Search results for: Taguchi experimental design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17691

Search results for: Taguchi experimental design

13671 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 88
13670 A 'Four Method Framework' for Fighting Software Architecture Erosion

Authors: Sundus Ayyaz, Saad Rehman, Usman Qamar

Abstract:

Software Architecture is the basic structure of software that states the development and advancement of a software system. Software architecture is also considered as a significant tool for the construction of high quality software systems. A clean design leads to the control, value and beauty of software resulting in its longer life while a bad design is the cause of architectural erosion where a software evolution completely fails. This paper discusses the occurrence of software architecture erosion and presents a set of methods for the detection, declaration and prevention of architecture erosion. The causes and symptoms of architecture erosion are observed with the examples of prescriptive and descriptive architectures and the practices used to stop this erosion are also discussed by considering different types of software erosion and their affects. Consequently finding and devising the most suitable approach for fighting software architecture erosion and in some way reducing its affect is evaluated and tested on different scenarios.

Keywords: software architecture, architecture erosion, prescriptive architecture, descriptive architecture

Procedia PDF Downloads 480
13669 Quantification of Factors Contributing to Wave-In-Deck on Fixed Jacket Platforms

Authors: C. Y. Ng, A. M. Johan, A. E. Kajuputra

Abstract:

Wave-in-deck phenomenon for fixed jacket platforms at shallow water condition has been reported as a notable risk to the workability and reliability of the platform. Reduction in reservoir pressure, due to the extraction of hydrocarbon for an extended period of time, has caused the occurrence of seabed subsidence. Platform experiencing subsidence promotes reduction of air gaps, which eventually allows the waves to attack the bottom decks. The impact of the wave-in-deck generates additional loads to the structure and therefore increases the values of the moment arms. Higher moment arms trigger instability in terms of overturning, eventually decreases the reserve strength ratio (RSR) values of the structure. The mechanics of wave-in-decks, however, is still not well understood and have not been fully incorporated into the design codes and standards. Hence, it is necessary to revisit the current design codes and standards for platform design optimization. The aim of this study is to evaluate the effects of RSR due to wave-in-deck on four-legged jacket platforms in Malaysia. Base shear values with regards to calibration and modifications of wave characteristics were obtained using SESAM GeniE. Correspondingly, pushover analysis is conducted using USFOS to retrieve the RSR. The effects of the contributing factors i.e. the wave height, wave period and water depth with regards to the RSR and base shear values were analyzed and discussed. This research proposal is important in optimizing the design life of the existing and aging offshore structures. Outcomes of this research are expected to provide a proper evaluation of the wave-in-deck mechanics and in return contribute to the current mitigation strategies in managing the issue.

Keywords: wave-in-deck loads, wave effects, water depth, fixed jacket platforms

Procedia PDF Downloads 415
13668 Anxiety and Depression in Parents of Children with Developmental Disabilities in Early Childhood

Authors: S. Bagur, S. Verger, B. Mut

Abstract:

Early childhood intervention (ECI) is the set of actions aimed at children aged 0-6 years with special needs, the family, and the environment that aim to improve child development and family well-being. Socio-educational intervention with children with disabilities and their families should be understood through the principles of family-centered practice (FCP). The multidisciplinary team of professionals carries out the intake, assessment, and intervention, understanding that families may experience mental health problems, parental role incompetence, or feelings of exclusion. This study examines the relationship between caregivers' levels of anxiety and depression and child development during the fostering and assessment phase. The design is quantitative, non-experimental, and cross-sectional. The sample consisted of 135 family members (78.5% female, 21.5% male) users of child development services in the Balearic Islands (Spain). Three questionnaires were completed: Anxiety and Depression Scale, Child Behavior Checklist (CBCL 1½-5), and sociodemographic questionnaire. The main results show that parents of children with special needs score higher on anxiety than on depression. It should be noted that professional discipline is a variable to be taken into account in relation to parents' perception of the improvement of their child's development. In addition, there is an association between the developmental subscales, where the more the child is affected, the more the parents' mental health is affected. In short, we propose a reflection on the application of FCP during the intervention, understanding the lack of professional training as a predictor of quality in early intervention. Likewise, future lines of research are proposed to improve early care practices.

