Search results for: customer friendly washing machine
1472 Rejuvenation of Aged Kraft-Cellulose Insulating Paper Used in Transformers
Authors: Y. Jeon, A. Bissessur, J. Lin, P. Ndungu
Abstract:
Most transformers employ the usage of cellulose paper, which has been chemically modified through the Kraft process that acts as an effective insulator. Cellulose ageing and oil degradation are directly linked to fouling of the transformer and accumulation of large quantities of waste insulating paper. In addition to technical difficulties, this proves costly for power utilities to deal with. Currently there are no cost effective method for the rejuvenation of cellulose paper that has been documented nor proposed, since renewal of used insulating paper is implemented as the best option. This study proposes and contrasts different rejuvenation methods of accelerated aged cellulose insulating paper by chemical and bio-bleaching processes. Of the three bleaching methods investigated, two are, conventional chlorine-based sodium hypochlorite (m/v), and chlorine-free hydrogen peroxide (v/v), whilst the third is a bio-bleaching technique that uses a bacterium isolate, Acinetobacter strain V2. Through chemical bleaching, varying the strengths of the bleaching reagents at 0.3 %, 0.6 %, 0.9 %, 1.2 %, 1.5 % and 1.8 % over 4 hrs. were analyzed. Bio-bleaching implemented a bacterium isolate, Acinetobacter strain V2, to bleach the aged Kraft paper over 4 hrs. The determination of the amount of alpha cellulose, degree of polymerization and viscosity carried out on Kraft-cellulose insulating paper before and after bleaching. Overall the investigated techniques of chemical and bio-bleaching were successful and effective in treating degraded and accelerated aged Kraft-cellulose insulating paper, however, to varying extents. Optimum conditions for chemical bleaching were attained at bleaching strengths of 1.2 % (m/v) NaOCl and 1.5 % (v/v) H2O2 yielding alpha cellulose contents of 82.4 % and 80.7 % and degree of polymerizations of 613 and 616 respectively. Bio-bleaching using Acinetobacter strain V2 proved to be the superior technique with alpha cellulose levels of 89.0 % and a degree of polymerization of 620. Chemical bleaching techniques require careful and controlled clean-up treatments as it is chlorine and hydrogen peroxide based while bio-bleaching is an extremely eco-friendly technique.Keywords: alpha cellulose, bio-bleaching, degree of polymerization, Kraft-cellulose insulating paper, transformer, viscosity
Procedia PDF Downloads 2711471 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor
Authors: Jadisha Cornejo, Helio Pedrini
Abstract:
Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks
Procedia PDF Downloads 1831470 Flow Behavior of a ScCO₂-Stimulated Geothermal Reservoir under in-situ Stress and Temperature Conditions
Authors: B. L. Avanthi Isaka, P. G. Ranjith
Abstract:
The development of technically-sound enhanced geothermal systems (EGSs) is identified as a viable solution for world growing energy demand with immense potential, low carbon dioxide emission and importantly, as an environmentally friendly option for renewable energy production. The use of supercritical carbon dioxide (ScCO₂) as the working fluid in EGSs by replacing traditional water-based method is promising due to multiple advantages prevail in ScCO₂-injection for underground reservoir stimulation. The evolution of reservoir stimulation using ScCO₂ and the understanding of the flow behavior of a ScCO₂-stimulated geothermal reservoir is vital in applying ScCO₂-EGSs as a replacement for water-based EGSs. The study is therefore aimed to investigate the flow behavior of a ScCO₂-fractured rock medium at in-situ stress and temperature conditions. A series of permeability tests were conducted for ScCO₂ fractured Harcourt granite rock specimens at 90ºC, under varying confining pressures from 5–60 MPa using the high-pressure and high-temperature tri-axial set up which can simulate deep geological conditions. The permeability of the ScCO₂-fractured rock specimens was compared with that of water-fractured rock specimens. The results show that the permeability of the ScCO₂-fractured rock specimens is one order higher than that of water-fractured rock specimens and the permeability exhibits a non-linear reduction with increasing confining pressure due to the stress-induced fracture closure. Further, the enhanced permeability of the ScCO₂-induced fracture with multiple secondary branches was explained by exploring the CT images of the rock specimens. However, a single plain fracture was induced under water-based fracturing.Keywords: supercritical carbon dioxide, fracture permeability, granite, enhanced geothermal systems
Procedia PDF Downloads 1471469 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 2031468 The Effectiveness of Tehran Municipality's Transformation of a Metro Station into Pedestrian-Friendly Public Spaces
Authors: Homa Hedayat
Abstract:
