Search results for: active compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5462

Search results for: active compounds

1442 Propolis as Antioxidant Formulated in Nanoemulsion

Authors: Rachmat Mauludin, Irda Fidrianny, Dita Sasri Primaviri, Okti Alifiana

Abstract:

Natural products such as propolis, green tea and corncob are containing several compounds called antioxidant. Antioxidant can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that the extract of propolis that has the highest antioxidant activity was ethanolic extract of propolis (EEP). It is important to make a dosage form that could keep the stability and could protect the effectiveness of antioxidant activity of the extracts. In this research, nanoemulsion (NE) was chosen to formulate those natural products. NE is a dispersion system between oil phase and water phase that formed by mechanical force with a lot amount of surfactants and has globule size below 100 nm. In pharmaceutical industries, NE was preferable for its stability, biodegradability, biocompatibility, its ease to be absorbed and eliminated, and for its use as carrier for lipophilic drugs. First, all of the natural products were extracted using reflux methods. Green tea and corncob were extracted using 96% ethanol while propolis using 70% ethanol. Then, the extracts were concentrated using rotavapor to obtain viscous extracts. The yield of EEP was 11.12%; green tea extract (GTE) was 23.37%; and corncob extract (CCE) was 17.23%. EEP contained steroid/triterpenoid, flavonoid and saponin. GTE contained flavonoid, tannin, and quinone while CCE contained flavonoid, phenol and tannin. The antioxidant activities of the extracts were then measured using DPPH scavenging capacity methods. The values of DPPH scavenging capacity were 61.14% for EEP; 97.16% for GTE; and 78.28% for CCE. The value of IC50 for EEP was 0.41629 ppm. After the extracts were evaluated, NE was prepared. Several surfactants and co-surfactants were used in many combinations and ratios in order to form a NE. Tween 80 and Kolliphor RH40 were used as surfactants while glycerin and propylene glycol were used as co-surfactants. The best NE consists of 26.25% of Kolliphor RH40; 8.75% of glycerin; 5% of rice bran oil; 3% of extracts; and 57% of water. EEP NE had globule size around 23.72 nm; polydispersity index below 0.5; and did not cause any irritation on rabbits. EEP NE was proven to be stable after passing stability test within 63 days at room temperature and 6 cycles of Freeze and Thaw test without separated. Based on TEM (Transmission Electron Microscopy) test, EEP NE had spherical structure with most of its size below 50 nm. The antioxidant activity of EEP NE was monitored for 6 weeks and showed no significant difference. The value of DPPH scavenging capacity for EEP NE was around 58%; for GTE NE was 96.75%; and for CCE NE was 55.69%.

Keywords: propolis, green tea, corncob, antioxidant, nanoemulsion

Procedia PDF Downloads 306
1441 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell

Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari

Abstract:

This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).

Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy

Procedia PDF Downloads 129
1440 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation

Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich

Abstract:

Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.

Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance

Procedia PDF Downloads 146
1439 Novel Nickel Complex Compound Reactivates the Apoptotic Network, Cell Cycle Arrest and Cytoskeletal Rearrangement in Human Colon and Breast Cancer Cells

Authors: Nima Samie, Batoul Sadat Haerian, Sekaran Muniandy, M. S. Kanthimathi

Abstract:

Colon and breast cancers are categorized as the most prevalent types of cancer worldwide. Recently, the broad clinical application of metal complex compounds has led to the discovery of potential therapeutic drugs. The aim of this study was to evaluate the cytotoxic action of a selected nickel complex compound (NCC) against human colon and breast cancer cells. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, MCF-7 and Hs 190.T cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content , measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results showed that our nickel complex compound displayed a potent suppressive effect on HT-29, WiDr, MCF-7 and Hs 190.T after 24 h of treatment with IC50 value of 2.02±0.54, 2.13±0.65, 3.76±015 and 3.14±0.45 µM respectively. This cytotoxic effect on normal cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the nickel complex compound. Activation of this pathway was further evidenced by significant activation of caspase 9 and 3/7.The nickel complex compound (NCC) was also shown activate the extrinsic pathways of apoptosis by activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. The results of this study suggest that the nickel complex compound is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways as well as cell cycle arrest in colon and breast cancer cells.

Keywords: nickel complex, apoptosis, cytoskeletal rearrangement, colon cancer, breast cancer

Procedia PDF Downloads 298
1438 The Impact of Women’s Leadership in Panchayati Raj Institutions: Some of the Insights on Indian Rural Governance

Authors: Avneet Kaur

Abstract:

India is a nation of villages. Traditionally, women had enjoyed a high social status in India. Our mythology, folklore and history are full of women who were epitomes of virtue, wisdom, power, and position. The important concern about their entry into the politics is of great importance all over the world. Women have performed excellently in social, economic and political sphere. However, the fact remains that despite constituting half of the population their representation among elected post continue to remain negligible in Panchayati Raj Institutions. Women in India suffered from many social economic handicaps such as illiteracy, economically dependent, social customs, traditions and rituals that are the main causes of their inactive participation in local governance. There is still widespread patriarchal outlook in the villages and the lack of experience on the part of women leadership are some of the major issues of debate. The implementation of the 73rd Amendment Act of the Indian Constitution in 1992 reserved 1/3 rd of the seats for women empowerment. It was a major step to encourage them to take part in the village politics. This kind of revolution was the beginning of women leadership in villages. The paper intends to study the role and importance of women leadership in Panchayati Raj Institutions in India. The paper is divided into four sections. First section deals with the introduction by taking into account the available research on this particular subject. Second section talks about the role played by women leadership in these institutions after the passing of 73rd Amendment Act. Third section deals with some of the critical insights of the study by discussing the problems faced by the active women’s leadership at the grassroots. Finally, the paper concludes with policy suggestions.