Keywords: anxiety, depression, early childhood intervention, family

Procedia PDF Downloads 74
13667 Computer Assisted Instructions for a Better Achievement in and Attitude towards Agricultural Economics

Authors: Abiodun Ezekiel Adesina, Alice M. Olagunju

Abstract:

This study determined the effects of Computer Assisted Instructions (CAI) and Academic Self-Concepts (ASC) on pre-service teachers’ achievement in AE concepts in CoE in Southwest, Nigeria. The study adopted pretest-posttest, control group, quasi-experimental design. Six CoE with e-library facilities were purposively selected. Two hundred and thirty-two intact 200 level Agricultural education students offering introduction to AE course across the six CoE were participants. The participants were assigned to three groups (D&PM, 77, TM, 73 and control, 82). Treatment lasted eight weeks. The AE achievement test (r=0.76), pre-service teachers’ ASC Scale (r=0.81); instructional guides for tutorial (r=0.76), drill and practice (r=0.81) and conventional lecture modes (r=0.83), and teacher performance assessment sheet were used for data collection. Data were analysed using analysis of covariance and Scheffe post-hoc at 0.05 level of significance. The participants were 55.6% female with mean age of 20.8 years. Treatment had significant main effects on pre-service teachers’ achievement (F(2,207)=60.52; η²=0.21; p < 0.05). Participants in D&PM (x̄ =27.83) had the best achievement compared to those in TM (x̄ =25.41) and control (x̄ =18.64) groups. ASC had significant main effect on pre-service teachers’ achievement (F(1,207)=22.011; η²=0.166; p < 0.05). Participants with high ASC (x̄ =27.52) had better achievement compared to those with low ASC (x̄ =22.37). The drill and practice and tutorial instructional modes enhanced students’ achievement in Agricultural Economics concepts. Therefore, the two instructional modes should be adopted for improved learning outcomes in agricultural economics concepts among pre-service teachers.

Keywords: achievement in agricultural economics concepts, colleges of education in southwestern Nigeria, computer-assisted instruction, drill and practice instructional mode, tutorial instructional mode

Procedia PDF Downloads 188
13666 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 465
13665 Stress Analysis of Buried Pipes from Soil and Traffic Loads

Authors: A. Mohamed, A. El-Hamalawi, M. Frost, A. Connell

Abstract:

Often design standards do not provide guidance or formulae for the calculation of stresses on buried pipelines caused by external loads. Frequently engineers rely on other methods and published sources of information to calculate such imposed stresses and a variety of methods can be used. This paper reviews three current approaches to soil pipeline interaction modelling to predict stresses on buried pipelines subjected to soil overburden and traffic loading. The traditional approach to use empirical stress formulas to calculate circumferential bending stresses on pipelines. The alternative approaches considered are the use of a finite element package to compute an estimate of circumferential bending stress and a proprietary stress analysis system (SURFLOAD) to estimate the circumferential bending stress. The results from analysis using the methods are presented and compared to experimental results in terms of predicted and measured circumferential stresses. This study shows that the approach used to assess externally generated stress is important and can lead to an over-conservative analysis. Using FE analysis either through SURFLOAD or a general FE package to predict circumferential stress is the most accurate way to undertake stress analysis due to traffic and soil loads. Although conservative, classical empirical methods will continue to be applied to the analysis of buried pipelines, an opportunity exists, therefore, in many circumstances, to use applied numerical techniques, made possible by advances in finite element analysis.