Public spaces have been a central concern of urban planners for centuries but have been neglected for a long time. In the modernist planning, the focus has been on the requirements of cars rather than the needs and expectations of pedestrians, and therefore, cities have lost many qualities. Urban public space is a space within the city area which is accessible to all people and is the ground for their activity. People’s public life occurs in urban public spaces in a complex set of forms and functions. These spaces must facilitate diverse behavior, uses, and activities such as shopping, walking, conversation, entertainment, relaxation or even passing the time during festivities and events. One of the public spaces is the surrounding space of public transportation stations. Subway stations, although potentially encompass many different groups of people accommodate few social interactions. Making the surrounding areas of subway stations pedestrian-oriented, potentially increases the socialization capacity. The Sadeghieh Subway Station can be considered as the most important subway station in Tehran, which on the one hand is the rail port of Tehran's western entrance, and on the other is the port for railway journeys inside the city. The main concern of this study is to assess the success or failure of the interventions made by the municipality for changing the surrounding area of the Sadeghieh Subway Station into a pedestrian-oriented space and examine the amount of the area's improvement into a desirable space. The method used in this study is surveying, in which the data were collected using a questionnaire and interview. The study's population is all people who use Sadeghieh Subway, and the sample size for the study was 140 subjects. Using parametric one-sample t-test, we found improvement in factors such as transportation, security, pedestrian infrastructure, vitality and climate comfort. However, there was no improvement in mix use, recreational activity, readability.Keywords: public space, public transportation stations, pedestrian-oriented space, socialization
Procedia PDF Downloads 2101467 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach
Procedia PDF Downloads 981466 Permanent Magnet Generator – One Phase Regime Operation
Authors: Pawel Pistelok
Abstract:
The article presents the concept of an electromagnetic circuit of a 3-phase surface-mounted permanent magnet generator designed for a single phase operation. A cross section of electromagnetic circuit and a field-circuit model of generator used for computations are shown. The paper presents comparative analysis of simulation results obtained for two different versions of generator regarding construction of armature winding. In the first version of generator the voltages generated in each of three winding phases have different rms values (different number of turns in each of phases), three winding phases are connected in series and one phase load is connected to the two output terminals of generator. The second version of generator is very similar, i.e. three winding phases are connected in series and one phase load is powered by generator, but in this version the voltages generated in each of winding phases have exactly the same rms values (the same number of turns in each of phases). The time waveforms of voltages, currents and electromagnetic torques in the airgaps of two machine versions for rated power are shown.Keywords: permanent magnet generator, permanent magnets, synchronous generator, vibration, course of torque, single phase work, unsymmetrical operation point, serial connection of winding phase
Procedia PDF Downloads 6951465 Sustainable Crop Mechanization among Small Scale Rural Farmers in Nigeria: The Hurdles
Authors: Charles Iledun Oyewole
Abstract:
The daunting challenge that the ‘man with the hoe’ is going to face in the coming decades will be complex and interwoven. With global population already above 7 billion people, it has been estimated that food (crop) production must more than double by 2050 to meet up with the world’s food requirements. Nigeria population is also expected to reach over 240 million people by 2050, at the current annual population growth of 2.61 per cent. The country’s farming population is estimated at over 65 per cent, but the country still depends on food importation to complement production. The small scale farmer, who depends on simple hand tools: hoes and cutlasses, remains the centre of agricultural production, accounting for 90 per cent of the total agricultural output and 80 per cent of the market flow. While the hoe may have been a tool for sustainable development at a time in human history, this role has been smothered by population growth, which has brought too many mouths to be fed (over 170 million), as well as many industries to fuel with raw materials. It may then be argued that the hoe is unfortunately not a tool for the coming challenges and that agricultural mechanization should be the focus. However, agriculture as an enterprise is a ‘complete wheel’ which does not work when broken, particularly, in respect to mechanization. Generally, mechanization will prompt increase production, where land is readily available; increase production, will require post-harvest handling mechanisms, crop processing and subsequent storage. An important aspect of this is readily available and favourable markets for such produce; fuel by good agricultural policies. A break in this wheel will lead to the process of mechanization crashing back to subsistence production, and probably reversal to the hoe. The focus of any agricultural policy should be to chart a course for sustainable mechanization that is environmentally friendly, that may ameliorate Nigeria’s food and raw material gaps. This is the focal point of this article.Keywords: Crop production, Farmer, Hoes, Mechanization, Policy framework, Population, Growth, Rural areas