Keywords: women, leadership, grassroots, Panchayati Raj

Procedia PDF Downloads 261
1437 Efficacy of Clickers in L2 Interaction

Authors: Ryoo Hye Jin Agnes

Abstract:

This study aims to investigate the efficacy of clickers in fostering L2 class interaction. In an L2 classroom, active learner-to-learner interactions and learner-to-teacher interactions play an important role in language acquisition. In light of this, introducing learning tools that promote such interactions would benefit L2 classroom by fostering interaction. This is because the anonymity of clickers allows learners to express their needs without the social risks associated with speaking up in the class. clickers therefore efficiently help learners express their level of understanding during the process of learning itself. This allows for an evaluative feedback loop where both learners and teachers understand the level of progress of the learners, better enabling classrooms to adapt to the learners’ needs. Eventually this tool promotes participation from learners. This, in turn, is believed to be effective in fostering classroom interaction, allowing learning to take place in a more comfortable yet vibrant way. This study is finalized by presenting the result of an experiment conducted to verify the effectiveness of this approach when teaching pragmatic aspect of Korean expressions with similar semantic functions. The learning achievement of learners in the experimental group was found higher than the learners’ in a control group. A survey was distributed to the learners, questioning them regarding the efficacy of clickers, and how it contributed to their learning in areas such as motivation, self-assessment, increasing participation, as well as giving feedback to teachers. Analyzing the data collected from the questionnaire given to the learners, the study presented data suggesting that this approach increased the scope of interactivity in the classroom, thus not only increasing participation but enhancing the type of classroom participation among learners. This participation in turn led to a marked improvement in their communicative abilities.

Keywords: second language acquisition, interaction, clickers, learner response system, output from learners, learner’s cognitive process

Procedia PDF Downloads 506
1436 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions

Procedia PDF Downloads 290
1435 New Photosensitizers Encapsulated within Arene-Ruthenium Complexes Active in Photodynamic Therapy: Intracellular Signaling and Evaluation in Colorectal Cancer Models

Authors: Suzan Ghaddar, Aline Pinon, Manuel Gallardo-villagran, Mona Diab-assaf, Bruno Therrien, Bertrand Liagre

Abstract:

Colorectal cancer (CRC) is the third most common cancer and exhibits a consistently rising incidence worldwide. Despite notable advancements in CRC treatment, frequent occurrences of side effects and the development of therapy resistance persistently challenge current approaches. Eventually, innovations in focal therapies remain imperative to enhance the patient’s overall quality of life. Photodynamic therapy (PDT) emerges as a promising treatment modality, clinically used for the treatment of various cancer types. It relies on the use of photosensitive molecules called photosensitizers (PS), which are photoactivated after accumulation in cancer cells, to induce the production of reactive oxygen species (ROS) that cause cancer cell death. Among commonly used metal-based drugs in cancer therapy, ruthenium (Ru) possesses favorable attributes that demonstrate its selectivity towards cancer cells and render it suitable for anti-cancer drug design. In vitro studies using distinct arene-Ru complexes, encapsulating porphin PS, are conducted on human HCT116 and HT-29 colorectal cancer cell lines. These studies encompass the evaluation of the antiproliferative effect, ROS production, apoptosis, cell cycle progression, molecular localization, and protein expression. Preliminary results indicated that these complexes exert significant photocytotoxicity on the studied colorectal cancer cell lines, representing them as promising and potential candidates for anti- cancer agents.

Keywords: colorectal cancer, photodynamic therapy, photosensitizers, arene-ruthenium complexes, apoptosis

Procedia PDF Downloads 74
1434 Repeatable Surface Enhanced Raman Spectroscopy Substrates from SERSitive for Wide Range of Chemical and Biological Substances

