Search results for: nonprofit organizations-national data maturity index (NDI)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27600

Search results for: nonprofit organizations-national data maturity index (NDI)

23550 Liquefaction Potential Assessment Using Screw Driving Testing and Microtremor Data: A Case Study in the Philippines

Authors: Arturo Daag

Abstract:

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) is enhancing its liquefaction hazard map towards a detailed probabilistic approach using SDS and geophysical data. Target sites for liquefaction assessment are public schools in Metro Manila. Since target sites are in highly urbanized-setting, the objective of the project is to conduct both non-destructive geotechnical studies using Screw Driving Testing (SDFS) combined with geophysical data such as refraction microtremor array (ReMi), 3 component microtremor Horizontal to Vertical Spectral Ratio (HVSR), and ground penetrating RADAR (GPR). Initial test data was conducted in liquefaction impacted areas from the Mw 6.1 earthquake in Central Luzon last April 22, 2019 Province of Pampanga. Numerous accounts of liquefaction events were documented areas underlain by quaternary alluvium and mostly covered by recent lahar deposits. SDS estimated values showed a good correlation to actual SPT values obtained from available borehole data. Thus, confirming that SDS can be an alternative tool for liquefaction assessment and more efficient in terms of cost and time compared to SPT and CPT. Conducting borehole may limit its access in highly urbanized areas. In order to extend or extrapolate the SPT borehole data, non-destructive geophysical equipment was used. A 3-component microtremor obtains a subsurface velocity model in 1-D seismic shear wave velocity of the upper 30 meters of the profile (Vs30). For the ReMi, 12 geophone array with 6 to 8-meter spacing surveys were conducted. Microtremor data were computed through the Factor of Safety, which is the quotient of Cyclic Resistance Ratio (CRR) and Cyclic Stress Ratio (CSR). Complementary GPR was used to study the subsurface structure and used to inferred subsurface structures and groundwater conditions.

Keywords: screw drive testing, microtremor, ground penetrating RADAR, liquefaction

Procedia PDF Downloads 202
23549 Association Rules Mining Task Using Metaheuristics: Review

Authors: Abir Derouiche, Abdesslem Layeb

Abstract:

Association Rule Mining (ARM) is one of the most popular data mining tasks and it is widely used in various areas. The search for association rules is an NP-complete problem that is why metaheuristics have been widely used to solve it. The present paper presents the ARM as an optimization problem and surveys the proposed approaches in the literature based on metaheuristics.

Keywords: Optimization, Metaheuristics, Data Mining, Association rules Mining

Procedia PDF Downloads 159
23548 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: machine learning, wearable devices, user interface, user experience, internet of things

Procedia PDF Downloads 294
23547 Study and Conservation of Cultural and Natural Heritages with the Use of Laser Scanner and Processing System for 3D Modeling Spatial Data

Authors: Julia Desiree Velastegui Caceres, Luis Alejandro Velastegui Caceres, Oswaldo Padilla, Eduardo Kirby, Francisco Guerrero, Theofilos Toulkeridis

Abstract:

It is fundamental to conserve sites of natural and cultural heritage with any available technique or existing methodology of preservation in order to sustain them for the following generations. We propose a further skill to protect the actual view of such sites, in which with high technology instrumentation we are able to digitally preserve natural and cultural heritages applied in Ecuador. In this project the use of laser technology is presented for three-dimensional models, with high accuracy in a relatively short period of time. In Ecuador so far, there are not any records on the use and processing of data obtained by this new technological trend. The importance of the project is the description of the methodology of the laser scanner system using the Faro Laser Scanner Focus 3D 120, the method for 3D modeling of geospatial data and the development of virtual environments in the areas of Cultural and Natural Heritage. In order to inform users this trend in technology in which three-dimensional models are generated, the use of such tools has been developed to be able to be displayed in all kinds of digitally formats. The results of the obtained 3D models allows to demonstrate that this technology is extremely useful in these areas, but also indicating that each data campaign needs an individual slightly different proceeding starting with the data capture and processing to obtain finally the chosen virtual environments.