Keywords: buried pipelines, circumferential bending stress, finite element analysis, soil overburden, soil pipeline interaction analysis (SPIA), traffic loadings

Procedia PDF Downloads 426
13664 Effect of Tool Geometry and Welding Parameters on Macrostructure and Weld Strength in Friction Stir Welded of High Density Polyethylene Sheets

Authors: Mustafa Kemal Bilici, Memduh Kurtulmuş, İlyas Kartal, Ahmet İrfan Yükler

Abstract:

Friction stir welding is a solid-state joining process that has gained acceptable progress in recent years. This method which was first used for welding of aluminum and its alloys is now employed for welding of other materials such as polymers and composites. The aim of the present work is to investigate the mechanical properties of butt joints produced by friction stir welding (FSW) in high density polyethylene sheets of 4 mm thickness. The effects of critical welding parameters and tool design have affected on mechanical properties, weld surface and macrostructure of friction stir welded polyethylene. Experiments were performed at tool rotational speeds of 600, 900, 1200 and 1500 r/min and traverse speeds of 30, 45 and 60 mm/min, tool diameters (d) of 4, 5, 6 mm and tool shoulder diameters (D) 20, 25, 30 mm. A strength value of 80 % of the base material was achieved at the isolated optimum welding condition. According to the tool design, the welding parameters and the mechanical properties changed to a great extent. The highest tensile strength was achieved at low feed rates, high tool rotation speeds and shoulder diameters/pin diameters ratio.

Keywords: friction stir welding, mechanical properties, polyethylene, high density polyethylene, tool design

Procedia PDF Downloads 374
13663 Sustainability Modelling and Sustainability Evaluation of a Mechanical System in a Concurrent Engineering Environment: A Digraph and Matrix Approach

Authors: Anand Ankush, Wani Mohammed Farooq

Abstract:

A procedure based on digraph and matrix method is developed for modelling and evaluation of sustainability of Mechanical System in a concurrent engineering environment.The sustainability parameters of a Mechanical System are identified and are called sustainability attributes. Consideration of attributes and their interrelations is rudiment in modeling and evaluation of sustainability index. Sustainability attributes of a Mechanical System are modelled in termsof sustainability digraph. The graph is represented by a one-to-one matrix for sustainability expression which is based on sustainability attributes. A variable sustainability relationship permanent matrix is defined to develop sustainability expression(VPF-t) which is also useful in comparing two systems in a concurrent environment. The sustainability index of Mechanical System is obtained from permanent of matrix by substituting the numerical values of attributes and their interrelations. A higher value of index implies better sustainability of system.The ideal value of index is obtained from matrix expression which is useful in assessing relative sustainability of a Mechanical System in a concurrent engineering environment. The procedure is not only useful for evaluation of sustainability of a Mechanical System at conceptual design stage but can also be used for design and development of systems at system design stage. A step-by-step procedure for evaluation of sustainability index is also suggested and is illustrated by means of an example.

Keywords: digraph, matrix method, mechanical system, sustainability

Procedia PDF Downloads 344
13662 Rating the Importance of Customer Requirements for Green Product Using Analytic Hierarchy Process Methodology

Authors: Lara F. Horani, Shurong Tong

Abstract:

Identification of customer requirements and their preferences are the starting points in the process of product design. Most of design methodologies focus on traditional requirements. But in the previous decade, the green products and the environment requirements have increasingly attracted the attention with the constant increase in the level of consumer awareness towards environmental problems (such as green-house effect, global warming, pollution and energy crisis, and waste management). Determining the importance weights for the customer requirements is an essential and crucial process. This paper used the analytic hierarchy process (AHP) approach to evaluate and rate the customer requirements for green products. With respect to the ultimate goal of customer satisfaction, surveys are conducted using a five-point scale analysis. With the help of this scale, one can derive the weight vectors. This approach can improve the imprecise ranking of customer requirements inherited from studies based on the conventional AHP. Furthermore, the AHP with extent analysis is simple and easy to implement to prioritize customer requirements. The research is based on collected data through a questionnaire survey conducted over a sample of 160 people belonging to different age, marital status, education and income groups in order to identify the customer preferences for green product requirements.

