Search results for: hierarchical text classification models
6033 Effectiveness of Parent Coaching Intervention for Parents of Children with Developmental Disabilities in the Home and Community
Authors: Elnaz Alimi, Keriakoula Andriopoulos, Sam Boyer, Weronika Zuczek
Abstract:
Occupational therapists can use coaching strategies to guide parents in providing therapy for their children with developmental disabilities. Evidence from various fields has shown increased parental self-efficacy and positive child outcomes as benefits of home and community-based parent coaching models. A literature review was conducted to investigate the effectiveness of parent coaching interventions delivered in home and community settings for children with developmental disabilities ages 0-12, on a variety of parent and child outcomes. CINAHL Plus, PsycINFO, PubMed, OTseeker were used as databases. The inclusion criteria consisted of: children with developmental disabilities ages 0-12 and their parents, parent coaching models conducted in the home and community, and parent and child outcomes. Studies were excluded if they were in a language other than English and published before 2000. Results showed that parent coaching interventions led to more positive therapy outcomes in child behaviors and symptoms related to their diagnosis or disorder. Additionally, coaching strategies had positive effects on parental satisfaction with therapy, parental self-efficacy, and family dynamics. Findings revealed decreased parental stress and improved parent-child relationships. Further research on parent coaching could involve studying the feasibility of coaching within occupational therapy specifically, incorporating cultural elements into coaching, qualitative studies on parental satisfaction with coaching, and measuring the quality of life outcomes for the whole family.Keywords: coaching model, developmental disabilities, occupational therapy, pediatrics
Procedia PDF Downloads 1946032 Urbanization in Delhi: A Multiparameter Study
Authors: Ishu Surender, M. Amez Khair, Ishan Singh
Abstract:
Urbanization is a multidimensional phenomenon. It is an indication of the long-term process for the shift of economics to industrial from rural. The significance of urbanization in modernization, socio-economic development, and poverty eradication is relevant in modern times. This paper aims to study the urbanization index model in the capital of India, Delhi using aspects such as demographic aspect, infrastructural development aspect, and economic development aspect. The urbanization index of all the nine districts of Delhi will be determined using multiple parameters such as population density and the availability of health and education facilities. The definition of the urban area varies from city to city and requires periodic classification which makes direct comparisons difficult. The urbanization index calculated in this paper can be employed to measure the urbanization of a district and compare the level of urbanization in different districts.Keywords: multiparameter, population density, multiple regression, normalized urbanization index
Procedia PDF Downloads 1146031 Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation
Authors: S. Alansary, M. Nagi
Abstract:
This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search.Keywords: semantic analysis, semantic annotation, Arabic, universal networking language
Procedia PDF Downloads 5826030 An Analytical and Inductive Study of the Aspect and Impact of the Prophetic Traditions in Understating Quran and Its Interpretation
Authors: Zabihur Rahman
Abstract:
In present day we see in our surroundings and in different societies of the world an uprising approach of understanding Quran without the help of Hadith and Sunnah. As they believe that ‘Quran is sufficient for our guidance’. They do not give any preference to Prophetic traditions (Hadith and Sunnah), to understand or realize the actual meaning and purpose of the reveling of Quranic verses. Based on the afore mentioned idea we are going to pin point an analytical and inductive study of tafsir Ahkâm-ul Qu’ran by: Ibn-ul Arabi al-Mâliki. In this study we are trying to show the importance of Hadith and Sunnah in interpretation and understanding of Quran by presenting various examples from tafsir Ahkâm-ul Quran. This book is for being an important source in the relative filed of Ahkam-ul Quran we are going to highlight the method of Ibn-ul Arabi in dealing with Quranic verses in the light of Hadith. Furthermore, the impact of quoting different types of hadith in Tefsir is also taken into account. Besides, while citing these Prophetic traditions it is also inevitable to kept in view the sciences of hadith and its application on the context in order to orientate the proper meaning. The study also includes the scrutiny of these narrations by their chain of narrators and text to ensure the perfection of these prophetic traditions. So that, a person can have accesses to the righteous understanding and interpretation of the Holy Quran.Keywords: Hadith, interpretation, narrators, verses