Procedia PDF Downloads 2261464 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product (GDP) on Nigeria’s Economy
Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi
Abstract:
Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the spark plug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria in terms of its GDP.Keywords: maritime transport, economy, GDP, regression, port
Procedia PDF Downloads 1551463 Environmental Assessment of Roll-to-Roll Printed Smart Label
Authors: M. Torres, A. Moulay, M. Zhuldybina, M. Rozel, N. D. Trinh, C. Bois
Abstract:
Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements.Keywords: Eco-design, label, life cycle assessment, printed electronics
Procedia PDF Downloads 1631462 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction
Authors: William Whiteley, Jens Gregor
Abstract:
In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography
Procedia PDF Downloads 1121461 Effect of Hybrid Fibers on Mechanical Properties in Autoclaved Aerated Concrete
Authors: B. Vijay Antony Raj, Umarani Gunasekaran, R. Thiru Kumara Raja Vallaban
Abstract:
Fibrous autoclaved aerated concrete (FAAC) is concrete containing fibrous material in it which helps to increase its structural integrity when compared to that of convention autoclaved aerated concrete (CAAC). These short discrete fibers are uniformly distributed and randomly oriented, which enhances the bond strength within the aerated concrete matrix. Conventional red-clay bricks create larger impact to the environment due to red soil depletion and it also consumes large amount to time for construction. Whereas, AAC are larger in size, lighter in weight and it is environmentally friendly in nature and hence it is a viable replacement for red-clay bricks. Internal micro cracks and corner cracks are the only disadvantages of conventional autoclaved aerated concrete, to resolve this particular issue it is preferable to make use of fibers in it.These fibers are bonded together within the matrix and they induce the aerated concrete to withstand considerable stresses, especially during the post cracking stage. Hence, FAAC has the capability of enhancing the mechanical properties and energy absorption capacity of CAAC. In this research work, individual fibers like glass, nylon, polyester and polypropylene are used they generally reduce the brittle fracture of AAC.To study the fibre’s surface topography and composition, SEM analysis is performed and then to determine the composition of a specimen as a whole as well as the composition of individual components EDAX mapping is carried out and then an experimental approach was performed to determine the effect of hybrid (multiple) fibres at various dosage (0.5%, 1%, 1.5%) and curing temperature of 180-2000 C is maintained to determine the mechanical properties of autoclaved aerated concrete. As an analytical part, the outcome experimental results is compared with fuzzy logic using MATLAB.Keywords: fiberous AAC, crack control, energy absorption, mechanical properies, SEM, EDAX, MATLAB
Procedia PDF Downloads 2701460 Implementation of Distributor Management Solution and Its Effects on Supply Chain Performance
Authors: Charles Amoatey, Ebenezer Kumah
Abstract:
Purpose: The purpose of this paper is to assess the effects of implementation of Distributor Management Solution (DMS) on supply chain performance in the Fast Moving Consumer Goods (FMCG) industry in Ghana. Methodology: A purposive sampling approach was used in selecting the respondents for the study. Data was collected from senior management and field supervisors from sales, distribution and customer service units of the case study firm and its channel members. This study made use of systematic literature review and results of survey data analysis to assess how information system has been used to improve supply chain performance. Findings: Results from the study showed that the critical effect factors from implementation of a DMS include (1) Obtain prompt and reliable feedback from the market; (2) Building the capacity and skills levels of employees as well as 3rd Party Agents; (3) Motivated top management to invest in MIS; and (4) Performance improvement in sales route management. The most critical challenges to an effective and sustainable MIS implementation are lack of enough trained IT employees and high barriers to cultural change especially with distributors. The paper recommends consistent investment in IS infrastructure and development of IT skills. Research limitations/implications: This study contributes to the literature by exploring the effects of distribution management solution implementation and supply chain performance in a developing country context. Considering the fact that this study is based on data from only one case study firm and its channel members, generalization of the results should be treated with caution. Practical implications: The findings have confirmed the benefits of implementing a Management Information System. The result should encourage channel members to allocate adequate resources for building MIS capacity to enhance their supply chain performance. Originality/Value: In this paper, the relationship between DMS/MIS implementation and improvement in supply chain performance, in the Ghanaian context, has been established.Keywords: distributor management solution, fast-moving consumer goods, supply chain management, information systems, Ghana
