2%, and 4% for the removal of cadmium and zinc. A concentration of 500 ppm is maintained for the amended and unamended control (CK) samples. The survival rates of the plants, biomass production, and leaf area index were measured for the plant growth characteristics. Results indicate a visible change in the plant growth and the heavy metal concentration with the biochar content. The bioconcentration factor (BCF) in the plant improved significantly for the 4% biochar content by 57% in comparison to the control CK treatment in Cd-treated soils. The Zn soils indicated the highest reduction in the metal concentration by 50% in the 2% amended samples and an increase in the BCF in all the amended samples. The translocation from the rhizosphere to the shoots was low but not dependent on the amendment content and varied for each contaminant type. The root-to-shoot ratio indicates higher values compared to the control samples. The enhanced tolerance capacities can be attributed to the nutrients released by the biochar in the soil. The study reveals the high potential of biochar as a phytoremediation amendment, but its effect is dependent on the soil and heavy metal and accumulator species.Keywords: phytoextraction, biochar, heavy metals, chrysopogon zizanioides, bioaccumulation factor
Procedia PDF Downloads 631634 The European Research and Development Project Improved Nuclear Site Characterization for Waste Minimization in Decommissioning under Constrained Environment: Focus on Performance Analysis and Overall Uncertainty
Authors: M. Crozet, D. Roudil, T. Branger, S. Boden, P. Peerani, B. Russell, M. Herranz, L. Aldave de la Heras
Abstract:
The EURATOM work program project INSIDER (Improved Nuclear Site Characterization for Waste minimization in Decommissioning under Constrained Environment) was launched in June 2017. This 4-year project has 18 partners and aims at improving the management of contaminated materials arising from decommissioning and dismantling (D&D) operations by proposing an integrated methodology of characterization. This methodology is based on advanced statistical processing and modelling, coupled with adapted and innovative analytical and measurement methods, with respect to sustainability and economic objectives. In order to achieve these objectives, the approaches will be then applied to common case studies in the form of Inter-laboratory comparisons on matrix representative reference samples and benchmarking. Work Package 6 (WP6) ‘Performance analysis and overall uncertainty’ is in charge of the analysis of the benchmarking on real samples, the organisation of inter-laboratory comparison on synthetic certified reference materials and the establishment of overall uncertainty budget. Assessment of the outcome will be used for providing recommendations and guidance resulting in pre-standardization tests.Keywords: decommissioning, sampling strategy, research and development, characterization, European project
Procedia PDF Downloads 3621633 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate
Authors: Angela Maria Fasnacht
Abstract:
Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive
Procedia PDF Downloads 1201632 Improving Perceptual Reasoning in School Children through Chess Training
Authors: Ebenezer Joseph, Veena Easvaradoss, S. Sundar Manoharan, David Chandran, Sumathi Chandrasekaran, T. R. Uma
Abstract:
Perceptual reasoning is the ability that incorporates fluid reasoning, spatial processing, and visual motor integration. Several theories of cognitive functioning emphasize the importance of fluid reasoning. The ability to manipulate abstractions and rules and to generalize is required for reasoning tasks. This study, funded by the Cognitive Science Research Initiative, Department of Science and Technology, Government of India, analyzed the effect of 1-year chess training on the perceptual reasoning of children. A pretest–posttest with control group design was used, with 43 (28 boys, 15 girls) children in the experimental group and 42 (26 boys, 16 girls) children in the control group. The sample was selected from children studying in two private schools from South India (grades 3 to 9), which included both the genders. The experimental group underwent weekly 1-hour chess training for 1 year. Perceptual reasoning was measured by three subtests of WISC-IV INDIA. Pre-equivalence of means was established. Further statistical analyses revealed that the experimental group had shown statistically significant improvement in perceptual reasoning compared to the control group. The present study clearly establishes a correlation between chess learning and perceptual reasoning. If perceptual reasoning can be enhanced in children, it could possibly result in the improvement of executive functions as well as the scholastic performance of the child.Keywords: chess, cognition, intelligence, perceptual reasoning
Procedia PDF Downloads 3551631 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course
Authors: Lucia Ceccherini Nelli, Alessandra Donato
Abstract:
The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.Keywords: expert in energy, energy auditing, public buildings, thermal analysis
Procedia PDF Downloads 1891630 A Life Cycle Assessment (LCA) of Aluminum Production Process
Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour
Abstract:
The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts
Procedia PDF Downloads 5301629 The Response of Adaptive Mechanism of Fluorescent Proteins from Coral Species and Target Cell Properties on Signalling Capacity as Biosensor
Authors: Elif Tugce Aksun Tumerkan
Abstract:
Fluorescent proteins (FPs) have become very popular since green fluorescent protein discovered from crystal jellyfish. It is known that Anthozoa species have a wide range of chromophore organisms, and the initial crystal structure for non-fluorescent chromophores obtained from the reef-building coral has been determined. There are also differently coloured pigments in non-bioluminescent Anthozoa zooxanthellate and azooxanthellate which are frequently members of the GFP-like protein family. The development of fluorescent proteins (FPs) and their applications is an outstanding example of basic science leading to practical biotechnological and medical applications. Fluorescent proteins have several applications in science and are used as important indicators in molecular biology and cell-based research. With rising interest in cell biology, FPs have used as biosensor indicators and probes in pharmacology and cell biology. Using fluorescent proteins in genetically encoded metabolite sensors has many advantages than chemical probes for metabolites such as easily introduced into any cell or organism in any sub-cellular localization and giving chance to fixing to fluoresce of different colours or characteristics. There are different factors effects to signalling mechanism when they used as a biosensor. While there are wide ranges of research have been done on the significance and applications of fluorescent proteins, the cell signalling response of FPs and target cell are less well understood. In this study, it was aimed to clarify the response of adaptive mechanisms of coral species such as pH, temperature and symbiotic relationship and target cells properties on the signalling capacity. Corals are a rich natural source of fluorescent proteins that change with environmental conditions such as light, heat stress and injury. Adaptation mechanism of coral species to these types of environmental variations is important factor due to FPs properties have affected by this mechanism. Since fluorescent proteins obtained from nature, their own ecological property like the symbiotic relationship is observed very commonly in coral species and living conditions have the impact on FPs efficiency. Target cell properties also have an effect on signalling and visualization. The dynamicity of detector that used for reading fluorescence and the level of background fluorescence are key parameters for the quality of the fluorescent signal. Among the factors, it can be concluded that coral species adaptive characteristics have the strongest effect on FPs signalling capacity.Keywords: biosensor, cell biology, environmental conditions, fluorescent protein, sea anemone
Procedia PDF Downloads 167