Search results for: RLS identification algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6329

Search results for: RLS identification algorithm

2309 Classification of Echo Signals Based on Deep Learning

Authors: Aisulu Tileukulova, Zhexebay Dauren

Abstract:

Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.

Keywords: radar, neural network, convolutional neural network, echo signals

Procedia PDF Downloads 353
2308 New Forms of Living and Compatibility with the Three Ages of Life - Definition of Fundamental Design Characteristics for Intergenerational Mansions

Authors: Alessandra Marino

Abstract:

This paper thoroughly investigates the design characteristics necessary for intergenerational living and evaluates their applicability within the Italian social panorama in order to identify a model that can serve as a reference for subsequent regulatory adjustments of a new building typology. The applied methodology involves the collaboration of people with various background and architects, all representing the three main ages of life - childhood or youth, adulthood, seniority - through questionnaires aimed at researching the peculiar characteristics that contemporary intergenerational housing should include; the questionnaires are then compared with each other in order to identify any recurring patterns by age group and/or influenced by the specialist knowledge on the subject of the architects compared to the rest of the user sample. The results indicate that among specialist users in the field of architecture, young students identify home automation as the key to the inclusion of the weakest groups within the building, adult architects believe that the identification of intergenerational/community services within the building is the cornerstone, and senior architects focus on widespread spatial accessibility. At the same time, the results among non-specialist users do not identify a significantly diversified model by age group but are generally in agreement in the importance of separation between private environments and collective spaces. The interpretation of the results obtained leads to a compositional study of a new building typology with the future objective of channeling the subsequent outcomes within the regulatory adjustments of the sector.

Keywords: intergenerational living, social sustainability, health, lifestyle, well-being

Procedia PDF Downloads 69
2307 Introducing a Practical Model for Instructional System Design Based on Determining of the knowledge Level of the Organization: Case Study of Isfahan Public Transportation Co.

Authors: Mojtaba Aghajari, Alireza Aghasi

Abstract:

The first challenge which the current research faced has been the identification or determination of the level of knowledge in Isfahan public transportation corporation, and the second challenge has been the recognition and choice of a proper approach for the instructional system design. Responding these two challenges will present an appropriate model of instructional system design. In order to respond the first challenge or question, Nonaka and Takeuchi KM model has been utilized due to its universality among the 26 models proposed so far. The statistical population of this research included 2200 people, among which 200 persons were chosen as the sample of the research by the use of Morgan’s method. The data gathering has been carried out by the means of a questionnaire based on Nonaka and Takeuchi KM model, analysis of which has been done by SPSS program. The output of this questionnaire, yielding the point of 1.96 (out of 5 points), revealed that the general condition of Isfahan public transportation corporation is weak concerning its being knowledge-centered. After placing this output on Jonassen’s continuum, it was revealed that the appropriate approach for instructional system design is the system (or behavioral) approach. Accordingly, different steps of the general model of ADDIE, which covers all of the ISO10015 standards, were adopted in the act of designing. Such process in Isfahan public transportation corporation was designed and divided into three main steps, including: instructional designing and planning, instructional course planning, determination of the evaluation and the effectiveness of the instructional courses.

Keywords: instructional system design, system approach, knowledge management, employees

Procedia PDF Downloads 326
2306 Pod and Wavelets Application for Aerodynamic Design Optimization

Authors: Bonchan Koo, Junhee Han, Dohyung Lee

Abstract:

The research attempts to evaluate the accuracy and efficiency of a design optimization procedure which combines wavelets-based solution algorithm and proper orthogonal decomposition (POD) database management technique. Aerodynamic design procedure calls for high fidelity computational fluid dynamic (CFD) simulations and the consideration of large number of flow conditions and design constraints. Even with significant computing power advancement, current level of integrated design process requires substantial computing time and resources. POD reduces the degree of freedom of full system through conducting singular value decomposition for various field simulations. For additional efficiency improvement of the procedure, adaptive wavelet technique is also being employed during POD training period. The proposed design procedure was applied to the optimization of wing aerodynamic performance. Throughout the research, it was confirmed that the POD/wavelets design procedure could significantly reduce the total design turnaround time and is also able to capture all detailed complex flow features as in full order analysis.

Keywords: POD (Proper Orthogonal Decomposition), wavelets, CFD, design optimization, ROM (Reduced Order Model)

Procedia PDF Downloads 467
2305 Flywheel Energy Storage Control Using SVPWM for Small Satellites Application

Authors: Noha El-Gohary, Thanaa El-Shater, A. A. Mahfouz, M. M. Sakr

Abstract:

Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system.