Procedia PDF Downloads 1596029 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for near Field Earthquakes
Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi
Abstract:
Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. And, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete (R/C) frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis (pushover analysis) in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.Keywords: nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes
Procedia PDF Downloads 4056028 Predictive Analytics of Bike Sharing Rider Parameters
Authors: Bongs Lainjo
Abstract:
The evolution and escalation of bike-sharing programs (BSP) continue unabated. Since the sixties, many countries have introduced different models and strategies of BSP. These include variations ranging from dockless models to electronic real-time monitoring systems. Reasons for using this BSP include recreation, errands, work, etc. And there is all indication that complex, and more innovative rider-friendly systems are yet to be introduced. The objective of this paper is to analyze current variables established by different operators and streamline them identifying the most compelling ones using analytics. Given the contents of available databases, there is a lack of uniformity and common standard on what is required and what is not. Two factors appear to be common: user type (registered and unregistered, and duration of each trip). This article uses historical data provided by one operator based in the greater Washington, District of Columbia, USA area. Several variables including categorical and continuous data types were screened. Eight out of 18 were considered acceptable and significantly contribute to determining a useful and reliable predictive model. Bike-sharing systems have become popular in recent years all around the world. Although this trend has resulted in many studies on public cycling systems, there have been few previous studies on the factors influencing public bicycle travel behavior. A bike-sharing system is a computer-controlled system in which individuals can borrow bikes for a fee or free for a limited period. This study has identified unprecedented useful, and pragmatic parameters required in improving BSP ridership dynamics.Keywords: sharing program, historical data, parameters, ridership dynamics, trip duration
Procedia PDF Downloads 1386027 Merit Order of Indonesian Coal Mining Sources to Meet the Domestic Power Plants Demand
Authors: Victor Siahaan
Abstract:
Coal still become the most important energy source for electricity generation known for its contribution which take the biggest portion of energy mix that a country has, for example Indonesia. The low cost of electricity generation and quite a lot of resources make this energy still be the first choice to fill the portion of base load power. To realize its significance to produce electricity, it is necessary to know the amount of coal (volume) needed to ensure that all coal power plants (CPP) in a country can operate properly. To secure the volume of coal, in this study, discussion was carried out regarding the identification of coal mining sources in Indonesia, classification of coal typical from each coal mining sources, and determination of the port of loading. By using data above, the sources of coal mining are then selected to feed certain CPP based on the compatibility of the coal typical and the lowest transport cost.Keywords: merit order, Indonesian coal mine, electricity, power plant
Procedia PDF Downloads 1536026 Effect of Clinical Depression on Automatic Speaker Verification
Authors: Sheeraz Memon, Namunu C. Maddage, Margaret Lech, Nicholas Allen
Abstract:
The effect of a clinical environment on the accuracy of the speaker verification was tested. The speaker verification tests were performed within homogeneous environments containing clinically depressed speakers only, and non-depresses speakers only, as well as within mixed environments containing different mixtures of both climatically depressed and non-depressed speakers. The speaker verification framework included the MFCCs features and the GMM modeling and classification method. The speaker verification experiments within homogeneous environments showed 5.1% increase of the EER within the clinically depressed environment when compared to the non-depressed environment. It indicated that the clinical depression increases the intra-speaker variability and makes the speaker verification task more challenging. Experiments with mixed environments indicated that the increase of the percentage of the depressed individuals within a mixed environment increases the speaker verification equal error rates.Keywords: speaker verification, GMM, EM, clinical environment, clinical depression