Authors: Monika Ksiezopolska-Gocalska, Pawel Albrycht, Robert Holyst

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) is a technique used to analyze very low concentrations of substances in solutions, even in aqueous solutions - which is its advantage over IR. This technique can be used in the pharmacy (to check the purity of products); forensics (whether at a crime scene there were any illegal substances); or medicine (serving as a medical test) and lots more. Due to the high potential of this technique, its increasing popularity in analytical laboratories, and simultaneously - the absence of appropriate platforms enhancing the SERS signal (crucial to observe the Raman effect at low analyte concentration in solutions (1 ppm)), we decided to invent our own SERS platforms. As an enhancing layer, we have chosen gold and silver nanoparticles, because these two have the best SERS properties, and each has an affinity for the other kind of particles, which increases the range of research capabilities. The next step was to commercialize them, which resulted in the creation of the company ‘SERSitive.eu’ focusing on production of highly sensitive (Ef = 10⁵ – 10⁶), homogeneous and reproducible (70 - 80%) substrates. SERStive SERS substrates are made using the electrodeposition of silver or silver-gold nanoparticles technique. Thanks to a very detailed analysis of data based on studies optimizing such parameters as deposition time, temperature of the reaction solution, applied potential, used reducer, or reagent concentrations using a standardized compound - p-mercaptobenzoic acid (PMBA) at a concentration of 10⁻⁶ M, we have developed a high-performance process for depositing precious metal nanoparticles on the surface of ITO glass. In order to check a quality of the SERSitive platforms, we examined the wide range of the chemical compounds and the biological substances. Apart from analytes that have great affinity to the metal surfaces (e.g. PMBA) we obtained very good results for those fitting less the SERS measurements. Successfully we received intensive, and what’s more important - very repetitive spectra for; amino acids (phenyloalanine, 10⁻³ M), drugs (amphetamine, 10⁻⁴ M), designer drugs (cathinone derivatives, 10⁻³ M), medicines and ending with bacteria (Listeria, Salmonella, Escherichia coli) and fungi.

Keywords: nanoparticles, Raman spectroscopy, SERS, SERS applications, SERS substrates, SERSitive

Procedia PDF Downloads 137
1433 Evaluation of the Phenolic Composition of Curcumin from Different Turmeric (Curcuma longa L.) Extracts: A Comprehensive Study Based on Chemical Turmeric Extract, Turmeric Tea and Fresh Turmeric Juice

Authors: Beyza Sukran Isik, Gokce Altin, Ipek Yalcinkaya, Evren Demircan, Asli Can Karaca, Beraat Ozcelik

Abstract:

Turmeric (Curcuma longa L.), is used as a food additive (spice), preservative and coloring agent in Asian countries, including China and South East Asia. It is also considered as a medicinal plant. Traditional Indian medicine evaluates turmeric powder for the treatment of biliary disorders, rheumatism, and sinusitis. It has rich polyphenol content. Turmeric has yellow color mainly because of the presence of three major pigments; curcumin 1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione), demethoxy-curcumin and bis demothoxy-curcumin. These curcuminoids are recognized to have high antioxidant activities. Curcumin is the major constituent of Curcuma species. Method: To prepare turmeric tea, 0.5 gram of turmeric powder was brewed with 250 ml of water at 90°C, 10 minutes. 500 grams of fresh turmeric washed and shelled prior to squeezing. Both turmeric tea and turmeric juice pass through 45 lm filters and stored at -20°C in the dark for further analyses. Curcumin was extracted from 20 grams of turmeric powder by 70 ml ethanol solution (95:5 ethanol/water v/v) in a water bath at 80°C, 6 hours. Extraction was contributed for 2 hours at the end of 6 hours by addition of 30 ml ethanol. Ethanol was removed by rotary evaporator. Remained extract stored at -20°C in the dark. Total phenolic content and phenolic profile were determined by spectrophotometric analysis and ultra-fast liquid chromatography (UFLC), respectively. Results: The total phenolic content of ethanolic extract of turmeric, turmeric juice, and turmeric tea were determined 50.72, 31.76 and 29.68 ppt, respectively. The ethanolic extract of turmeric, turmeric juice, and turmeric tea have been injected into UFLC and analyzed for curcumin contents. The curcumin content in ethanolic extract of turmeric, turmeric juice, and turmeric tea were 4067.4, 156.7 ppm and 1.1 ppm, respectively. Significance: Turmeric is known as a good source of curcumin. According to the results, it can be stated that its tea is not sufficient way for curcumin consumption. Turmeric juice can be preferred to turmeric tea for higher curcumin content. Ethanolic extract of turmeric showed the highest content of turmeric in both spectrophotometric and chromatographic analyses. Nonpolar solvents and carriers which have polar binding sites have to be considered for curcumin consumption due to its nonpolar nature.

Keywords: phenolic compounds, spectrophotometry, turmeric, UFLC

Procedia PDF Downloads 186
1432 Gardening as a Contextual Scaffold for Learning: Connecting Community Wisdom for Science and Health Learning through Participatory Action Research

Authors: Kamal Prasad Acharya

Abstract:

The related literature suggests that teaching and learning science at the basic level community schools in Nepal is based on book recitation. Consequently, the achievement levels and the understanding of basic science concepts is much below the policy expectations. In this context, this study intended to gain perception in the implementation practices of school gardens ‘One Garden One School’ for science learning and to meet the target of sustainable development goals that connects community wisdom regarding school gardening activities (SGAs) for science learning. This Participatory Action Research (PAR) study was done at the action school located in Province 3, Chitwan of Federal Nepal, supported under the NORHED/Rupantaran project. The purpose of the study was to connect the community wisdom related to gardening activities as contextual scaffolds for science learning. For this, in-depth interviews and focus group discussions were applied to collect data which were analyzed using a thematic analysis. Basic level students, science teachers, and parents reported having wonderful experiences such as active and meaningful engagement in school gardening activities for science learning as well as science teachers’ motivation in activity-based science learning. Overall, teachers, students, and parents reported that the school gardening activities have been found to have had positive effects on students’ science learning as they develop basic scientific concepts by connecting community wisdom as a contextual scaffold. It is recommended that the establishment of a school garden is important for science learning in community schools throughout Nepal.