Keywords: small-satellites, flywheel energy storage system, space vector pulse width modulation, power conversion

Procedia PDF Downloads 400
2304 Optimal Maintenance Policy for a Partially Observable Two-Unit System

Authors: Leila Jafari, Viliam Makis, G. B. Akram Khaleghei

Abstract:

In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1, which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM, has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed and illustrated by a numerical example.

Keywords: condition-based maintenance, semi-Markov decision process, multivariate Bayesian control chart, partially observable system, two-unit system

Procedia PDF Downloads 459
2303 Work Ability Index (WAI) and Its Health-Related Detriments among Iranian Farmers Working in the Small Farm Enterprises

Authors: Akbar Rostamabadi, Adel Mazloumi, Abbas Rahimi Foroushani

Abstract:

This study aimed to determine the Work Ability Index (WAI) and examine the influence of health dimensions and demographic variables on the work ability of Iranian farmers working in small farm enterprises. A cross-sectional study was conducted among 294 male farmers. The WAI and SF-36 questionnaires were used to determine work ability and health status. The effect of demographics variables on the work ability index was investigated with the independent samples t-test and one-way ANOVA. Also, multiple linear regression analysis was used to test the association between the mean WAI score and the SF-36 scales. The mean WAI score was 35.1 (SD=10.6). One-way ANOVA revealed a significant relationship between the mean WAI and age. Multiple linear regression analysis showed that work ability was more influenced by physical scales of the health dimensions, such as physical function, role-physical, and general health, whereas a lower association was found for mental scales such as mental health. The average WAI was at a moderate work ability level for the sample population of farmers in this study. Based on the WAI guidelines, improvement of work ability and identification of factors affecting it should be considered a priority in interventional programs. Given the influence of health dimensions on WAI, any intervention program for preservation and promotion work ability among the studied farmers should be based on balancing and optimizing the physical and psychosocial work environments, with a special focus on reducing physical work load.

Keywords: farmers, SF-36, Work Ability Index (WAI), Iran

Procedia PDF Downloads 440
2302 Antihyperglycaemic and Antihyperlipidemic Activities of Pleiogynium timorense Seeds and Identification of Bioactive Compounds

Authors: Ataa A. Said, Elsayed A. Abuotabl, Gehan F. Abdel Raoof, Khaled Y. Mohamed

Abstract:

The aim of this study is to evaluate antihyperglycaemic and antihyperlipidemic activities of Pleiogynium timorense (DC.) Leenh (Anacardiaceae) seeds as well as to isolate and identify the bioactive compounds. Antihyperglycaemic effect was evaluated by measuring the effect of two dose levels (150 and 300 mg/kg) of 70% methanol extract of Pleiogynium timorense seeds on blood glucose level when administered 45 minutes before glucose loading. In addition, the effect of the plant extract on the lipid profile was determined by measuring serum total lipids (TL), total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). Furthermore, the bioactive compounds were isolated and identified by chromatographic and spectrometric methods.The results showed that the methanolic extract of the seeds significantly reduced the levels of blood glucose,(TL), (TC), (TG) and (LDL-C) but no significant effect on (HDL-C) comparing with control group. Furthermore, four phenolic compound were isolated which were identified as; catechin, gallic acid, para methoxy benzaldehyde and pyrogallol which were isolated for the first time from the plant. In addition sulphur -containing compound (sulpholane) was isolated for the first time from the plant and from the family. To our knowledge, this is the first study about antihyperglycaemicand antihyperlipidemic activities of the seeds of Pleiogyniumtimorense and its bioactive compounds. So, the methanolic extract of the seeds of Pleiogynium timorense could be a step towards the development of new antihyperglycaemic and antihyperlipidemic drugs.

Keywords: antihyperglycaemic, bioactive compounds, phenolic, Pleiogynium timorense, seeds

Procedia PDF Downloads 219
2301 Prevalence and Determinants of Depression among Orphans and Vulnerable Children in Child Care Homes in Nepal

Authors: Kumari Bandana Bhatt, Navin Bhatt

Abstract:

Background: Orphans and vulnerable children (OVC) are high risk of physical, mental, sexual and emotional abuse and face social stigma and discrimination which significantly increase the risk of mental and behavioral disorders such as anxiety, depression or emotional problems even they stay in well run child care homes. The objective of this study was to estimate the prevalence of depression and determine the determinants among OVC in child care homes in Nepal. Methods: An institutional-based analytical cross-sectional study was conducted in twenty orphanages of five districts of Nepal. Six hundred two children were recruited into the study. After the informed consent form obtaining, the guardian and assent were interviewed by a semi-structured questionnaire and Beck Depression Inventory-II (BDI-II). Logistic regression was used for detecting the association between variables at the significant level of =0.05. Results: The study revealed that 33.20% of OVC had depression. Among them 66.80% of children experienced minimal depression, 17.40% had mild depression, 11.30% had moderate depression 4.50% had severe depression. Sex, alcohol drinking, congenital problem, social support and bully were the main variables associated with depression among OVC of the child care homes in Nepal. Conclusion: Prevalence of depression was high among the orphans and vulnerable children living in child care homes especially among the female children in Nepal. Therefore, early identification and instituting of preventive measures of depression are essential to reduce this problem in this special group of children living in child care homes.