Procedia PDF Downloads 5621459 Urban Security and Social Sustainability in Cities of Developing Countries
Authors: Taimaz Larimian, Negin Sadeghi
Abstract:
Very little is known about the impacts of urban security on the level of social sustainability within the cities of developing countries. Urban security is still struggling to find its position in the social sustainability agenda, despite the significant role of safety and security on different aspects of peoples’ lives. This paper argues that urban safety and security should be better integrated within the social sustainability framework. With this aim, this study investigates the hypothesized relationship between social sustainability and Crime Prevention through Environmental Design (CPTED) approach at the neighborhood scale. This study proposes a model of key influential dimensions of CPTED analyzed into localized factors and sub-factors. These factors are then prioritized using pairwise comparison logic and fuzzy group Analytic Hierarchy Process (AHP) method in order to determine the relative importance of each factor on achieving social sustainability. The proposed model then investigates social sustainability in six case study neighborhoods of Isfahan city based on residents’ perceptions of safety within their neighborhood. Mixed method of data collection is used by using a self-administered questionnaire to explore the residents’ perceptions of social sustainability in their area of residency followed by an on-site observation to measure the CPTED construct. In all, 150 respondents from selected neighborhoods were involved in this research. The model indicates that CPTED approach has a significant direct influence on increasing social sustainability in neighborhood scale. According to the findings, among different dimensions of CPTED, ‘activity support’ and ‘image/ management’ have the most influence on people’s feeling of safety within studied areas. This model represents a useful designing tool in achieving urban safety and security during the development of more socially sustainable and user-friendly urban areas.Keywords: crime prevention through environmental design (CPTED), developing countries, fuzzy analytic hierarchy process (FAHP), social sustainability
Procedia PDF Downloads 3081458 A Platform for Managing Residents' Carbon Trajectories Based on the City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xuerui, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
Climate change is a global problem facing humanity and this is now the consensus of the mainstream scientific community. In accordance with the carbon peak and carbon neutral targets and visions set out in the United Nations Framework Convention on Climate Change, the Kyoto Protocol and the Paris Agreement, this project uses the City Intelligent Model (CIM) and Artificial Intelligence Machine Vision (ICR) as the core technologies to accurately quantify low carbon behaviour into green corn, which is a means of guiding ecologically sustainable living patterns. Using individual communities as management units and blockchain as a guarantee of fairness in the whole cycle of green currency circulation, the project will form a modern resident carbon track management system based on the principle of enhancing the ecological resilience of communities and the cohesiveness of community residents, ultimately forming an ecologically sustainable smart village that can be self-organised and managed.Keywords: urban planning, urban governance, CIM, artificial Intelligence, sustainable development
Procedia PDF Downloads 841457 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models
Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand
Abstract:
Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias
Procedia PDF Downloads 851456 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response
Abstract:
After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue
Procedia PDF Downloads 931455 Investigating the Potential Use of Unsaturated Fatty Acids as Antifungal Crop Protective Agents
Authors: Azadeh Yasari, Michael Ganzle, Stephen Strelkov, Nuanyi Liang, Jonathan Curtis, Nat N. V. Kav
Abstract:
Pathogenic fungi cause significant yield losses and quality reductions to major crops including wheat, canola, and barley. Toxic metabolites produced by phytopathogenic fungi also pose significant risks to animal and human health. Extensive application of synthetic fungicides is not a sustainable solution since it poses risks to human, animal and environmental health. Unsaturated fatty acids may provide an environmentally friendly alternative because of their direct antifungal activity against phytopathogens as well as through the stimulation of plant defense pathways. The present study assessed the in vitro and in vivo efficacy of two hydroxy fatty acids, coriolic acid and ricinoleic acid, against the phytopathogens Fusarium graminearum, Pyrenophora tritici-repentis, Pyrenophora teres f. teres, Sclerotinia sclerotiorum, and Leptosphaeria maculans. Antifungal activity of coriolic acid and ricinoleic acid was evaluated using broth micro-dilution method to determine the minimum inhibitory concentration (MIC). Results indicated that both ricinoleic acid and coriolic acid showed antifungal activity against phytopathogens, with the strongest inhibitory activity against L. maculans, but the MIC varied greatly between species. An antifungal effect was observed for coriolic acid in vivo against pathogenic fungi of wheat and barley. This effect was not correlated to the in vitro activity because ricinoleic acid with equivalent in vitro antifungal activity showed no protective effect in vivo. Moreover, neither coriolic acid nor ricinoleic acid controlled fungal pathogens of canola. In conclusion, coriolic acid inhibits some phytopathogens in vivo and may have the potential to be an effective crop protection agent.Keywords: coriolic acid, minimum inhibitory concentration, pathogenic fungi, ricinoleic acid
Procedia PDF Downloads 1781454 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 841453 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 871452 Value Chain with the Participation of Urban Agriculture Development by Social Enterprises
Authors: Kuo-Wei Hsu, Wei-Chin Lo
Abstract:
In these years, urban agriculture development has been wide spreading all over the world. The development of urban agriculture is an evolution process of highly urbanization, as well as an agricultural phenomenon closely related to the development of economy, society and culture in urban areas. It provides densely populated areas with multi-functional uses of land, impacting strategic development of both large and small towns in the area. In addition, the participation of social enterprises keeps industrial competitiveness and makes gains when facing rapid transformation of industrial structures and new patterns of lifestyles in urban areas. They create better living conditions as well as protect the environment with innovative business beliefs, which give new ways for development of urban agriculture. Also, through building up the value chain, these social enterprises are capable of creating value for urban agriculture. Most of research regarding to social enterprises currently explore the relationship between corporate responsibilities and its role play, operational mode and performance and organizational patterns. Merely some of them discuss the function of social entrepreneurship in the development of urban agriculture. Moreover, none of them have explored the value creation for development of urban agriculture processed by social enterprises, as well as how social enterprises operate to increase competitive advantages, which make it possible to achieve industrial innovation, increase corporate value and even provide services with value creation. Therefore, this research mainly reviews current business patterns and operational conditions of social enterprises. This research endowed social responsibilities, and discusses current development process of urban agriculture. This research adopts Value Chain perspective to discuss key factors for value creation with respect to the development of urban agriculture processed by social enterprises. Thereby after organization and integration this research develops the prospect of value creation referring to urban agriculture processed by social enterprises and builds the value chain for urban agriculture. In conclusion, this research explored the relationship between value chain and value creation, which relates to values of customer, enterprise, society and economy referring to the development of urban agriculture uniquely, in consideration of the participation of social enterprises, and hence built the connection between value chain and value creation in the development of urban agriculture by social enterprises. The research found, social enterprises help to enhance the connection between the enterprise value and society value, mold corporate image with social responsibility and create brand value, and therefore impact the increase of economic value.Keywords: urban agriculture development, value chain, social enterprise, urban systems
Procedia PDF Downloads 4821451 Development of Basic Patternmaking Using Parametric Modelling and AutoLISP
Authors: Haziyah Hussin, Syazwan Abdul Samad, Rosnani Jusoh
Abstract:
This study is aimed towards the automisation of basic patternmaking for traditional clothes for the purpose of mass production using AutoCAD to apply AutoLISP feature under software Hazi Attire. A standard dress form (industrial form) with the size of small (S), medium (M) and large (L) size is measured using full body scanning machine. Later, the pattern for the clothes is designed parametrically based on the measured dress form. Hazi Attire program is used within the framework of AutoCAD to generate the basic pattern of front bodice, back bodice, front skirt, back skirt and sleeve block (sloper). The generation of pattern is based on the parameters inputted by user, whereby in this study, the parameters were determined based on the measured size of dress form. The finalized pattern parameter shows that the pattern fit perfectly on the dress form. Since the pattern is generated almost instantly, these proved that using the AutoLISP programming, the manufacturing lead time for the mass production of the traditional clothes can be decreased.Keywords: apparel, AutoLISP, Malay traditional clothes, pattern ganeration