Procedia PDF Downloads 3756025 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.Keywords: composite material, crashworthiness, finite element analysis, optimization
Procedia PDF Downloads 2566024 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations
Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White
Abstract:
Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.Keywords: climate, degradation, HVAC, neighborhood component analysis
Procedia PDF Downloads 4316023 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering
Authors: Tuba Kizilirmak
Abstract:
Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals
Procedia PDF Downloads 1946022 Finite Element Molecular Modeling: A Structural Method for Large Deformations
Authors: A. Rezaei, M. Huisman, W. Van Paepegem
Abstract:
Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.Keywords: finite element, large deformation, molecular mechanics, structural method
Procedia PDF Downloads 1526021 Uncertainty Reduction and Dyadic Interaction through Social Media
Authors: Masrur Alam Khan
Abstract:
The purpose of this study was to examine the dyadic interaction techniques that social media users utilize to reduce uncertainty in their day to day business engagements in the absence of their physical interaction. The study empirically tested assumptions of uncertainty reduction theory while addressing self-disclosure, seeking questions to develop consensus, and subsequently to achieve intimacy in very conducive environment. Moreover, this study examined the effect of dyadic interaction through social media among business community while identifying the strength of their reciprocity in relationships and compares it with those having no dyadic relations due to absence of social media. Using socio-metric survey, the study revealed a better understanding of their partners for upholding their professional relations more credible. A sample of unacquainted, both male and female, was randomly asked questions regarding their nature of dyadic interaction within their office while using social media (face-to-face, visual CMC (webcam) or text-only). Primary results explored that the social media users develop their better know-how about their professional obligations to reduce ambiguity and align with one to one interact.Keywords: dyadic-interaction, social media, uncertainty reduction, socio-metric survey, self-disclosure, intimacy, reciprocity in relationship
Procedia PDF Downloads 1376020 Being an Afghan Woman in Australia; Stereotypes, Gender Roles, and Adaption with New Context
Authors: Rojan Afrouz
Abstract:
Introduction: The immigration is a complex process of transitioning and transformation. Immigrants are more likely to come from the patriarchal and hierarchical society with traditional gender roles and women’s stereotypes. Changing the perception of women’s gender roles may result in challenges between women and their family and community. In this article, Afghan women’s perspectives on gender roles and stereotypes have been investigated as well as their experience of changes in the new context of Australia. Australian initiatives of challenging gender roles have provided the opportunities for Afghan women to emancipate from the traditional gender roles and pursue the value of gender equality. In this process, they may face many challenges in intersectional levels within their family, community and wider society which is a complex conflate of oppressive factors that may not be addressed easily and straightforward. Methods: This qualitative study has been conducted among Afghan women who have lived in Australia less than ten years. Semi-structured interviews either face to face or by phone have been used to collect data for this study. The interviews have been audio-recorded and transcribed verbatim. Nvivo software has been used for data analysis. Findings: Many participants mentioned that they had been taught that a good Afghan woman is devoted, obedient and loyal to their family and community. They believed that for many Afghan families, Afghan women's natural place was inside the home as a housewife, mother, daughter involving so many responsibilities and expectation of making sacrifices. Many women stated that their attitudes toward gender roles and their feeling of being a woman had been changed since they came to Australia although the process of change for women was complex and diverse. Some had to deal with conflicts with their stereotypes, traditional gender roles as well as strong disagreement with their family and community. Conclusion: Moving to a different country with more gender equality is an opportunity for Afghan women to change their perceptions of gender roles and stereotypes. However, challenging traditional stereotypes and gender roles in the new context is a complex process comprising intersectional levels.Keywords: stereotypes, gender role, immigration, Afghan women
Procedia PDF Downloads 1726019 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 856018 Presuppositions and Implicatures in Four Selected Speeches of Osama Bin Laden's Legitimisation of 'Jihad'