Keywords: Mental health, Depression, Orphans and vulnerable children, child care homes

Procedia PDF Downloads 149
2300 Computational Identification of Signalling Pathways in Protein Interaction Networks

Authors: Angela U. Makolo, Temitayo A. Olagunju

Abstract:

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.

Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways

Procedia PDF Downloads 543
2299 Detect Cable Force of Cable Stayed Bridge from Accelerometer Data of SHM as Real Time

Authors: Nguyen Lan, Le Tan Kien, Nguyen Pham Gia Bao

Abstract:

The cable-stayed bridge belongs to the combined system, in which the cables is a major strutual element. Cable-stayed bridges with large spans are often arranged with structural health monitoring systems to collect data for bridge health diagnosis. Cables tension monitoring is a structural monitoring content. It is common to measure cable tension by a direct force sensor or cable vibration accelerometer sensor, thereby inferring the indirect cable tension through the cable vibration frequency. To translate cable-stayed vibration acceleration data to real-time tension requires some necessary calculations and programming. This paper introduces the algorithm, labview program that converts cable-stayed vibration acceleration data to real-time tension. The research results are applied to the monitoring system of Tran Thi Ly cable-stayed bridge and Song Hieu cable-stayed bridge in Vietnam.

Keywords: cable-stayed bridge, cable fore, structural heath monitoring (SHM), fast fourie transformed (FFT), real time, vibrations

Procedia PDF Downloads 71
2298 Recreating Old Gardens, a Dynamic and Sustainable Design Pattern for Urban Green Spaces, Case Study: Persian Garden

Authors: Mina Sarabi, Dariush Sattarzadeh, Mitra Asadollahi Oula

Abstract:

In the old days, gardens reflect the identity and culture of each country. Persian garden in urban planning and architecture has a high position and it is a kind of paradise in Iranian opinion. But nowadays, the gardens were replaced with parks and urban open spaces. On the other hand, due to the industrial development of cities and increasing air pollution in urban environments, living in this spaces make problem for people. And improving ecological conditions will be felt more than ever. The purposes of this study are identification and reproduction of Persian garden pattern and adaptation of it with sustainability features in green spaces in contemporary cities and developing meaningful green spaces instead of designing aimless spaces in urban environment. The research method in this article is analytical and descriptive. Studying and collecting information about Iranian garden pattern is referring to library documents, articles and analysis case studies. The result reveals that Persian garden was the main factor the bond between man and nature. But in the last century, this relationship is in trouble. It has a significant impact in reducing the adverse effects of urban air pollution, noise and etc as well. Nowadays, recreated pattern of Iranian gardens in urban green spaces not only keep Iranian identity for future generations but also, using the principles of sustainability can play an important role in sustainable development and quality space of a city.

Keywords: green open spaces, nature, Persian garden, urban sustainability

Procedia PDF Downloads 249
2297 Tracking of Linarin from the Ethyl Acetate Fraction of Melinjo (Gnetum gnemon L.) Seeds Using Preparative High Performance Liquid Chromatography

Authors: Asep Sukohar, Ramadhan Triyandi, Muhammad Iqbal, Sahidin, Suharyani

Abstract:

Introduction: Resveratrol is a class of bioactive chemicals found in melinjo, which has a wide range of biological actions. The purpose of this study is to determine the linarin content of the melinjo fraksi by using preparative-high-performance liquid chromatography (prep-HPLC). Method: Extraction used the soxhletation method with 96% ethanol solvent. Fractionation used ethyl acetate and ethanol in a ratio of 1:1. Tracing of linarin compound used prep-HPLC with a mobile phase ratio of distilled water: methanol (55: 45, v/v). The presence of linarin was detected using a wavelength of 215 nm. Fourier Transform Infrared (FTIR) was used to identify the functional groups of compound. Result: The retention time required to elute the ethyl acetate fraction was 2.601 minutes. Compound separation identification using Fourier Transform Infrared Spectroscopy - Quest Attenuated Total Reflectance (FTIR - QATR) has a similarity value range with standards from 0 to 1000. The elution results of the ethyl acetate fraction have similar values with the standard compounds linarin (668), resveratrol (578), and catechin (455). Conclusion: Tracing for active compound in the ethyl acetate fraction of Gnetum Gnemon L. using prep-HPLC showed a strong suspicion of the presence of linarin compound.