Keywords: analytic hierarchy process (AHP), green product, customer requirements for green design, importance weights for the customer requirements

Procedia PDF Downloads 232
13661 Silver Nanoparticles in Drinking Water Purification

Authors: S. Pooja Pragati, B. Sudarsan, S. Rajkumar

Abstract:

Silver nanoparticles (AgNP) are known for their excellent antimicrobial agents, and thus can be used as alternative disinfectant agents. However, released silver nanoparticles is a threat to naturally occurring microorganisms. This paper exhibits information on the environmental fate, toxicological effects, and application of AgNP and the current estimate on the physicochemical and antimicrobial properties of AgNP in different aqueous solutions, as well as their application as alternative disinfectants in water-treatment systems. It also gives a better approximation and experimental data of AgNP’s antimicrobial properties at different water chemistry conditions. A saturation-type fitting curve was established, showing the survival of bacteria under different water chemistry conditions as a function of the size of the nanoparticles. The results obtained show that silver nanoparticles in surface water, ground water, and brackish water are stable. The paper demonstrates the comparative study of AgNP-impregnated point-of-use ceramic water filters and ceramic filters impregnated with silver nitrate. It is observed that AgNP-impregnated ceramic water filters are more appropriate for this application due to the lesser amount of silver desorbed. Experimental data of the comparison of a polymer-based quaternary amine functionalized silsesquioxanes compound and AgNP are also tabulated and conclusions are analysed with the goal of optimizing. The simplicity of synthesis and application of Silver nanoparticles enables us to consider its effective modified version for the purification of water.

Keywords: disinfectant agent, purification of water, nano particles, water treatment

Procedia PDF Downloads 318
13660 Optimization of Extraction Conditions and Characteristics of Scale collagen From Sardine: Sardina pilchardus

Authors: F. Bellali, M. Kharroubi, M. Loutfi, N.Bourhim

Abstract:

In Morocco, fish processing industry is an important source income for a large amount of byproducts including skins, bones, heads, guts and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Scales from Sardina plichardus resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic and bio medical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. Moreover, the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The basic principle of RSM is to determinate model equations that describe interrelations between the independent variables and the dependent variables.

Keywords: Sardina pilchardus, scales, valorization, collagen extraction, response surface methodology

Procedia PDF Downloads 401
13659 The Effect of a 12 Week Rhythmic Movement Intervention on Selected Biomotor Abilities on Academy Rugby Players

Authors: Jocelyn Solomons, Kraak

Abstract:

Rhythmic movement, also referred to as “dance”, involves the execution of different motor skills as well as the integration and sequencing of actions between limbs, timing and spatial precision. The aim of this study was therefore to investigate and compare the effect of a 16-week rhythmic movement intervention on flexibility, dynamic balance, agility, power and local muscular endurance of academy rugby players in the Western Cape, according to positional groups. Players (N ¼ 54) (age 18.66 0.81 years; height 1.76 0.69 cm; weight 76.77 10.69 kg), were randomly divided into a treatment-control [TCA] (n ¼ 28) and a control-treatment [CTB] (n ¼ 26) group. In this crossover experimental design, the interaction effect of the treatment order and the treatment time between the TCA and CTB group, was determined. Results indicated a statistically significant improvement (p < 0.05) in agility2 (p ¼ 0.06), power2 (p ¼ 0.05), local muscular endurance1 (p ¼ 0.01) & 3 (p ¼ 0.01) and dynamic balance (p < 0.01). Likewise, forwards and backs also showed statistically significant improvements (p < 0.05) per positional groups. Therefore, a rhythmic movement intervention has the potential to improve rugby-specific bio-motor skills and furthermore, improve positional specific skills should it be designed with positional groups in mind. Future studies should investigate, not only the effect of rhythmic movement on improving specific rugby bio-motor skills, but the potential of its application as an alternative training method during off- season (or detraining phases) or as a recovery method.

Keywords: agility, dance, dynamic balance, flexibility, local muscular endurance, power, training

Procedia PDF Downloads 49
13658 Effect of Diindolylmethane on BBN-Induced Bladder Carcinogenesis in Rats

Authors: Sundaresan Sivapatham, B. Prabhu

Abstract:

Cancer results from a multistage, multi-mechanism carcinogenesis process that involves mutagenic, cell death and epigenetic mechanisms, during the three distinguishable but closely allied stages: initiation, promotion, and progression. Chemoprevention is promising in the realm of cancer prevention and it has been shown to reduce the risk of development of carcinoma in highly susceptible individuals such as those with known genetic mutations or high level of risk factors. The present study is aimed at the need of early detection of bladder cancer in order to improve performance in the treatment of this disease. Consumption of certain natural products like DIM is associated with a reduction in cancer incidence in humans. The study showed the protective effects of Diindolylmethane in N-Butyl-N-(4-hydroxybutyl) nitrosamine treated rats. Results of the study had shown the changes in the tumor markers, biomarkers and histopathological alterations in experimental rats when compared to control rats. The protective effects of DIM were shown from the results of cell proliferation, apoptotic markers and histopathological findings when compared with experimental control animals. Hence, our results speculate that the tumor markers, apoptotic markers, histopathological changes and cell proliferation index measured as PCNA serves as an indicator suggestive of protective effects of DIM in BBN induced urinary bladder carcinogenesis.

Keywords: bladder cancer, N-Butyl-N-(4-hydroxybutyl) nitrosamine, diindolylmethane, histopathology

Procedia PDF Downloads 328
13657 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach

Authors: Massimo Zucchetti

Abstract:

In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.

Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety

Procedia PDF Downloads 70
13656 Properties of Bacterial Nanocellulose for Scenic Arts

Authors: Beatriz Suárez López, Gabriela Forman

Abstract:

Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used -review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: Biology, Art, Costume Design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, is a resource that can be used to show a visual and poetic impact on stage.

Keywords: biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts

Procedia PDF Downloads 88
13655 Evaluation of the Effect of Nursing Services Provided in a Correctional Institution on the Physical Health Levels and Health Behaviors of Female Inmates

Authors: Şenay Pehli̇van, Gülümser Kublay

Abstract:

Female inmates placed in a Correctional Institution (CI) have more physical health problems than other women and their male counterparts. Thus, they require more health care services in the CI and nursing services in particular. CI nurses also have the opportunity to teach behaviors which will protect and improve their health to these women who are difficult to reach in the community. The aim of this study was to evaluate effect of nursing services provided in a CI on the physical health levels and health behaviors of female inmates. The study has a quasi-experimental design. The study was done in Female Closed CI in Ankara, Turkey. The study was conducted on 30 female inmates. Before the implementation of nursing interventions in the initial phase of the study, female inmates were evaluated in terms of physical health problems and health behavior using forms, a physical examination, medical history, health files (file containing medical information related to prisons) and the Omaha System (OS). Findings obtained from evaluations were grouped and symptoms-findings were expressed with OS diagnosis codes. Knowledge, behavior and status scores of prisoners in relation to health problems were determined. After the implementation of the nursing interventions, female inmates were evaluated in terms of physical health problems and health behavior using OS. The research data were collected using the Female Evaluation Form developed by the researcher and the OS. It was found that knowledge, behavior and status scores of prisoners significantly increased after the implementation of nursing interventions (p < 0.05).

Keywords: prison nursing, health promotion and protecting, nursi̇ng servi̇ces, omaha system

Procedia PDF Downloads 245
13654 Museums: The Roles of Lighting in Design

Authors: Fernanda S. Oliveira

Abstract:

The architectural science of lighting has been mainly concerned with technical aspects and has tended to ignore the psychophysical. There is a growing evidence that adopting passive design solutions may contribute to higher satisfaction. This is even more important in countries with higher solar radiation, which should take advantage of favourable daylighting conditions. However, in art museums, the same light that stimulates vision can also cause permanent damage to the exhibits. Not only the visitors want to see the objects, but also to understand their nature and the artist’s intentions. This paper examines the hypothesis that the more varied and exciting the lighting (and particularly the daylight) in museums rooms, over space and time, the more likely it is that visitors will stay longer, enjoy their experience and be willing to return. This question is not often considered in museums that privilege artificial lighting neglecting the various qualities of daylight other than its capacity to illuminate spaces. The findings of this paper show that daylight plays an important role in museum design, affecting how visitors perceive the exhibition space, as well as contributing to their overall enjoyment in the museum. Rooms with high luminance means were considered more pleasant (r=.311, p<.05) and cheerful (r=.349, p<.05). Lighting conditions also have a direct effect on the phenomenon of museum fatigue with the overall room quality showing an effect on how tired visitors reported to be (r=.421, p<.01). The control and distribution of daylight in museums can therefore contribute to create pleasant conditions for learning, entertainment and amusement, so that visitors are willing to return.