Keywords: contextual scaffold, community wisdom, science and health learning, school garden

Procedia PDF Downloads 165
1431 Ethnobotany and Antimicrobial Effects of Medicinal Plants Used for the Treatment of Sexually Transmitted Infections in Lesotho

Authors: Sandy Van Vuuren, Lerato Kose, Annah Moteetee

Abstract:

Lesotho, a country surrounded by South Africa has one of the highest rates of sexually transmitted infections (STI’s) in the world. In fact, the country ranks third highest with respect to infections related to the human immunodeficiency virus (HIV). Despite the high prevalence of STI’s, treatment has been a challenge due to limited accessibility to health facilities. An estimated 77% of the population lives in rural areas and more than 60% of the country is mountainous. Therefore, many villages remain accessible only by foot or horse-back. Thus, the Basotho (indigenous people from Lesotho) have a rich cultural heritage of plant use. The aim of this study was to determine what plant species are used for the treatment of STI’s and which of these have in vitro efficacy against pathogens such as Candida albicans, Gardnerella vaginalis, Oligella ureolytica, and Neisseria gonorrhoeae. A total of 34 medicinal plants were reported by traditional practitioners for the treatment of STI’s. Sixty extracts, both aqueous and organic (mixture of methanol and dichloromethane), from 24 of the recorded plant species were assessed for antimicrobial activity using the minimum inhibition concentration (MIC) micro-titre plate dilution assay. Neisseria gonorrhoeae (ATCC 19424) was found to be the most susceptible among the test pathogens, with the majority of the extracts (21) displaying noteworthy activity (MIC values ≤ 1 mg/ml). Helichrysum caespititium was found to be the most antimicrobially active species (MIC value of 0.01 mg/ml). The results of this study support, to some extent, the traditional medicinal uses of the evaluated plants for the treatment of STI’s, particularly infections related to gonorrhoea.

Keywords: Africa, Candida albicans, Gardnerella vaginalis, Neisseria gonorrhoeae, Oligella urealytica

Procedia PDF Downloads 261
1430 Process Development of pVAX1/lacZ Plasmid DNA Purification Using Design of Experiment

Authors: Asavasereerat K., Teacharsripaitoon T., Tungyingyong P., Charupongrat S., Noppiboon S. Hochareon L., Kitsuban P.

Abstract:

Third generation of vaccines is based on gene therapy where DNA is introduced into patients. The antigenic or therapeutic proteins encoded from transgenes DNA triggers an immune-response to counteract various diseases. Moreover, DNA vaccine offers the customization of its ability on protection and treatment with high stability. The production of DNA vaccines become of interest. According to USFDA guidance for industry, the recommended limits for impurities from host cell are lower than 1%, and the active conformation homogeneity supercoiled DNA, is more than 80%. Thus, the purification strategy using two-steps chromatography has been established and verified for its robustness. Herein, pVax1/lacZ, a pre-approved USFDA DNA vaccine backbone, was used and transformed into E. coli strain DH5α. Three purification process parameters including sample-loading flow rate, the salt concentration in washing and eluting buffer, were studied and the experiment was designed using response surface method with central composite face-centered (CCF) as a model. The designed range of selected parameters was 10% variation from the optimized set point as a safety factor. The purity in the percentage of supercoiled conformation obtained from each chromatography step, AIEX and HIC, were analyzed by HPLC. The response data were used to establish regression model and statistically analyzed followed by Monte Carlo simulation using SAS JMP. The results on the purity of the product obtained from AIEX and HIC are between 89.4 to 92.5% and 88.3 to 100.0%, respectively. Monte Carlo simulation showed that the pVAX1/lacZ purification process is robust with confidence intervals of 0.90 in range of 90.18-91.00% and 95.88-100.00%, for AIEX and HIC respectively.

Keywords: AIEX, DNA vaccine, HIC, puification, response surface method, robustness

Procedia PDF Downloads 194
1429 Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst

Authors: Kamran Dastafkan, Chuan Zhao

Abstract:

Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation.

Keywords: gas bubble dissipation, iron-nickel vanadate, low-gas bubble-adhesion catalyst, oxygen evolution reaction

Procedia PDF Downloads 113
1428 Engineering the Topological Insulator Structures for Terahertz Detectors

Authors: M. Marchewka

Abstract:

The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.

Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds

Procedia PDF Downloads 109
1427 Allelopathic Action of Diferents Sorghum bicolor [L.] Moench Fractions on Ipomoea grandifolia [Dammer] O'Donell

Authors: Mateus L. O. Freitas, Flávia H. de M. Libório, Letycia L. Ricardo, Patrícia da C. Zonetti, Graciene de S. Bido

Abstract:

Weeds compete with agricultural crops for resources such as light, water, and nutrients. This competition can cause significant damage to agricultural producers, and, currently, the use of agrochemicals is the most effective method for controlling these undesirable plants. Morning glory (Ipomoea grandifolia [Dammer] O'Donell) is an aggressive weed and significantly reduces agricultural productivity making harvesting difficult, especially mechanical harvesting. The biggest challenge in modern agriculture is to preserve high productivity reducing environmental damage and maintaining soil characteristics. No-till is a sustainable practice that can reduce the use of agrochemicals and environmental impacts due to the presence of plant residues in the soil, which release allelopathic compounds and reduce the incidence or alter the growth and development of crops and weeds. Sorghum (Sorghum bicolor [L.] Moench) is a forage with proven allelopathic activity, mainly for producing sorgholeone. In this context, this research aimed to evaluate the allelopathic action of sorghum fractions using hexane, dichloromethane, butanol, and ethyl acetate on the germination and initial growth of morning glory. The parameters analyzed were the percentage of germination, speed of germination, seedling length, and biomass weight (fresh and dry). The bioassays were performed in Petri dishes, kept in an incubation chamber for 7 days, at 25 °C, with a 12h photoperiod. The experimental design was completely randomized, with five replicates of each treatment. The data were evaluated by analysis of variance, and the averages between each treatment were compared using the Scott Knott test at a 5% significance level. The results indicated that the dichloromethane and ethyl acetate fractions showed bioherbicidal effects, promoting effective reductions on germination and initial growth of the morning glory. It was concluded that allelochemicals were probably extracted in these fractions. These secondary metabolites can reduce the use of agrochemicals and environmental impact, making agricultural production systems more sustainable.

Keywords: allelochemicals, secondary metabolism, sorgoleone, weeds

Procedia PDF Downloads 135
1426 A Rationale to Describe Ambident Reactivity

Authors: David Ryan, Martin Breugst, Turlough Downes, Peter A. Byrne, Gerard P. McGlacken

Abstract:

An ambident nucleophile is a nucleophile that possesses two or more distinct nucleophilic sites that are linked through resonance and are effectively “in competition” for reaction with an electrophile. Examples include enolates, pyridone anions, and nitrite anions, among many others. Reactions of ambident nucleophiles and electrophiles are extremely prevalent at all levels of organic synthesis. The principle of hard and soft acids and bases (the “HSAB principle”) is most commonly cited in the explanation of selectivities in such reactions. Although this rationale is pervasive in any discussion on ambident reactivity, the HSAB principle has received considerable criticism. As a result, the principle’s supplantation has become an area of active interest in recent years. This project focuses on developing a model for rationalizing ambident reactivity. Presented here is an approach that incorporates computational calculations and experimental kinetic data to construct Gibbs energy profile diagrams. The preferred site of alkylation of nitrite anion with a range of ‘hard’ and ‘soft’ alkylating agents was established by ¹H NMR spectroscopy. Pseudo-first-order rate constants were measured directly by ¹H NMR reaction monitoring, and the corresponding second-order constants and Gibbs energies of activation were derived. These, in combination with computationally derived standard Gibbs energies of reaction, were sufficient to construct Gibbs energy wells. By representing the ambident system as a series of overlapping Gibbs energy wells, a more intuitive picture of ambident reactivity emerges. Here, previously unexplained switches in reactivity in reactions involving closely related electrophiles are elucidated.

Keywords: ambident, Gibbs, nucleophile, rates

Procedia PDF Downloads 68
1425 Currency Boards in Crisis: Experience of Baltic Countries

Authors: Gordana Kordić, Petra Palić

Abstract:

The European countries that during the past two decades based their exchange rate regimes on currency board arrangement (CBA) are usually analysed from the perspective of corner solution choice’s stabilisation effects. There is an open discussion on the positive and negative background of a strict exchange rate regime choice, although it should be seen as part of the transition process towards the monetary union membership. The focus of the paper is on the Baltic countries that after two decades of a rigid exchange rate arrangement and strongly influenced by global crisis are finishing their path towards the euro zone. Besides the stabilising capacity, the CBA is highly vulnerable regime, with limited developing potential. The rigidity of the exchange rate (and monetary) system, despite the ensured credibility, do not leave enough (or any) space for the adjustment and/or active crisis management. Still, the Baltics are in a process of recovery, with fiscal consolidation measures combined with (painful and politically unpopular) measures of internal devaluation. Today, two of them (Estonia and Latvia) are members of euro zone, fulfilling their ultimate transition targets, but de facto exchanging one fixed regime with another. The paper analyses the challenges for the CBA in unstable environment since the fixed regimes rely on imported stability and are sensitive to external shocks. With limited monetary instruments, these countries were oriented to the fiscal policies and used a combination of internal devaluation and tax policy measures. Despite their rather quick recovery, our second goal is to analyse the long term influence that the measures had on the national economy.

Keywords: currency board arrangement, internal devaluation, exchange rate regime, great recession

Procedia PDF Downloads 249
1424 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 350
1423 Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm

Authors: Alok Kumar, Hari Ram, Lebin Thomas, Ved Pal Singh

Abstract:

Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis.

