Search results for: pegylation efficiency
2624 Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth
Authors: Rajiv Arora
Abstract:
Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished.Keywords: biodiesel, esterification, free fatty acids, residual oil, spent bleaching earth, transesterification
Procedia PDF Downloads 1792623 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization
Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman
Abstract:
A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization
Procedia PDF Downloads 1372622 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils
Authors: Alim Asamatdinov
Abstract:
Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.Keywords: hydrogel, chemical, polymer, sandy, colloid
Procedia PDF Downloads 1452621 Dual-functional Peptide With Defective Interfering Genes Protecting Mice From Avian and Seasonal Influenza Virus Infection
Authors: Hanjun Zhao
Abstract:
Limited efficacy of current antivirals and antiviral-resistant mutations impair anti-influenza treatment. Here, we evaluated the in vitro and in vivo antiviral effect of three defective interfering genes (DIG-3) of influenza virus. Virus replication was significantly reduced in 293T and A549 cells transfected with DIG-3. Mice transfected with DIG-3 encoded by jetPEI-vector, as prophylaxis and therapeutics against A(H7N7) virus respectively, had significantly better survivals (80% and 50%) than control mice (0%). We further developed a dual-functional peptide TAT-P1, which delivers DIG-3 with high transfection efficiency and concomitantly exerts antiviral activity by preventing endosomal acidification. TAT-P1/DIG-3 was more effective than jetPEI/DIG-3 in treating A(H7N7) or A(H1N1)pdm09-infected mice and showed potent prophylactic protection on A(H7N7) or A(H1N1)pdm09-infected mice. The addition of P1 peptide, preventing endosomal acidification, could enhance the protection of TAT-P1/DIG-3 on A(H1N1)pdm09-infected mice. Dual-functional TAT-P1 with DIG-3 can effectively protect or treat mice infected by avian and seasonal influenza virus infection.Keywords: antiviral peptide, dual-functional peptide, defective interfering genes, influenza virus
Procedia PDF Downloads 1272620 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution
Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang
Abstract:
Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.Keywords: parallel compressor model (pcm), revised calculation method, inlet distortion, outlet unequal pressure distribution
Procedia PDF Downloads 3342619 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning
Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park
Abstract:
The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement
Procedia PDF Downloads 2372618 The Impact of Digital Transformation on the Construction Industry in Kuwait
Authors: M. Aladwani, Y. Alarfaj
Abstract:
The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.Keywords: BIM, digital construction, construction technologies, digital transformation
Procedia PDF Downloads 892617 Environmental Corporate Social Responsibility in Industrial Cities: A Collaborative Governance Approach
Authors: Muhlisin, Moh. Sofyan Budiarto
Abstract:
Corporate social responsibility (CSR) initiatives based on charity and philanthropy have not alleviated many sustainable environmental issues, particularly in industrial towns. The collaborative governance strategy is seen to be an option for resolving difficulties of coordination and communication between businesses, the government, and the community so that the goals of urban environmental management can be met via collaborative efforts. The purpose of this research is to identify the different forms of environmental CSR implementation by corporate entities and to create a CSR collaborative governance model in environmental management. This qualitative investigation was carried out in 2020 in Cilegon City, one of Indonesia’s industrial cities. To investigate their support, a total of 20 informants from three stakeholder groups, namely the government, corporate entities, and the community, were questioned. According to the study’s findings, cleaner production, eco-office, energy and natural resource conservation, waste management, renewable energy, climate change adaptation, and environmental education are all examples of CSR application in the environmental sector. The environmental potential of CSR implementation is to create collaborative governance. The role of business entities in providing the beginning circumstances is critical, while the government offers facilitative leadership and the CSR forum launches institutional design. These three factors are crucial to the efficiency of collaborative governance in industrial cities' environmental management.Keywords: collaborative governance, CSR forum, environmental CSR, industrial city