Keywords: laser scanner system, 3D model, cultural heritage, natural heritage

Procedia PDF Downloads 306
23546 Provenance and Paleoweathering Conditions of Doganhisar Clay Beds

Authors: Mehmet Yavuz Huseyinca

Abstract:

The clay beds are located at the south-southeast of Doğanhisar and northwest of Konya in the Central Anatolia. In the scope of preliminary study, three types of samples were investigated including basement phyllite (Bp) overlain by the clay beds, weathered phyllite (Wp) and Doğanhisar clay (Dc). The Chemical Index of Alteration (CIA) values of Dc range from 81 to 88 with an average of 85. This value is higher than that of Post Archean Australian Shale (PAAS) and defines very intense chemical weathering in the source-area. On the other hand, the A-CN-K diagram indicates that Bp underwent high degree post-depositional K-metasomatism. The average reconstructed CIA value of the Bp prior to the K-metasomatism is mainly 81 which overlaps the CIA values of the Wp (83) and Dc (85). Similar CIA values indicate parallel weathering trends. Also, extrapolation of the samples back to the plagioclase-alkali feldspar line in the A-CN-K diagram suggests an identical provenance close to granite in composition. Hereby the weathering background of Dc includes two steps. First one is intense weathering process of a granitic source to Bp with post-depositional K-metasomatism and the latter is progressively weathering of Bp to premetasomatised conditions (formation of Wp) ending with Dc deposition.

Keywords: clay beds, Doganhisar, provenance, weathering

Procedia PDF Downloads 308
23545 Marginalized Two-Part Joint Models for Generalized Gamma Family of Distributions

Authors: Mohadeseh Shojaei Shahrokhabadi, Ding-Geng (Din) Chen

Abstract:

Positive continuous outcomes with a substantial number of zero values and incomplete longitudinal follow-up are quite common in medical cost data. To jointly model semi-continuous longitudinal cost data and survival data and to provide marginalized covariate effect estimates, a marginalized two-part joint model (MTJM) has been developed for outcome variables with lognormal distributions. In this paper, we propose MTJM models for outcome variables from a generalized gamma (GG) family of distributions. The GG distribution constitutes a general family that includes approximately all of the most frequently used distributions like the Gamma, Exponential, Weibull, and Log Normal. In the proposed MTJM-GG model, the conditional mean from a conventional two-part model with a three-parameter GG distribution is parameterized to provide the marginal interpretation for regression coefficients. In addition, MTJM-gamma and MTJM-Weibull are developed as special cases of MTJM-GG. To illustrate the applicability of the MTJM-GG, we applied the model to a set of real electronic health record data recently collected in Iran, and we provided SAS code for application. The simulation results showed that when the outcome distribution is unknown or misspecified, which is usually the case in real data sets, the MTJM-GG consistently outperforms other models. The GG family of distribution facilitates estimating a model with improved fit over the MTJM-gamma, standard Weibull, or Log-Normal distributions.

Keywords: marginalized two-part model, zero-inflated, right-skewed, semi-continuous, generalized gamma

Procedia PDF Downloads 176
23544 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 154
23543 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 128
23542 The Impact of Social Protection Intervention on Alleviating Social Vulnerability (Evidence from Ethiopian Rural Households)

Authors: Tewelde Gebresslase Haile, S. P. Singh

Abstract:

To bridge the existing knowledge gap on public intervention implementations, this study estimates the impact of social protection intervention (SPI) on alleviating social vulnerability. Following a multi-stage sampling, primary information was gathered through a self-administered questionnaire, FGD, and interviews from the target households located at four systematically selected districts of Tigrai, Ethiopia. Factor analysis and Propensity Score Matching are applied to construct Social Vulnerability Index (SVI) and measuring the counterfactual impact of selected intervention. As a multidimensional challenge, social vulnerability is found as an important concept used to guide policy evaluation. Accessibility of basic services of Social Affairs, Agriculture, Health and Education sectors, and Food Security Program are commonly used as SPIs. Finally, this study discovers that the households who had access to SPI have scored 9.65% lower SVI than in the absence of the intervention. Finally, this study suggests the provision of integrated, proactive, productive, and evidence-based SPIs to alleviate social vulnerability.