Keywords: daylight, comfort, museums, luminance, visitor

Procedia PDF Downloads 464
13653 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing

Authors: Daniel M. Muntean, Viorel Ungureanu

Abstract:

More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.

Keywords: adaptive building, energy efficiency, retrofitting, residential buildings, smart grid

Procedia PDF Downloads 284
13652 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders

Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari

Abstract:

There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.

Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame

Procedia PDF Downloads 219
13651 Introducing, Testing, and Evaluating a Unified JavaScript Framework for Professional Online Studies

Authors: Caspar Goeke, Holger Finger, Dorena Diekamp, Peter König

Abstract:

Online-based research has recently gained increasing attention from various fields of research in the cognitive sciences. Technological advances in the form of online crowdsourcing (Amazon Mechanical Turk), open data repositories (Open Science Framework), and online analysis (Ipython notebook) offer rich possibilities to improve, validate, and speed up research. However, until today there is no cross-platform integration of these subsystems. Furthermore, implementation of online studies still suffers from the complex implementation (server infrastructure, database programming, security considerations etc.). Here we propose and test a new JavaScript framework that enables researchers to conduct any kind of behavioral research in the browser without the need to program a single line of code. In particular our framework offers the possibility to manipulate and combine the experimental stimuli via a graphical editor, directly in the browser. Moreover, we included an action-event system that can be used to handle user interactions, interactively change stimuli properties or store participants’ responses. Besides traditional recordings such as reaction time, mouse and keyboard presses, the tool offers webcam based eye and face-tracking. On top of these features our framework also takes care about the participant recruitment, via crowdsourcing platforms such as Amazon Mechanical Turk. Furthermore, the build in functionality of google translate will ensure automatic text translations of the experimental content. Thereby, thousands of participants from different cultures and nationalities can be recruited literally within hours. Finally, the recorded data can be visualized and cleaned online, and then exported into the desired formats (csv, xls, sav, mat) for statistical analysis. Alternatively, the data can also be analyzed online within our framework using the integrated Ipython notebook. The framework was designed such that studies can be used interchangeably between researchers. This will support not only the idea of open data repositories but also constitutes the possibility to share and reuse the experimental designs and analyses such that the validity of the paradigms will be improved. Particularly, sharing and integrating the experimental designs and analysis will lead to an increased consistency of experimental paradigms. To demonstrate the functionality of the framework we present the results of a pilot study in the field of spatial navigation that was conducted using the framework. Specifically, we recruited over 2000 subjects with various cultural backgrounds and consequently analyzed performance difference in dependence on the factors culture, gender and age. Overall, our results demonstrate a strong influence of cultural factors in spatial cognition. Such an influence has not yet been reported before and would not have been possible to show without the massive amount of data collected via our framework. In fact, these findings shed new lights on cultural differences in spatial navigation. As a consequence we conclude that our new framework constitutes a wide range of advantages for online research and a methodological innovation, by which new insights can be revealed on the basis of massive data collection.

Keywords: cultural differences, crowdsourcing, JavaScript framework, methodological innovation, online data collection, online study, spatial cognition

Procedia PDF Downloads 239
13650 Tolerating Input Faults in Asynchronous Sequential Machines

Authors: Jung-Min Yang

Abstract:

A method of tolerating input faults for input/state asynchronous sequential machines is proposed. A corrective controller is placed in front of the considered asynchronous machine to realize model matching with a reference model. The value of the external input transmitted to the closed-loop system may change by fault. We address the existence condition for the controller that can counteract adverse effects of any input fault while maintaining the objective of model matching. A design procedure for constructing the controller is outlined. The proposed reachability condition for the controller design is validated in an illustrative example.