Procedia PDF Downloads 902616 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams
Authors: Babak Safaei, A. M. Fattahi
Abstract:
In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)
Procedia PDF Downloads 3252615 Surface Passivation of Multicrystalline Silicon Solar Cell via Combination of LiBr/Porous Silicon and Grain Boundaies Grooving
Authors: Dimassi Wissem
Abstract:
In this work, we investigate the effect of combination between the porous silicon (PS) layer passivized with Lithium Bromide (LiBr) and grooving of grain boundaries (GB) in multi crystalline silicon. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GB's enable deep phosphorus diffusion and deep metallic contacts. We have evaluated the effects of LiBr on the surface properties of porous silicon on the performance of silicon solar cells. The results show a significant improvement of the internal quantum efficiency, which is strongly related to the photo-generated current. We have also shown a reduction of the surface recombination velocity and an improvement of the diffusion length after the LiBr process. As a result, the I–V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multi crystalline silicon enables passivization of GB-related defects. These results are discussed and compared to solar cells based on untreated multi crystalline silicon wafers.Keywords: Multicrystalline silicon, LiBr, porous silicon, passivation
Procedia PDF Downloads 3972614 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate
Authors: Kwame B. O. Amoah
Abstract:
This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.Keywords: energy consumption, building energy analysis, energy retrofits, energy-efficiency
Procedia PDF Downloads 2262613 Using Closed Frequent Itemsets for Hierarchical Document Clustering
Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu
Abstract:
Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.Keywords: FIHC, documents clustering, ontology, closed frequent itemset
Procedia PDF Downloads 4022612 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers
Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek
Abstract:
Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations
Procedia PDF Downloads 1392611 The Strategy of Urban Traditional Consumer Areas Adapting to Digital Logistics: A Case Study of Fengying Xili in Changsha
Authors: Mengjie Zhou
Abstract:
Under the rapid promotion of digital logistics, the old consumption space in cities is undergoing profound transformation and reconstruction. This article systematically analyzes the impact of digital logistics on existing consumer spaces in cities and how these spaces can adapt to and lead this change through distinct ‘spatial production’ models. The digital transformation of the logistics industry has significantly improved logistics efficiency and service quality while also putting forward new requirements for the form and function of consumer space. In this process, the old consumption space in cities not only faces the trend of material consumption transforming into spiritual consumption but also needs to face profound changes in consumer behavior patterns. Taking Fengying Xili in Changsha as an empirical case, this article explores in detail how it successfully transformed from a traditional consumption space to a modern cultural consumption space by introducing new business formats, optimizing spatial layout, and improving service quality while preserving its historical heritage. This case not only provides valuable practical experience for the transformation of old urban consumption spaces but also demonstrates the feasibility and potential of the new model of ‘spatial production’.Keywords: digital logistics, urban consumption space, space production, urban renewal
Procedia PDF Downloads 442610 Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System
Authors: Olayinka Oduwole, Steve Sheard
Abstract:
The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads.Keywords: biosensor, magnetic field, magnetic separation, super-paramagnetic bead
Procedia PDF Downloads 4742609 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures
Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara
Abstract:
The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.Keywords: IoT, fog computing, task offloading, efficient crow search algorithm
Procedia PDF Downloads 592608 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell
Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad
Abstract:
We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS
Procedia PDF Downloads 5052607 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 702606 Removal of Tar Contents in Syngas by Using Different Fuel from Downdraft Biomass Gasification System
Authors: Muhammad Awais, Wei Li, Anjum Munir
Abstract:
Biomass gasification is a process of converting solid biomass ingredients into a combustible gas which can be used in electricity generation. Regardless of their applications in many fields, biomass gasification technology is still facing many cleaning issues of syngas. Tar production in biomass gasification process is one of the biggest challenges for this technology. The aimed of this study is to evaluate the tar contents in syngas produced from wood chips, corn cobs, coconut shells and mixture of corn cobs and wood chips as biomass fuel and tar removal efficiency of different cleaning units integrated with gassifier. Performance of different cleaning units, i.e., cyclone separator, wet scrubber, biomass filter, and auxiliary filter was tested under two biomass fuels. Results of this study indicate that wood chips produced less tar of 1736 mg/Nm³ as compared to corn cobs which produced tor 2489 mg/Nm³. It is also observed that coconut shells produced a high amount of tar. It was observed that when wood chips were used as a fuel, syngas tar contents were reduced from 6600 to 112 mg/Nm³ while in case of corn cob, they were reduced from 7500 mg/Nm³ to 220 mg/Nm³. Overall tar removal efficiencies of cyclone separator, wet scrubber, biomass filter, and auxiliary filter was 72%, 63%, 74%, 35% respectively.Keywords: biomass, gasification, tar, cleaning system, biomass filter
Procedia PDF Downloads 1762605 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells
Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah
Abstract:
Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell
Procedia PDF Downloads 2852604 Linkages between Postponement Strategies and Flexibility in Organizations
Authors: Polycarpe Feussi
Abstract:
Globalization, technological and customer increasing changes, amongst other drivers, result in higher levels of uncertainty and unpredictability for organizations. In order for organizations to cope with the uncertain and fast-changing economic and business environment, these organizations need to innovate in order to achieve flexibility. In simple terms, the organizations must develop strategies leading to the ability of these organizations to provide horizontal information connections across the supply chain to create and deliver products that meet customer needs by synchronization of customer demands with product creation. The generated information will create efficiency and effectiveness throughout the whole supply chain regarding production, storage, and distribution, as well as eliminating redundant activities and reduction in response time. In an integrated supply chain, spanning activities include coordination with distributors and suppliers. This paper explains how through postponement strategies, flexibility can be achieved in an organization. In order to achieve the above, a thorough literature review was conducted via the search of online websites that contains material from scientific journal data-bases, articles, and textbooks on the subject of postponement and flexibility. The findings of the research are found in the last part of the paper. The first part introduces the concept of postponement and its importance in supply chain management. The second part of the paper provides the methodology used in the process of writing the paper.Keywords: postponement strategies, supply chain management, flexibility, logistics
Procedia PDF Downloads 1942603 The Role of Substrate-Nozzle Distance in Atomic Nebulizers in the Photoelectrochemical Water Splitting Performance of ZnO Nanorods
Authors: Lukman Andi Priyatna, Vivi Fauzia, Ferry Anggoro Ardy Nugroho
Abstract:
Zinc oxide (ZnO) based nanostructures are ubiquitous in applications due to their favourable physicochemical properties and ease of fabrication. One widely accessible route to synthesize ZnO nanorods, which show promising performance in e.g. photoelectrochemical water splitting, is hydrothermal growth of ZnO seeds, obtained via an atomic nebulizer. Despite its popularity, study on the impact of the synthesis parameters in atomic nebulizer on the performance of the synthesized ZnO nanostructures is lacking. This study presents an investigation on the impact of the distance between substrates and atomic nebulizer nozzle on the photoelectrochemical water splitting performance of ZnO nanorods. Adjusting such a distance reveals an optimum separation which results in nanostructures with highest absorbance. Such high absorbance translates into improved photoelectrochemistry, as evaluated by higher photocurrent density, from 0.11 mA/cm² to 0.14 mA/cm² and higher Applied Bias Photon-to-Current Efficiency (ABPE) from 0.12% to 0.14%. These results underscore the importance of understanding and optimizing the experimental parameters during ZnO nanostructure synthesis. In a broader context, it advertises the need to carefully assess the corresponding fabrication parameters to optimize the performance of the obtained nanostructures.Keywords: atomic nebulizer, photocurrent density, photoelectrochemical water splitting, ZnO nanorods