Keywords: social protection, livelihood assets, social vulnerability, public policy SVI

Procedia PDF Downloads 89
23541 Insulin Receptor Substrate-1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) Gene Polymorphisms Associated with Type 2 Diabetes Mellitus in Eritreans

Authors: Mengistu G. Woldu, Hani Y. Zaki, Areeg Faggad, Badreldin E. Abdalla

Abstract:

Background: Type 2 diabetes mellitus (T2DM) is a complex, degenerative, and multi-factorial disease, which is culpable for huge mortality and morbidity worldwide. Even though relatively significant numbers of studies are conducted on the genetics domain of this disease in the developed world, there is huge information gap in the sub-Saharan Africa region in general and in Eritrea in particular. Objective: The principal aim of this study was to investigate the association of common variants of the Insulin Receptor Substrate 1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) genes with T2DM in the Eritrean population. Method: In this cross-sectional case control study 200 T2DM patients and 112 non-diabetes subjects were participated and genotyping of the IRS1 (rs13431179, rs16822615, 16822644rs, rs1801123) and TCF7L2 (rs7092484) tag SNPs were carries out using PCR-RFLP method of analysis. Haplotype analyses were carried out using Plink version 1.07, and Haploview 4.2 software. Linkage disequilibrium (LD), and Hardy-Weinberg equilibrium (HWE) analyses were performed using the Plink software. All descriptive statistical data analyses were carried out using SPSS (Version-20) software. Throughout the analysis p-value ≤0.05 was considered statistically significant. Result: Significant association was found between rs13431179 SNP of the IRS1 gene and T2DM under the recessive model of inheritance (OR=9.00, 95%CI=1.17-69.07, p=0.035), and marginally significant association found in the genotypic model (OR=7.50, 95%CI=0.94-60.06, p=0.058). The rs7092484 SNP of the TCF7L2 gene also showed markedly significant association with T2DM in the recessive (OR=3.61, 95%CI=1.70-7.67, p=0.001); and allelic (OR=1.80, 95%CI=1.23-2.62, p=0.002) models. Moreover, eight haplotypes of the IRS1 gene found to have significant association withT2DM (p=0.013 to 0.049). Assessments made on the interactions of genotypes of the rs13431179 and rs7092484 SNPs with various parameters demonstrated that high density lipoprotein (HDL), low density lipoprotein (LDL), waist circumference (WC), and systolic blood pressure (SBP) are the best T2DM onset predicting models. Furthermore, genotypes of the rs7092484 SNP showed significant association with various atherogenic indexes (Atherogenic index of plasma, LDL/HDL, and CHLO/HDL); and Eritreans carrying the GG or GA genotypes were predicted to be more susceptible to cardiovascular diseases onset. Conclusions: Results of this study suggest that IRS1 (rs13431179) and TCF7L2 (rs7092484) gene polymorphisms are associated with increased risk of T2DM in Eritreans.

Keywords: IRS1, SNP, TCF7L2, type 2 diabetes

Procedia PDF Downloads 225
23540 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods

Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana

Abstract:

Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.

Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management

Procedia PDF Downloads 193
23539 A Performance Study of Fixed, Single-Axis and Dual-Axis Photovoltaic Systems in Kuwait

Authors: A. Al-Rashidi, A. El-Hamalawi

Abstract:

In this paper, a performance study was conducted to investigate single and dual-axis PV systems to generate electricity in five different sites in Kuwait. Relevant data were obtained by using two sources for validation purposes. A commercial software, PVsyst, was used to analyse the data, such as metrological data and other input parameters, and compute the performance parameters such as capacity factor (CF) and final yield (YF). The results indicated that single and dual-axis PV systems would be very beneficial to electricity generation in Kuwait as an alternative source to conventional power plants, especially with the increased demand over time. The ranges were also found to be competitive in comparison to leading countries using similar systems. A significant increase in CF and YF values around 24% and 28.8% was achieved related to the use of single and dual systems, respectively.