Procedia PDF Downloads 2571450 Assessing the Impact of Construction Projects on Disabled Accessibility and Inclusion
Authors: Yasser Aboel-Magd
Abstract:
This research addresses the critical issue of accessibility for individuals with special needs and the broader implications of disability on one's ability to lead an independent and integrated life within society. It highlights the consequences of injury, illness, or disability not only on the physical level but also on psychological, social, educational, economic, and functional aspects of life. The study emphasizes the importance of inclusive design in urban spaces, reflecting on how a society's treatment of individuals with disabilities serves as a measure of its progress. The research delves into the challenges faced by people with special needs in the Kingdom, where, despite advancements in various sectors, there is a noticeable lack of accommodating public opportunities for this significant demographic. It argues for the necessity of a Saudi building code that considers the needs of a diverse population during the design phase. The paper discusses the role of urban space as a fundamental element in urban formation and its impact on the societal integration of individuals with special needs. The study explores a variety of inclusive design principles, ranging from physical features like ramps and tactile paving to digital and cognitive accessibility measures such as screen readers, closed captions, plain language, and visual aids. It also considers the impact of wayfinding and appropriate lighting design on the orientation and assistance of individuals within urban spaces at the lowest cost. The researchers connect inclusive design with sustainable practices, advocating for environments that are not only environmentally friendly but also adaptable and lasting. The paper concludes with the assertion that the integration of accessibility, universal design, and sustainability signifies a society's commitment to inclusivity and the empowerment of all individuals, paving the way for a future where everyone can participate fully and independently in society.Keywords: accessibility, inclusive design, Saudi building code, disability inclusion, socioeconomic progress
Procedia PDF Downloads 1001449 An Investigation into the Decision-Making Process of Choosing Long-Term Care Services in Taiwan
Authors: Yu-Ching Liu
Abstract:
Background: Family numbers usually take responsibility for taking care of their elderly relatives, especially parents. Caring for a patient with chronic diseases is a stressful experience, which makes carers suffer physical and mental health stress, difficulties maintaining family relationships and issues in participating in the labor market, which may lower their quality of life (QoL). The issue of providing care to relatives with chronic illness has been widely explored in Taiwan, but most studies focus on the need for full-time caregivers. Objective: The main goal of this study was to examine the topic of working carers involved in the decision-making process of LTC services and to explore what affects working carers considering when they choose the care services for their disabled, elderly relatives. Method: A total of 7 working caregivers were enrolled in this study. A face-to-face and semi-structured in-depth qualitative interview study were conducted to explore the caregivers' perspectives. Results: Working carers have a positive experience of using LTC service because it allows them to kill two birds with one stone, continue employment, and care for an elderly disabled relative. However, working carers have still been struggling to find friendly community-based LTC services. There were no longer available community services that could be used with the illness condition of patients getting worse. As such, patients have to be cared for at home, which might increase the caregiver burden of carers. Conclusion: Working family caregivers suffer from heavy physical and psychological burdens as they not only have to maintain their employment but care for elderly disabled relatives; however, the current support provided is insufficient. The design of services should consider working carers' employment situation and need rather than the only caring situation of patients at home.Keywords: family caregiver, Long-term care, work-life balance, decision-making
Procedia PDF Downloads 1821448 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding
Procedia PDF Downloads 1321447 DFT and SCAPS Analysis of an Efficient Lead-Free Inorganic CsSnI₃ Based Perovskite Solar Cell by Modification of Hole Transporting Layer
Authors: Seyedeh Mozhgan Seyed Talebi, Chih -Hao Lee
Abstract:
With an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the toxicity of lead was raised as a major hurdle in the path toward their commercialization. In the present research, a systematic investigation of the electrical and optical characteristics of the all-inorganic CsSnI₃ perovskite absorber layer was performed with the Vienna Ab Initio Simulation Package (VASP) using the projector-augmented wave method. The presence of inorganic halide perovskite offers the advantages of enhancing the degradation resistance of the device, reducing the cost of cells, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves FTO/n-TiO₂/CsSnI₃ Perovskite absorber/Spiro OmeTAD HTL/Au contact layer. The variation in the device design key parameters such as the thickness and defect density of perovskite absorber, hole transport layer and electron transport layer and interfacial defects are examined with their impact on the photovoltaic characteristic parameters. The effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnI3-based perovskite devices is also investigated. The optimized standard device at room temperature shows the highest PCE of 25.18 % with FF of 75.71 %, Voc of 0.96 V, and Jsc of 34.67 mA/cm². The outcomes and interpretation of different inorganic Cu-based HTLs presence, such as CuSCN, Cu₂O, CuO, CuI, SrCu₂O₂, and CuSbS₂, here represent a critical avenue for the possibility of fabricating high PCE perovskite devices made of stable, low-cost, efficient, safe, and eco-friendly all-inorganic materials like CsSnI₃ perovskite light absorber.Keywords: CsSnI₃, hole transporting layer (HTL), lead-free perovskite solar cell, SCAPS-1D software
Procedia PDF Downloads 871446 Models, Resources and Activities of Project Scheduling Problems
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, José J. Hernández-Flores, Edith Olaco Garcia
Abstract:
The Project Scheduling Problem (PSP) is a generic name given to a whole class of problems in which the best form, time, resources and costs for project scheduling are necessary. The PSP is an application area related to the project management. This paper aims at being a guide to understand PSP by presenting a survey of the general parameters of PSP: the Resources (those elements that realize the activities of a project), and the Activities (set of operations or own tasks of a person or organization); the mathematical models of the main variants of PSP and the algorithms used to solve the variants of the PSP. The project scheduling is an important task in project management. This paper contains mathematical models, resources, activities, and algorithms of project scheduling problems. The project scheduling problem has attracted researchers of the automotive industry, steel manufacturer, medical research, pharmaceutical research, telecommunication, industry, aviation industry, development of the software, manufacturing management, innovation and technology management, construction industry, government project management, financial services, machine scheduling, transportation management, and others. The project managers need to finish a project with the minimum cost and the maximum quality.Keywords: PSP, Combinatorial Optimization Problems, Project Management; Manufacturing Management, Technology Management.
Procedia PDF Downloads 4181445 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior
Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj
Abstract:
New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.Keywords: CS pedagogy, student research, cluster computing, machine learning
Procedia PDF Downloads 1031444 Urinalysis by Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles for Different Disease
Authors: Leonardo C. Pacheco-Londoño, Nataly J. Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta, Elkin Navarro, Gustavo Aroca-Martínez, Karin Rondón-Payares, Samuel P. Hernández-Rivera
Abstract:
In our Life Science Research Center of the University Simon Bolivar (LSRC), one of the focuses is the diagnosis and prognosis of different diseases; we have been implementing the use of gold nanoparticles (Au-NPs) for various biomedical applications. In this case, Au-NPs were used for Surface-Enhanced Raman Spectroscopy (SERS) in different diseases' diagnostics, such as Lupus Nephritis (LN), hypertension (H), preeclampsia (PC), and others. This methodology is proposed for the diagnosis of each disease. First, good signals of the different metabolites by SERS were obtained through a mixture of urine samples and Au-NPs. Second, PLS-DA models based on SERS spectra to discriminate each disease were able to differentiate between sick and healthy patients with different diseases. Finally, the sensibility and specificity for the different models were determined in the order of 0.9. On the other hand, a second methodology was developed using machine learning models from all data of the different diseases, and, as a result, a discriminant spectral map of the diseases was generated. These studies were possible thanks to joint research between two university research centers and two health sector entities, and the patient samples were treated with ethical rigor and their consent.Keywords: SERS, Raman, PLS-DA, diseases
Procedia PDF Downloads 1441443 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning
Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher
Abstract:
Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping
Procedia PDF Downloads 138