Keywords: amylase, enzyme activity, industrial applications, organic solvent tolerant, protease

Procedia PDF Downloads 328
1422 Grounding Chinese Language Vocabulary Teaching and Assessment in the Working Memory Research

Authors: Chan Kwong Tung

Abstract:

Since Baddeley and Hitch’s seminal research in 1974 on working memory (WM), this topic has been of great interest to language educators. Although there are some variations in the definitions of WM, recent findings in WM have contributed vastly to our understanding of language learning, especially its effects on second language acquisition (SLA). For example, the phonological component of WM (PWM) and the executive component of WM (EWM) have been found to be positively correlated with language learning. This paper discusses two general, yet highly relevant WM findings that could directly affect the effectiveness of Chinese Language (CL) vocabulary teaching and learning, as well as the quality of its assessment. First, PWM is found to be critical for the long-term learning of phonological forms of new words. Second, EWM is heavily involved in interpreting the semantic characteristics of new words, which consequently affects the quality of learners’ reading comprehension. These two ideas are hardly discussed in the Chinese literature, both conceptual and empirical. While past vocabulary acquisition studies have mainly focused on the cognitive-processing approach, active processing, ‘elaborate processing’ (or lexical elaboration) and other effective learning tasks and strategies, it is high time to balance the spotlight to the WM (particularly PWM and EWM) to ensure an optimum control on the teaching and learning effectiveness of such approaches, as well as the validity of this language assessment. Given the unique phonological, orthographical and morphological properties of the CL, this discussion will shed some light on the vocabulary acquisition of this Sino-Tibetan language family member. Together, these two WM concepts could have crucial implications for the design, development, and planning of vocabularies and ultimately reading comprehension teaching and assessment in language education. Hopefully, this will raise an awareness and trigger a dialogue about the meaning of these findings for future language teaching, learning, and assessment.

Keywords: Chinese Language, working memory, vocabulary assessment, vocabulary teaching

Procedia PDF Downloads 325
1421 Frequency Control of Self-Excited Induction Generator Based Microgrid during Transition from Grid Connected to Island Mode

Authors: Azhar Ulhaq, Zubair Yameen, Almas Anjum

Abstract:

Frequency behaviour of self-excited induction generator (SEIG) wind turbines during control mode transition from grid connected to islanded mode is studied in detail. A robust control scheme for frequency regulation based on combined action of STATCOM, energy storage system (ESS) and pitch angle control for wind powered microgrid (MG) is proposed. Suggested STATCOM controller comprises a 3-phase voltage source converter (VSC) that contains insulated gate bipolar transistors (IGBTs) based pulse width modulation (PWM) inverters along with a capacitor bank. Energy storage system control consists of current controlled voltage source converter and battery bank. Both of them acting simultaneously after detection of island compensates for reactive and active power demands, thus regulating frequency at point of common coupling (PCC) and also improves load stability. STATCOM integrates at point of common coupling and ESS is connected to microgrids main bus. Results reveal that proposed control not only stabilizes frequency during transition duration but also minimizes sudden frequency imbalance caused by load variation or wind intermittencies in islanded operation. System is investigated with and without suggested control scheme. The efficacy of proposed strategy has been verified by simulation in MATLAB/Simulink.

Keywords: energy storage system, island, wind, STATCOM, self-excited induction generator, SEIG, transient

Procedia PDF Downloads 135
1420 In vitro Determination of Carbonic Anhydrase Inhibition of the Flowers of Vanda Orchid, Vanda Tessellata Roxb. (1795) by Modified Colorimetric Maren T.H. (1960) Method

Authors: John Carlo Combista, Jimbert Tan

Abstract:

The orchid, Vanda tessellata was chosen by the researchers because of the presence of the constituents in the family Orchidaceae such as alkaloids, flavonoids and glycosides that might give an inhibition activity of the carbonic anhydrase enzyme. This study aimed to determine the in vitro inhibition of carbonic anhydrase of Vanda tessellata flower extract. With the use of modified colorimetric Maren T.H. (1960) method, the time in seconds each test solution changed its color after the rate of CO2 hydration were recorded. Two solvents were used: the semi-polar, 95% ethanol and the non-polar, dichloromethane solvents. The percent inhibition activity of carbonic anhydrase of the different concentrations of solvents ethanol (1%, 25% and 50%) and dichloromethane (1% and 10%) test solutions were determined. Results showed that the ethanol-based extract of Vanda tessellata in different concentrations showed an inhibitory effect while the dichloromethane-based extract of Vanda tessellata showed no inhibitory effect of carbonic anhydrase activity. For ethanol extract, the concentration with the highest activity was 50% followed by 25% which changed its color from red to yellow with an average time of 13.11 seconds and 11.57 seconds but 1% with an average time of 7.56 seconds did not exhibit an effect. The researchers recommend the isolation of the specific active constituents of Vanda tessellata that is responsible for the inhibitory effect of carbonic anhydrase enzyme. It is also recommended to utilize different blood types to observe different reactions to the inhibition of the carbonic anhydrase.