Authors: Sawsan Al-Saaidi, Ghayth K. Shaker Al-Shaibani
Abstract:
This paper investigates certain linguistics properties of four selected speeches by Al-Qaeda’s former leader Osama bin Laden who legitimated the use of jihad by Muslims in various countries when he was alive. The researchers adopt van Dijk’s (2009; 1998) Socio-Cognitive approach and Ideological Square theory respectively. Socio-Cognitive approach revolves around various cognitive, socio-political, and discursive aspects that can be found in political discourse as in Osama bin Laden’s one. The political discourse can be defined in terms of textual properties and contextual models. Pertaining to the ideological square, it refers to positive self-presentation and negative other-presentation which help to enhance the textual and contextual analyses. Therefore, among the most significant properties in Osama bin Laden’s discourse are the use of presuppositions and implicatures which are based on background knowledge and contextual models as well. Thus, the paper concludes that Osama bin Laden used a number of manipulative strategies which augmented and embellished the use of ‘jihad’ in order to develop a more effective discourse for his audience. In addition, the findings have revealed that bin Laden used different implicit and embedded interpretations of different topics which have been accepted as taken-for-granted truths for him to legitimate Jihad against his enemies. There are many presuppositions in the speeches analysed that result in particular common-sense assumptions and a world-view about the selected speeches. More importantly, the assumptions in the analysed speeches help consolidate the ideological analysis in terms of in-group and out-group members.Keywords: Al-Qaeda, cognition, critical discourse analysis, Osama Bin Laden, jihad, implicature, legitimisation, presupposition, political discourse
Procedia PDF Downloads 2396017 Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above-mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these two sections there are some significant discrepancies between numerical and analytical results mainly originated from model geometry and high overburden. SGR and the analytical and numerical calculations, confirm the high concentration of seepage inflow in fault zones. Maximum seepage flow into tunnel has been estimated 0.425 lit/sec/m using analytical method and 0.628 lit/sec/m using numerical method occurred in crashed zone. Based on SGR method, six sections of 14 sections in Amirkabir tunnel axis are found to be in "No Risk" class that is supported by the analytical and numerical seepage value of less than 0.04 lit/sec/m.Keywords: water Seepage, Amirkabir Tunnel, analytical method, DEM, SGR
Procedia PDF Downloads 4766016 Pre-Industrial Local Architecture According to Natural Properties
Authors: Selin Küçük
Abstract:
Pre-industrial architecture is integration of natural and subsequent properties by intelligence and experience. Since various settlements relatively industrialized or non-industrialized at any time, ‘pre-industrial’ term does not refer to a definite time. Natural properties, which are existent conditions and materials in natural local environment, are climate, geomorphology and local materials. Subsequent properties, which are all anthropological comparatives, are culture of societies, requirements of people and construction techniques that people use. Yet, after industrialization, technology took technique’s place, cultural effects are manipulated, requirements are changed and local/natural properties are almost disappeared in architecture. Technology is universal, global and expands simply; conversely technique is time and experience dependent and should has a considerable cultural background. This research is about construction techniques according to natural properties of a region and classification of these techniques. Understanding local architecture is only possible by searching its background which is hard to reach. There are always changes in positive and negative in architectural techniques through the time. Archaeological layers of a region sometimes give more accurate information about transformation of architecture. However, natural properties of any region are the most helpful elements to perceive construction techniques. Many international sources from different cultures are interested in local architecture by mentioning natural properties separately. Unfortunately, there is no literature deals with this subject as far as systematically in the correct way. This research aims to improve a clear perspective of local architecture existence by categorizing archetypes according to natural properties. The ultimate goal of this research is generating a clear classification of local architecture independent from subsequent (anthropological) properties over the world such like a handbook. Since local architecture is the