Keywords: asynchronous sequential machines, corrective control, fault tolerance, input faults, model matching

Procedia PDF Downloads 408
13649 Bioclimatic Design, Evaluation of Energy Behavior and Energy-Saving Interventions at the Theagenio Cancer Hospital

Authors: Emmanouel Koumoulas, Aikaterini Rokkou, Marios Moschakis

Abstract:

Theagenio" in Thessaloniki exists and works for three centuries now as a hospital. Since 1975, it has been operating as an Integrated Special Cancer Hospital and since 1985 it has been integrated into the National Health System. "Theagenio" Cancer Hospital is located at the central web of Thessaloniki residential complex and consists of two buildings, the "Symeonidio Research Center", which was completed in 1962 and the Nursing Ward, a project that was later completed in 1975. This paper examines the design of the Hospital Unit according to the requirements of the energy design of buildings. Initially, the energy characteristics of the Hospital are recorded, followed by a detailed presentation of the electromechanical installations. After the existing situation has been captured and with the help of the software TEE-KENAK, different scenarios for the energy upgrading of the buildings have been studied. Proposals for upgrading concern both the shell, e.g. installation of external thermal insulation, replacement of frames, addition of shading systems, etc. as well as electromechanical installations, e.g. use of ceiling fans, improvements in heating and cooling systems, interventions in lighting, etc. The simulation calculates the future energy status of the buildings and presents the economic benefits of the proposed interventions with reference to the environmental profits that arise.

Keywords: energy consumption in hospitals, energy saving interventions, energy upgrading, hospital facilities

Procedia PDF Downloads 132
13648 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation

Authors: Desmond Young

Abstract:

In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.

Keywords: energy, ADMD, electrical load assessment, energy benchmarks

Procedia PDF Downloads 96
13647 Behavior of Epoxy Insulator with Surface Defect under HVDC Stress

Authors: Qingying Liu, S. Liu, L. Hao, B. Zhang, J. D. Yan

Abstract:

HVDC technology is becoming increasingly popular due to its simplicity in topology and less power loss over long distance of power transmission, in comparison with HVAC technology. However, the dielectric behavior of insulators in the long term under HVDC stress is completely different from that under HVAC stress as a result of charge accumulation in a constant electric field. Insulators used in practical systems are never perfect in their structural conditions. Over time shallow cracks may develop on their surface. The presence of defects can lead to drastic change in their dielectric behaviour and thus increase the probability of surface flashover. In this contribution, experimental investigations have been carried out on the charge accumulation phenomenon on the surface of a rod insulator made of epoxy that is placed between two disk shaped electrodes at different voltage levels and in different gases (SF6, CO2 and N2). Many results obtained, such as, the two-dimensional electrostatic potential distribution along the insulator surface after the removal of the power source following a pre-defined period of application. The probe has been carefully calibrated before each test. Results show that surface charge distribution near the two disk shaped electrodes is not uniform in the circumferential direction, possibly due to the imperfect electrical connections between the embeded conductor in the insulator and the disk shaped electrodes. The axial length of this non-uniform region is experimentally determined, which provides useful information for shielding design. A charge transport model is also used to explain the formation of the long term electrostatic potential distribution under a constant applied voltage.

Keywords: HVDC, power systems, dielectric behavior, insulation, charge accumulation

Procedia PDF Downloads 212
13646 Kansei Engineering Applied to the Design of Rural Primary Education Classrooms: Design-Based Learning Case

Authors: Jimena Alarcon, Andrea Llorens, Gabriel Hernandez, Maritza Palma, Lucia Navarrete

Abstract:

The research has funding from the Government of Chile and is focused on defining the design of rural primary classroom that stimulates creativity. The relevance of the study consists of its capacity to define adequate educational spaces for the implementation of the design-based learning (DBL) methodology. This methodology promotes creativity and teamwork, generating a meaningful learning experience for students, based on the appreciation of their environment and the generation of projects that contribute positively to their communities; also, is an inquiry-based form of learning that is based on the integration of design thinking and the design process into the classroom. The main goal of the study is to define the design characteristics of rural primary school classrooms, associated with the implementation of the DBL methodology. Along with the change in learning strategies, it is necessary to change the educational spaces in which they develop. The hypothesis indicates that a change in the space and equipment of the classrooms based on the emotions of the students will motivate better learning results based on the implementation of a new methodology. In this case, the pedagogical dynamics require an important interaction between the participants, as well as an environment favorable to creativity. Methodologies from Kansei engineering are used to know the emotional variables associated with their definition. The study is done to 50 students between 6 and 10 years old (average age of seven years), 48% of men and 52% women. Virtual three-dimensional scale models and semantic differential tables are used. To define the semantic differential, self-applied surveys were carried out. Each survey consists of eight separate questions in two groups: question A to find desirable emotions; question B related to emotions. Both questions have a maximum of three alternatives to answer. Data were tabulated with IBM SPSS Statistics version 19. Terms referred to emotions are grouped into twenty concepts with a higher presence in surveys. To select the values obtained as part of the implementation of Semantic Differential, a number expected of 'chi-square test (x2)' frequency calculated for classroom space is considered lower limit. All terms over the N expected a cut point, are included to prepare tables for surveys to find a relation between emotion and space. Statistic contrast (Chi-Square) represents significance level ≥ 0, indicator that frequencies appeared are not random. Then, the most representative terms depend on the variable under study: a) definition of textures and color of vertical surfaces is associated with emotions such as tranquility, attention, concentration, creativity; and, b) distribution of the equipment of the rooms, with emotions associated with happiness, distraction, creativity, freedom. The main findings are linked to the generation of classrooms according to diverse DBL team dynamics. Kansei engineering is the appropriate methodology to know the emotions that students want to feel in the classroom space.

Keywords: creativity, design-based learning, education spaces, emotions

Procedia PDF Downloads 135
13645 Temperature Profile Modelling in Flexible Pavement Design

Authors: Csaba Tóth, Éva Lakatos, László Pethő, Seoyoung Cho

Abstract:

The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling.

Keywords: temperature profile, flexible pavement modeling, finite element method, temperature modeling

Procedia PDF Downloads 251
13644 Implementation of Achterbahn-128 for Images Encryption and Decryption

Authors: Aissa Belmeguenai, Khaled Mansouri

Abstract:

In this work, an efficient implementation of Achterbahn-128 for images encryption and decryption was introduced. The implementation for this simulated project is written by MATLAB.7.5. At first two different original images are used for validate the proposed design. Then our developed program was used to transform the original images data into image digits file. Finally, we used our implemented program to encrypt and decrypt images data. Several tests are done for proving the design performance including visual tests and security analysis; we discuss the security analysis of the proposed image encryption scheme including some important ones like key sensitivity analysis, key space analysis, and statistical attacks.

Keywords: Achterbahn-128, stream cipher, image encryption, security analysis

Procedia PDF Downloads 517
13643 A Study on the Pulse Transformer Design Considering Inrush Current in the Welding Machine

Authors: In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

An Inverter type arc-welding machine is inclined to be designed for higher frequency in order to reduce the size and cost. The need of the core material reconsideration for high frequency pulse transformer is more important since core loss grows as the frequency rises. An arc welding machine’s pulse transformer is designed using an Area Product (Ap) method and is considered margin air gap core design in order to prevent the burning of the IGBT by the inrush current. Finally, the reduction of the core weight and the core size are compared according to different materials for 30kW inverter type arc welding machine.

Keywords: pulse transformers, welding, inrush current, air gaps

Procedia PDF Downloads 436
13642 Design of 100 kW Induction Generator for Wind Power Plant at Tamanjaya Village-Sukabumi

Authors: Andri Setiyoso, Agus Purwadi, Nanda Avianto Wicaksono

Abstract:

This paper present about induction generator design for 100kW power output capacity. Induction machine had been chosen because of the capability for energy conversion from electric energy to mechanical energy and vise-versa with operation on variable speed condition. Stator Controlled Induction Generator (SCIG) was applied as wind power plant in Desa Taman Jaya, Sukabumi, Indonesia. Generator was designed to generate power 100 kW with wind speed at 12 m/s and survival condition at speed 21 m/s.

Keywords: wind energy, induction generator, Stator Controlled Induction Generator (SCIG), variable speed generator

Procedia PDF Downloads 490