Keywords: carbonic anhydrase, inhibition, modified colorimetric Maren TH method, Vanda orchid

Procedia PDF Downloads 284
1419 Biophysical Characterization of Archaeal Cyclophilin Like Chaperone Protein

Authors: Vineeta Kaushik, Manisha Goel

Abstract:

Chaperones are proteins that help other proteins fold correctly, and are found in all domains of life i.e., prokaryotes, eukaryotes and archaea. Various comparative genomic studies have suggested that the archaeal protein folding machinery appears to be highly similar to that found in eukaryotes. In case of protein folding; slow rotation of peptide prolyl-imide bond is often the rate limiting step. Formation of the prolyl-imide bond during the folding of a protein requires the assistance of other proteins, termed as peptide prolyl cis-trans isomerases (PPIases). Cyclophilins constitute the class of peptide prolyl isomerases with a wide range of biological function like protein folding, signaling and chaperoning. Most of the cyclophilins exhibit PPIase enzymatic activity and play active role in substrate protein folding which classifies them as a category of molecular chaperones. Till date, there is not very much data available in the literature on archaeal cyclophilins. We aim to compare the structural and biochemical features of the cyclophilin protein from within the three domains to elucidate the features affecting their stability and enzyme activity. In the present study, we carry out in-silico analysis of the cyclophilin proteins to predict their conserved residues, sites under positive selection and compare these proteins to their bacterial and eukaryotic counterparts to predict functional divergence. We also aim to clone and express these proteins in heterologous system and study their biophysical characteristics in detail using techniques like CD and fluorescence spectroscopy. Overall we aim to understand the features contributing to the folding, stability and dynamics of the archaeal cyclophilin proteins.

Keywords: biophysical characterization, x-ray crystallography, chaperone-like activity, cyclophilin, PPIase activity

Procedia PDF Downloads 197
1418 Influence of Smoking on Fine And Ultrafine Air Pollution Pm in Their Pulmonary Genetic and Epigenetic Toxicity

Authors: Y. Landkocz, C. Lepers, P.J. Martin, B. Fougère, F. Roy Saint-Georges. A. Verdin, F. Cazier, F. Ledoux, D. Courcot, F. Sichel, P. Gosset, P. Shirali, S. Billet

Abstract:

In 2013, the International Agency for Research on Cancer (IARC) classified air pollution and fine particles as carcinogenic to humans. Causal relationships exist between elevated ambient levels of airborne particles and increase of mortality and morbidity including pulmonary diseases, like lung cancer. However, due to a double complexity of both physicochemical Particulate Matter (PM) properties and tumor mechanistic processes, mechanisms of action remain not fully elucidated. Furthermore, because of several common properties between air pollution PM and tobacco smoke, like the same route of exposure and chemical composition, potential mechanisms of synergy could exist. Therefore, smoking could be an aggravating factor of the particles toxicity. In order to identify some mechanisms of action of particles according to their size, two samples of PM were collected: PM0.03 2.5 and PM0.33 2.5 in the urban-industrial area of Dunkerque. The overall cytotoxicity of the fine particles was determined on human bronchial cells (BEAS-2B). Toxicological study focused then on the metabolic activation of the organic compounds coated onto PM and some genetic and epigenetic changes induced on a co-culture model of BEAS-2B and alveolar macrophages isolated from bronchoalveolar lavages performed in smokers and non-smokers. The results showed (i) the contribution of the ultrafine fraction of atmospheric particles to genotoxic (eg. DNA double-strand breaks) and epigenetic mechanisms (eg. promoter methylation) involved in tumor processes, and (ii) the influence of smoking on the cellular response. Three main conclusions can be discussed. First, our results showed the ability of the particles to induce deleterious effects potentially involved in the stages of initiation and promotion of carcinogenesis. The second conclusion is that smoking affects the nature of the induced genotoxic effects. Finally, the in vitro developed cell model, using bronchial epithelial cells and alveolar macrophages can take into account quite realistically, some of the existing cell interactions existing in the lung.

Keywords: air pollution, fine and ultrafine particles, genotoxic and epigenetic alterations, smoking

Procedia PDF Downloads 333
1417 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging

Authors: Chih-Chung Huang, Po-Hsun Peng

Abstract:

Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.

Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming

Procedia PDF Downloads 516
1416 Transcriptomic Analysis for Differential Expression of Genes Involved in Secondary Metabolite Production in Narcissus Bulb and in vitro Callus

Authors: Aleya Ferdausi, Meriel Jones, Anthony Halls

Abstract:

The Amaryllidaceae genus Narcissus contains secondary metabolites, which are important sources of bioactive compounds such as pharmaceuticals indicating that their biological activity extends from the native plant to humans. Transcriptome analysis (RNA-seq) is an effective platform for the identification and functional characterization of candidate genes as well as to identify genes encoding uncharacterized enzymes. The biotechnological production of secondary metabolites in plant cell or organ cultures has become a tempting alternative to the extraction of whole plant material. The biochemical pathways for the production of secondary metabolites require primary metabolites to undergo a series of modifications catalyzed by enzymes such as cytochrome P450s, methyltransferases, glycosyltransferases, and acyltransferases. Differential gene expression analysis of Narcissus was obtained from two conditions, i.e. field and in vitro callus. Callus was obtained from modified MS (Murashige and Skoog) media supplemented with growth regulators and twin-scale explants from Narcissus cv. Carlton bulb. A total of 2153 differentially expressed transcripts were detected in Narcissus bulb and in vitro callus, and 78.95% of those were annotated. It showed the expression of genes involved in the biosynthesis of alkaloids were present in both conditions i.e. cytochrome P450s, O-methyltransferase (OMTs), NADP/NADPH dehydrogenases or reductases, SAM-synthetases or decarboxylases, 3-ketoacyl-CoA, acyl-CoA, cinnamoyl-CoA, cinnamate 4-hydroxylase, alcohol dehydrogenase, caffeic acid, N-methyltransferase, and NADPH-cytochrome P450s. However, cytochrome P450s and OMTs involved in the later stage of Amaryllidaceae alkaloids biosynthesis were mainly up-regulated in field samples. Whereas, the enzymes involved in initial biosynthetic pathways i.e. fructose biphosphate adolase, aminotransferases, dehydrogenases, hydroxyl methyl glutarate and glutamate synthase leading to the biosynthesis of precursors; tyrosine, phenylalanine and tryptophan for secondary metabolites were up-regulated in callus. The knowledge of probable genes involved in secondary metabolism and their regulation in different tissues will provide insight into the Narcissus plant biology related to alkaloid production.

Keywords: narcissus, callus, transcriptomics, secondary metabolites

Procedia PDF Downloads 132
1415 Cycling Usage and Determinants on University Campus in Ghana: The Case of Kwame Nkrumah University of Science and Technology

Authors: Nicholas Anarfi Bofah, James Damsere- Derry

Abstract:

There is increasing interest among institutions, governments, and international organisations to combat congestion, reduce contribution to green gases and provide sustainable urban transportation. College campuses are a preeminent setting for promoting active commuting to ameliorate a community's healthy lifestyle. Cycling is an important physical activity and has a long-term effect on health, and it is considered one of the top five interventions to reduce the prevalence of non-communicable diseases. The main objectives of the research were: (i) to identify students’ attitudes and behavior toward cycling usage, (ii) to identify barriers and opportunities for cycling on a university campus, and (iii) to construct tangible policy recommendations for promoting cycling in the vicinity of the university. The data used in this study were obtained from a survey conducted among students at the Kwame Nkrumah University of Science and Technology (KNUST) in Kumasi between May 2022 and September 2022. A convenient sampling method was used to recruit and interview 398 participants. Two survey assistants who are former students of the university were engaged to administer the questionnaires randomly to students at the selected locations. Descriptive statistics were employed in the analysis of the data. Out of the 398 questionnaires, bicycle ridership and ownership among university students were 57% and 39%, respectively. Generally, the desire to use a bicycle as a mode of transport on campus was 36%. The desire to use a bicycle on campus was more prevalent among males 41% compared to females 30%. There is a high potential for increasing bicycle use among students. Recommendations include the provision of bicycle lanes, public education on the use of bicycles, and a campus bicycle-sharing program.

Keywords: sustainable development, cycling, university campus, bicycle

Procedia PDF Downloads 67
1414 Inflammatory Changes in Postmenopausal Women including Th17 and Treg

Authors: Ae Ra Han, Seoung Eun Huh, Ji Yeon Kim, Joanne Kwak-Kim, Sung Ki Lee

Abstract:

Objective: Prevalence of osteoporosis, cardiovascular disorders, and Alzheimer's disease rapidly increase after menopause. Immune activation and inflammation are suggested as an important pathogenesis of these serious diseases. Several pro-inflammatory cytokines are increased in women with surgical or natural menopause. However, the little is known about IL-17 producing T cells and Foxp3+ regulatory T (Treg) cells in post-menopause. Methods: A total of 34 postmenopausal women, who had no active cardiovascular, endocrine and infectious disorders were recruited as study group and healthy premenopausal women participated as controls. Peripheral blood mononuclear cells were isolated. Immuno-morphologic (CD3, CD4, CD8, CD19, CD56/CD16), intracellular cytokine (TNF-alpha, IFN-gamma, IL-10, IL-17), and Treg cell (Foxp3) studies were carried out using flow cytometry. The proportion of peripheral lymphocytes, including IL-17 producing and Foxp3+ Treg cells immune cell in each group were statistically analyzed. Results: The proportion of NK cells was significantly increased in menopausal women as compared to that of controls (P=.005). The ratios of TNF-alpha/IL-10 producing CD3+CD4+ T cells were increased in postmenopausal women. CD3+IL-17+ T cell level was higher in postmenopausal women and CD4+ Foxp3+ Treg cells was lower than that of controls. The ratios of CD3+IL-17+ T cell to CD3+Foxp3+ and to CD4+Foxp3+ Treg cells were significantly increased in postmenopausal women (P=.001). Conclusions: We found enhanced innate immunity and Th1- and Th17-mediated adaptive immunity in postmenopausal women. This may explain increasing prevalence of chronic inflammatory diseases after menopause. Further studies are needed to elucidate what factors contribute to this inflammatory shift in the postmenopause.

Keywords: inflammation, immune cell, menopause, Th17, regulatory T cell

Procedia PDF Downloads 311
1413 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 138