most sustainable architecture with refer to its economic, ecologic and sociological properties, there should be an excessive information about construction techniques to be learned from. Constructing the same buildings in all over the world is one of the main criticism of modern architectural system. While this critics going on, the same buildings without identity increase incrementally. In post-industrial term, technology widely took technique’s place, yet cultural effects are manipulated, requirements are changed and natural local properties are almost disappeared in architecture. These study does not offer architects to use local techniques, but it indicates the progress of pre-industrial architectural evolution which is healthier, cheaper and natural. Immigration from rural areas to developing/developed cities should be prohibited, thus culture and construction techniques can be preserved. Since big cities have psychological, sensational and sociological impact on people, rural settlers can be convinced to not to immigrate by providing new buildings designed according to natural properties and maintaining their settlements. Improving rural conditions would remove the economical and sociological gulf between cities and rural. What result desired to arrived in, is if there is no deformation (adaptation process of another traditional buildings because of immigration) or assimilation in a climatic region, there should be very similar solutions in the same climatic regions of the world even if there is no relationship (trade, communication etc.) among them.Keywords: climate zones, geomorphology, local architecture, local materials
Procedia PDF Downloads 4306015 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit
Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey
Abstract:
Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D
Procedia PDF Downloads 1836014 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1366013 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 646012 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People
Authors: Paraskevi Theodorou, Apostolos Meliones
Abstract:
In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.Keywords: accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis
Procedia PDF Downloads 1246011 Motherhood Medicalization and Marketing: From Media Frames to Women's Decisions
Authors: Leila Mohammadi
Abstract:
This article discusses the technology of social egg freezing in the context of existing literature on medicalization, motherhood, and marketing. The social egg freezing technique offers to preserve some healthy eggs for age-related fertility decline in the future. The study draws on a qualitative analysis and participants observation of media publications, including text, images, or audio-visual about social egg freezing technology and postpone maternity, to identify and compare their communication strategies from a framing theory perspective. Using 442 surveys and 158 pieces of publications in Spanish media, this study demonstrated that the narratives used by these publications and their structures follow a marketing objective to medicalize motherhood. Within these frames, the market of preserving fertility is cast to show compassion and concern about women. In the opinion of participants, egg freezing technology liberates, empowers, and automates women from patriarchal control, and also gives them the responsibility of taking care of their body and reproductive system. This study showed this opinion is significantly influenced by media and their communication strategies supported by providers of this business.Keywords: motherhood, social egg freezing, medicalization, marketing, media frames, fertility, assisted reproductive system
Procedia PDF Downloads 1306010 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 406009 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 866008 Exploring the Potential of Bio-Inspired Lattice Structures for Dynamic Applications in Design
Authors: Axel Thallemer, Aleksandar Kostadinov, Abel Fam, Alex Teo
Abstract:
For centuries, the forming processes in nature served as a source of inspiration for both architects and designers. It seems as most human artifacts are based on ideas which stem from the observation of the biological world and its principles of growth. As a fact, in the cultural history of Homo faber, materials have been mostly used in their solid state: From hand axe to computer mouse, the principle of employing matter has not changed ever since the first creation. In the scope of history only recently and by the help of additive-generative fabrication processes through Computer Aided Design (CAD), designers were enabled to deconstruct solid artifacts into an outer skin and an internal lattice structure. The intention behind this approach is to create a new topology which reduces resources and integrates functions into an additively manufactured component. However, looking at the currently employed lattice