Keywords: single-axis and dual-axis photovoltaic systems, capacity factor, final yield, Kuwait

Procedia PDF Downloads 296
23538 Effect of Organic and Inorganic Fertilizers on the Growth and Yield of Physic Nut (Jatropha curcas)

Authors: Oliver Echezona Ngwu

Abstract:

The research was conducted in 2011 cropping season at the Teaching and Research farm of the Faculty of Agriculture and Natural Resources Management, Enugu State University of Science and Technology, Enugu, Nigeria to study the effect of organic and inorganic fertilizers on the growth and yield of physic Nut (Jatropha curcas). There were five treatments namely, control, (no application of treatment), NPK 20:10:10, NPK 15:15;15, poultry droppings and goat dung. The treatments were laid out in a Randomized complete Block Design (RCBD) with five replications. The total land area used was 228m2 (19x12m) while the plot size was 3mx2 (6m2). The growth parameters measured were plant height, number of leaves, and leaf area, index (LAI). The results obtained showed that there were significant differences at P=0.05 among the different treatments in 30, to and 90 DAP. Based on the results T4 (poultry droppings) had higher effect at P=0.05 at 30, 60, 90 DAP than the other treatments when compared and is hereby recommended as the best type of fertilizer for the optimum growth and production of physic Nut (Jatropha Curcas) in South Eastern Nigeria.

Keywords: organic, inorganic fertilizers, growth, yield, Jatropha curcas

Procedia PDF Downloads 284
23537 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 445
23536 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning

Authors: Janet Holland

Abstract:

Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.

Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation

Procedia PDF Downloads 131
23535 A Proposed Mechanism for Skewing Symmetric Distributions

Authors: M. T. Alodat

Abstract:

In this paper, we propose a mechanism for skewing any symmetric distribution. The new distribution is called the deflation-inflation distribution (DID). We discuss some statistical properties of the DID such moments, stochastic representation, log-concavity. Also we fit the distribution to real data and we compare it to normal distribution and Azzlaini's skew normal distribution. Numerical results show that the DID fits the the tree ring data better than the other two distributions.

Keywords: normal distribution, moments, Fisher information, symmetric distributions

Procedia PDF Downloads 659
23534 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance

Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu

Abstract:

Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.

Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance

Procedia PDF Downloads 133
23533 Short Life Cycle Time Series Forecasting

Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar

Abstract:

The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.

Keywords: forecast, short life cycle product, structured judgement, time series

Procedia PDF Downloads 358
23532 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing

Procedia PDF Downloads 178
23531 Design and Implement a Remote Control Robot Controlled by Zigbee Wireless Network

Authors: Sinan Alsaadi, Mustafa Merdan

Abstract:

Communication and access systems can be made with many methods in today’s world. These systems are such standards as Wifi, Wimax, Bluetooth, GPS and GPRS. Devices which use these standards also use system resources excessively in direct proportion to their transmission speed. However, large-scale data communication is not always needed. In such cases, a technology which will use system resources as little as possible and support smart network topologies has been needed in order to enable the transmissions of such small packet data and provide the control for this kind of devices. IEEE issued 802.15.4 standard upon this necessity and enabled the production of Zigbee protocol which takes these standards as its basis and devices which support this protocol. In our project, this communication protocol was preferred. The aim of this study is to provide the immediate data transmission of our robot from the field within the scope of the project. In addition, making the communication with the robot through Zigbee Protocol has also been aimed. While sitting on the computer, obtaining the desired data from the region where the robot is located has been taken as the basis. Arduino Uno R3 microcontroller which provides the control mechanism, 1298 shield as the motor driver.