Procedia PDF Downloads 342602 One-off Separation of Multiple Types of Oil-In-Water Emulsions With Surface-Engineered Graphene-Based Multilevel Structure Materials
Authors: Han Longxiang
Abstract:
In the process of treating industrial oily wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) which can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM have a wide range of applications in oil-in-water emulsions separation in industry and environmental science.Keywords: emulsion, filtration, graphene, one-step
Procedia PDF Downloads 932601 Candida antarctica Lipase-B Catalyzed Alkaline-Hydrolysis of Some Aryl-Alkyl Acetate in Non-Aqueous Media
Authors: M. Merabet-Khelassi, Z. Houiene, L. Aribi-Zouioueche, O. Riant
Abstract:
Lipases (EC.3.1.1.3) are efficient biotools widely used for their remarkable chemo-, regio- and enantio-selectivity, especially, in kinetic resolution of racemates. They offer access to a large panel of enantiopure building blocks, such as secondary benzylic alcohols, commonly used as synthetic intermediates in pharmaceutical and agrochemical industries. Due to the stability of lipases in both water and organic solvents poor in water, they are able to catalyze both transesterifications of arylalkylcarbinols and hydrolysis of their corresponding acetates. The use of enzymatic hydrolysis in aqueous media still limited. In this presentation, we expose a practical methodology for the preparation of optically enriched acetates using a Candida antarctica lipase B-catalyzed hydrolysis in non-aqueous media in the presence of alkaline carbonate salts. The influence of several parameters which can intervene on the enzymatic efficiency such as the impact of the introduction of the carbonates salts, its amount and the nature of the alkaline earth metal are discussed. The obtained results show that the use of sodium carbonate with CAL-B enhances drastically both reactivity and selectivity of this immobilized lipase. In all cases, the resulting alcohols and remaining acetates are obtained in high ee values (up to > 99 %), and the selectivities reach (E > 500).Keywords: alkaline-hydrolysis, enzymatic kinetic resolution, lipases, arylalkylcarbinol, non-aqueous media
Procedia PDF Downloads 1642600 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks
Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith
Abstract:
Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN
Procedia PDF Downloads 1342599 Electric Field Impact on the Biomass Gasification and Combustion Dynamics
Authors: M. Zake, I. Barmina, R. Valdmanis, A. Kolmickovs
Abstract:
Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3 % and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10 % increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10 %Keywords: biomass, combustion, electrodynamic control, gasification
Procedia PDF Downloads 4452598 The Trajectory of the Ball in Football Game
Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar
Abstract:
Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter
Procedia PDF Downloads 4622597 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure
Authors: Andrew R. Winters, Gregor J. Gassner
Abstract:
A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity
Procedia PDF Downloads 3462596 Building an Interactive Web-Based GIS System for Planning of Geological Survey Works
Authors: Wu Defu, Kiefer Chiam, Yang Kin Seng
Abstract:
The planning of geological survey works is an iterative process which involves planner, geologist, civil engineer and other stakeholders, who perform different roles and have different points of view. Traditionally, the team used paper maps or CAD drawings to present the proposal which is not an efficient way to present and share idea on the site investigation proposal such as sitting of borehole location or seismic survey lines. This paper focuses on how a GIS approach can be utilised to develop a web-based system to support decision making process in the planning of geological survey works and also to plan site activities carried out by Singapore Geological Office (SGO). The authors design a framework of building an interactive web-based GIS system, and develop a prototype, which enables the users to obtain rapidly existing geological information and also to plan interactively borehole locations and seismic survey lines via a web browser. This prototype system is used daily by SGO and has shown to be effective in increasing efficiency and productivity as the time taken in the planning of geological survey works is shortened. The prototype system has been developed using the ESRI ArcGIS API 3.7 for Flex which is based on the ArcGIS 10.2.1 platform.Keywords: engineering geology, flex, geological survey planning, geoscience, GIS, site investigation, WebGIS
Procedia PDF Downloads 3082595 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 484