structures, it is very clear that those lattice structure geometries have not been thoroughly designed, but rather taken out of basic-geometry libraries which are usually provided by the CAD. In the here presented study, a group of 20 industrial design students created new and unique lattice structures using natural paragons as their models. The selected natural models comprise both the animate and inanimate world, with examples ranging from the spiraling of narwhal tusks, off-shooting of mangrove roots, minimal surfaces of soap bubbles, up to the rhythmical arrangement of molecular geometry, like in the case of SiOC (Carbon-Rich Silicon Oxicarbide). This ideation process leads to a design of a geometric cell, which served as a basic module for the lattice structure, whereby the cell was created in visual analogy to its respective natural model. The spatial lattices were fabricated additively in mostly [X]3 by [Y]3 by [Z]3 units’ volumes using selective powder bed melting in polyamide with (z-axis) 50 mm and 100 µm resolution and subdued to mechanical testing of their elastic zone in a biomedical laboratory. The results demonstrate that additively manufactured lattice structures can acquire different properties when they are designed in analogy to natural models. Several of the lattices displayed the ability to store and return kinetic energy, while others revealed a structural failure which can be exploited for purposes where a controlled collapse of a structure is required. This discovery allows for various new applications of functional lattice structures within industrially created objects.Keywords: bio-inspired, biomimetic, lattice structures, additive manufacturing
Procedia PDF Downloads 1486007 Effect of Nicotine on the Reinforcing Effects of Cocaine in a Nonhuman Primate Model of Drug Use
Authors: Mia I. Allen, Bernard N. Johnson, Gagan Deep, Yixin Su, Sangeeta Singth, Ashish Kumar, , Michael A. Nader
Abstract:
With no FDA-approved treatments for cocaine use disorders (CUD), research has focused on the behavioral and neuropharmacological effects of cocaine in animal models, with the goal of identifying novel interventions. While the majority of people with CUD also use tobacco/nicotine, the majority of preclinical cocaine research does not include the co-use of nicotine. The present study examined nicotine and cocaine co-use under several conditions of intravenous drug self-administration in monkeys. In Experiment 1, male rhesus monkeys (N=3) self-administered cocaine (0.001-0.1 mg/kg/injection) alone and cocaine+nicotine (0.01-0.03 mg/kg/injection) under a progressive-ratio schedule of reinforcement. When nicotine was added to cocaine, there was a significant leftward shift and significant increase in peak break point. In Experiment 2, socially housed female and male cynomolgus monkeys (N=14) self-administered cocaine under a concurrent drug-vs-food choice schedule. Combining nicotine significantly decreased cocaine choice ED50 values (i.e., shifted the cocaine dose-response curve to the left) in females but not in males. There was no evidence of social rank differences. In delay discounting studies, the co-use of nicotine and cocaine required significantly larger delays to the preferred drug reinforcer to reallocate choice compared with cocaine alone. Overall, these results suggest drug interactions of nicotine and cocaine co-use is not simply a function of potency but rather a fundamentally distinctive condition that should be utilized to better understand the neuropharmacology of CUD and the evaluation of potential treatments.Keywords: polydrug use, animal models, nonhuman primates, behavioral pharmacology, drug self-administration
Procedia PDF Downloads 876006 The Association between C-Reactive Protein and Hypertension with Different US Participants Ethnicity-Findings from National Health and Nutrition Examination Survey 1999-2010
Authors: Ghada Abo-Zaid
Abstract:
The main objective of this study was to examine the association between the elevated level of CRP and incidence of hypertension before and after adjusting by age, BMI, gender, SES, smoking, diabetes, cholesterol LDL and cholesterol HDL and to determine whether the association were differ by race. Method: Cross sectional data for participations from age 17 to age 74 years who included in The National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010 were analysed. CRP level was classified into three categories ( > 3mg/L, between 1mg/LL and 3mg/L, and < 3 mg/L). Blood pressure categorization was done using JNC 7 algorithm Hypertension defined as either systolic blood pressure (SBP) of 140 mmHg or more and disystolic blood pressure (DBP) of 90mmHg or greater, otherwise a self-reported prior diagnosis by a physician. Pre-hypertension was defined as (139 > SBP > 120 or 89 > DPB > 80). Multinominal regression model was undertaken to measure the association between CRP level and hypertension. Results: In univariable models, CRP concentrations > 3 mg/L were associated with a 73% greater risk of incident hypertension compared with CRP concentrations < 1 mg/L (Hypertension: odds ratio [OR] = 1.73; 95% confidence interval [CI], 1.50-1.99). Ethnic comparisons showed that American Mexican had the highest risk of incident hypertension (odds ratio [OR] = 2.39; 95% confidence interval [CI], 2.21-2.58).This risk was statistically insignificant, however, either after controlling by other variables (Hypertension: OR = 0.75; 95% CI, 0.52-1.08,), or categorized by race [American Mexican: odds ratio [OR] = 1.58; 95% confidence interval [CI], 0,58-4.26, Other Hispanic: odds ratio [OR] = 0.87; 95% confidence interval [CI], 0.19-4.42, Non-Hispanic white: odds ratio [OR] = 0.90; 95% confidence interval [CI], 0.50-1.59, Non-Hispanic Black: odds ratio [OR] = 0.44; 95% confidence interval [CI], 0.22-0,87]. The same results were found for pre-hypertension, and the Non-Hispanic black showed the highest significant risk for Pre-Hypertension (odds ratio [OR] = 1.60; 95% confidence interval [CI], 1.26-2.03). When CRP concentrations were between 1.0-3.0 mg/L, in an unadjusted models prehypertension was associated with higher likelihood of elevated CRP (OR = 1.37; 95% CI, 1.15-1.62). The same relationship was maintained in Non-Hispanic white, Non-Hispanic black, and other race (Non-Hispanic white: OR = 1.24; 95% CI, 1.03-1.48, Non-Hispanic black: OR = 1.60; 95% CI, 1.27-2.03, other race: OR = 2.50; 95% CI, 1.32-4.74) while the association was insignificant with American Mexican and other Hispanic. In the adjusted model, the relationship between CRP and prehypertension were no longer available. In contrary, Hypertension was not independently associated with elevated CRP, and the results were the same after grouped by race or adjusted by the confounder variables. The same results were obtained when SBP or DBP were on a continuous measure. Conclusions: This study confirmed the existence of an association between hypertension, prehypertension and elevated level of CRP, however this association was no longer available after adjusting by other variables. Ethic group differences were statistically significant at the univariable models, while it disappeared after controlling by other variables.Keywords: CRP, hypertension, ethnicity, NHANES, blood pressure
Procedia PDF Downloads 4146005 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building
Authors: Yazan Al-Kofahi, Jamal Alqawasmi.
Abstract:
In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.Keywords: machine learning, deep learning, artificial intelligence, sustainable building
Procedia PDF Downloads 676004 The Development of a Comprehensive Sustainable Supply Chain Performance Measurement Theoretical Framework in the Oil Refining Sector
Authors: Dina Tamazin, Nicoleta Tipi, Sahar Validi
Abstract:
The oil refining industry plays vital role in the world economy. Oil refining companies operate in a more complex and dynamic environment than ever before. In addition, oil refining companies and the public are becoming more conscious of crude oil scarcity and climate changes. Hence, sustainability in the oil refining industry is becoming increasingly critical to the industry's long-term viability and to the environmental sustainability. Mainly, it is relevant to the measurement and evaluation of the company's sustainable performance to support the company in understanding their performance and its implication more objectively and establishing sustainability development plans. Consequently, the oil refining companies attempt to re-engineer their supply chain to meet the sustainable goals and standards. On the other hand, this research realized that previous research in oil refining sustainable supply chain performance measurements reveals that there is a lack of studies that consider the integration of sustainability in the supply chain performance measurement practices in the oil refining industry. Therefore, there is a need for research that provides performance guidance, which can be used to measure sustainability and assist in setting sustainable goals for oil refining supply chains. Accordingly, this paper aims to present a comprehensive oil refining sustainable supply chain performance measurement theoretical framework. In development of this theoretical framework, the main characteristics of oil refining industry have been identified. For this purpose, a thorough review of relevant literature on performance measurement models and sustainable supply chain performance measurement models has been conducted. The comprehensive oil refining sustainable supply chain performance measurement theoretical framework introduced in this paper aims to assist oil refining companies in measuring and evaluating their performance from a sustainability aspect to achieve sustainable operational excellence.Keywords: oil refining industry, oil refining sustainable supply chain, performance measurement, sustainability
Procedia PDF Downloads 287