Keywords: ZigBee, wireless network, remote monitoring, smart home, agricultural industry

Procedia PDF Downloads 278
23530 Improvement of the Melon (Cucumis melo L.) through Genetic Gain and Discriminant Function

Authors: M. R. Naroui Rad, H. Fanaei, A. Ghalandarzehi

Abstract:

To find out the yield of melon, the traits are vital. This research was performed with the objective to assess the impact of nine different morphological traits on the production of 20 melon landraces in the sistan weather region. For all the traits genetic variation was noted. Minimum genetical variance (9.66) along with high genetic interaction with the environment led to low heritability (0.24) of the yield. The broad sense heritability of the traits that were included into the differentiating model was more than it was in the production. In this study, the five selected traits, number of fruit, fruit weight, fruit width, flesh diameter and plant yield can differentiate the genotypes with high or low production. This demonstrated the significance of these 5 traits in plant breeding programs. Discriminant function of these 5 traits, particularly, the weight of the fruit, in case of the current outputs was employed as an all-inclusive parameter for pointing out landraces with the highest yield. 75% of variation in yield can be explained with this index, and the weight of fruit also has substantial relation with the total production (r=0.72**). This factor can be highly beneficial in case of future breeding program selections.

Keywords: melon, discriminant analysis, genetic components, yield, selection

Procedia PDF Downloads 334
23529 Evaluation of Vitamin D Levels in Obese and Morbid Obese Children

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Obesity may lead to growing serious health problems throughout the world. Vitamin D appears to play a role in cardiovascular and metabolic health. Vitamin D deficiency may add to derangements in human metabolic systems, particularly those of children. Childhood obesity is associated with an increased risk of chronic and sophisticated diseases. The aim of this study is to investigate associations as well as possible differences related to parameters affected by obesity and their relations with vitamin D status in obese (OB) and morbid obese (MO) children. This study included a total of 78 children. Of them, 41 and 37 were OB and MO, respectively. WHO BMI-for age percentiles were used for the classification of obesity. The values above 99 percentile were defined as MO. Those between 95 and 99 percentiles were included into OB group. Anthropometric measurements were recorded. Basal metabolic rates (BMRs) were measured. Vitamin D status is determined by the measurement of 25-hydroxy cholecalciferol [25- hydroxyvitamin D3, 25(OH)D] using high-performance liquid chromatography. Vitamin D status was evaluated as deficient, insufficient and sufficient. Values < 20.0 ng/ml, values between 20-30 ng/ml and values > 30.0 ng/ml were defined as vitamin D deficient, insufficient and sufficient, respectively. Optimal 25(OH)D level was defined as ≥ 30 ng/ml. SPSSx statistical package program was used for the evaluation of the data. The statistical significance degree was accepted as p < 0.05. Mean ages did not differ between the groups. Significantly increased body mass index (BMI), waist circumference (C) and neck C as well as significantly decreased fasting blood glucose (FBG) and vitamin D values were observed in MO group (p < 0.05). In OB group, 37.5% of the children were vitamin D deficient, and in MO group the corresponding value was 53.6%. No difference between the groups in terms of lipid profile, systolic blood pressure (SBP), diastolic blood pressure (DBP) and insulin values was noted. There was a severe statistical significance between FBG values of the groups (p < 0.001). Important correlations between BMI, waist C, hip C, neck C and both SBP as well as DBP were found in OB group. In MO group, correlations only with SBP were obtained. In a similar manner, in OB group, correlations were detected between SBP-BMR and DBP-BMR. However, in MO children, BMR correlated only with SBP. The associations of vitamin D with anthropometric indices as well as some lipid parameters were defined. In OB group BMI, waist C, hip C and triglycerides (TRG) were negatively correlated with vitamin D concentrations whereas none of them were detected in MO group. Vitamin D deficiency may contribute to the complications associated with childhood obesity. Loss of correlations between obesity indices-DBP, vitamin D-TRG, as well as relatively lower FBG values, observed in MO group point out that the emergence of MetS components starts during obesity state just before the transition to morbid obesity. Aside from its deficiency state, associations of vitamin D with anthropometric measurements, blood pressures and TRG should also be evaluated before the development of morbid obesity.

Keywords: children, morbid obesity, obesity, vitamin D

Procedia PDF Downloads 141
23528 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning

Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga

Abstract:

Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.

Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter

Procedia PDF Downloads 212
23527 Tuning Cubic Equations of State for Supercritical Water Applications

Authors: Shyh Ming Chern

Abstract:

Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and, reasonable accuracy are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, They often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.

Keywords: equation of state, EoS, supercritical water, SCW

Procedia PDF Downloads 535
23526 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: multi-agent system, safety analysis, safety model, integration map

Procedia PDF Downloads 417
23525 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference

Procedia PDF Downloads 108
23524 Toxicological Risk Analysis in Different Crops and Vegetables Exposed to High Fluoride-Contaminated Water

Authors: Pankaj Kumar

Abstract:

Despite few works reported about fluoride enrichment in the groundwater, no studies have done on exposure analysis for biological components in Patan district, Gujarat, Western India. Considering its vital importance, this study strives to quantify the bioaccumulation of fluoride in seven different crops and vegetables, viz. Spinach and Mustard leaves, Cauliflower, Wheat grains, Amaranth seed, Radish, and Garlic grown in the potentially fluoride contaminated area. Result shows that the order for fluoride accumulation among different analyzed plants are spinach (63.3 mg/kg) > mustard (48.9 mg/kg) > cauliflower (41.1 mg/kg) > radish (35.7 mg/kg) > garlic (33.2 mg/kg) > amaranth seed (26.7 mg/kg) > wheat (22.5 mg/kg). Fluoride concentration was highest in leafy vegetable, whereas the lowest was in wheat grains. Finally, estimated daily intake (EDI) and hazard index (HI) were calculated for local consumers of different age group, where it was found that young people (4-15 years) are at the highest risk of fluorosis. This study is relevant for better crop management, like substituting crops with woody plants, flowers, and people awareness.

Keywords: fluoride, bioaccumulation, health risk, water

Procedia PDF Downloads 119
23523 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: cyclic loading, DEM, numerical modelling, sands

Procedia PDF Downloads 321
23522 Soil Surface Insect Diversity of Tobacco Agricultural Ecosystem in Imogiri, Bantul District of Yogyakarta Special Region, Indonesia

Authors: Martina Faika Harianja, Zahtamal, Indah Nuraini, Septi Mutia Handayani, R. C. Hidayat Soesilohadi

Abstract:

Tobacco is a valuable commodity that supports economic growth in Indonesia. Soil surface insects are important components that influence productivity of tobacco. Thus, diversity of soil surface insects needs to be studied in order to acquire information about specific roles of each species in ecosystem. This research aimed to study the soil surface insect diversity of tobacco agricultural ecosystem in Imogiri, Bantul District of Yogyakarta Special Region, Indonesia. Samples were collected by pitfall-sugar bait trap in August 2015. Result showed 5 orders, 8 families, and 17 genera of soil surface insects were found. The diversity category of soil surface insects in tobacco agricultural ecosystem was poor. Dominant genus was Monomorium with dominance index score 0.07588. Percentages of insects’ roles were omnivores 43%, detritivores 24%, predators 19%, and herbivores 14%.

Keywords: diversity, Indonesia, soil surface insect, tobacco

Procedia PDF Downloads 340
23521 Estimation of Desktop E-Wastes in Delhi Using Multivariate Flow Analysis

Authors: Sumay Bhojwani, Ashutosh Chandra, Mamita Devaburman, Akriti Bhogal

Abstract:

This article uses the Material flow analysis for estimating e-wastes in the Delhi/NCR region. The Material flow analysis is based on sales data obtained from various sources. Much of the data available for the sales is unreliable because of the existence of a huge informal sector. The informal sector in India accounts for more than 90%. Therefore, the scope of this study is only limited to the formal one. Also, for projection of the sales data till 2030, we have used regression (linear) to avoid complexity. The actual sales in the years following 2015 may vary non-linearly but we have assumed a basic linear relation. The purpose of this study was to know an approximate quantity of desktop e-wastes that we will have by the year 2030 so that we start preparing ourselves for the ineluctable investment in the treatment of these ever-rising e-wastes. The results of this study can be used to install a treatment plant for e-wastes in Delhi.

Keywords: e-wastes, Delhi, desktops, estimation

Procedia PDF Downloads 259