Keywords: Gnetum gnemon L., linarin, prep-HPLC, fraction ethyl acetate

Procedia PDF Downloads 117
2296 Isolation, Identification and Characterization of the Bacteria and Yeast from the Fermented Stevia Extract

Authors: Asato Takaishi, Masashi Nasuhara, Ayuko Itsuki, Kenichi Suga

Abstract:

Stevia (Stevia rebaudiana Bertoni) is a composite plant native to Paraguay. Stevia sweetener is derived from a hot water extract of Stevia (Stevia extract), which has some effects such as histamine decomposition, antioxidative effect, and blood sugar level-lowering function. The steviol glycosides in the Stevia extract are considered to contribute to these effects. In addition, these effects increase by the fermentation. However, it takes a long time for fermentation of Stevia extract and the fermentation liquid sometimes decays during the fermentation process because natural fermentation method is used. The aim of this study is to perform the fermentation of Stevia extract in a shorter period, and to produce the fermentation liquid in stable quality. From the natural fermentation liquid of Stevia extract, the four strains of useful (good taste) microorganisms were isolated using dilution plate count method and some properties were determined. The base sequences of 16S rDNA and 28S rDNA revealed three bacteria (two Lactobacillus sp. and Microbacterium sp.) and one yeast (Issatchenkia sp.). This result has corresponded that several kinds of lactic bacterium such as Lactobacillus pentosus and Lactobacillus buchneri were isolated from Stevia leaves. Liquid chromatography/mass spectrometory (LC/MS/MS) and High-Performance Liquid Chromatography (HPLC) were used to determine the contents of steviol glycosides and neutral sugars. When these strains were cultured in the sterile Stevia extract, the steviol and stevioside were increased in the fermented Stevia extract. So, it was suggested that the rebaudioside A and the mixture of steviol glycosides in the Stevia extract were decomposed into stevioside and steviol by microbial metabolism.

Keywords: fermentation, lactobacillus, Stevia, steviol glycosides, yeast

Procedia PDF Downloads 564
2295 Metrics and Methods for Improving Resilience in Agribusiness Supply Chains

Authors: Golnar Behzadi, Michael O'Sullivan, Tava Olsen, Abraham Zhang

Abstract:

By definition, increasing supply chain resilience improves the supply chain’s ability to return to normal, or to an even more desirable situation, quickly and efficiently after being hit by a disruption. This is especially critical in agribusiness supply chains where the products are perishable and have a short life-cycle. In this paper, we propose a resilience metric to capture and improve the recovery process in terms of both performance and time, of an agribusiness supply chain following either supply or demand-side disruption. We build a model that determines optimal supply chain recovery planning decisions and selects the best resilient strategies that minimize the loss of profit during the recovery time window. The model is formulated as a two-stage stochastic mixed-integer linear programming problem and solved with a branch-and-cut algorithm. The results show that the optimal recovery schedule is highly dependent on the duration of the time-window allowed for recovery. In addition, the profit loss during recovery is reduced by utilizing the proposed resilient actions.

Keywords: agribusiness supply chain, recovery, resilience metric, risk management

Procedia PDF Downloads 397
2294 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip

Authors: Sina Saadati

Abstract:

Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.

Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence

Procedia PDF Downloads 103
2293 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 150
2292 Durian Marker Kit for Durian (Durio zibethinus Murr.) Identity

Authors: Emma K. Sales

Abstract:

Durian is the flagship fruit of Mindanao and there is an abundance of several cultivars with many confusing identities/ names. The project was conducted to develop procedure for reliable and rapid detection and sorting of durian planting materials. Moreover, it is also aimed to establish specific genetic or DNA markers for routine testing and authentication of durian cultivars in question. The project developed molecular procedures for routine testing. SSR primers were also screened and identified for their utility in discriminating durian cultivars collected. Results of the study showed the following accomplishments; 1. Twenty (29) SSR primers were selected and identified based on their ability to discriminate durian cultivars, 2. Optimized and established standard procedure for identification and authentication of Durian cultivars 3. Genetic profile of durian is now available at Biotech Unit. Our results demonstrate the relevance of using molecular techniques in evaluating and identifying durian clones. The most polymorphic primers tested in this study could be useful tools for detecting variation even at the early stage of the plant especially for commercial purposes. The process developed combines the efficiency of the microsatellites development process with the optimization of non-radioactive detection process resulting in a user-friendly protocol that can be performed in two (2) weeks and easily incorporated into laboratories about to start microsatellite development projects. This can be of great importance to extend microsatellite analyses to other crop species where minimal genetic information is currently available. With this, the University can now be a service laboratory for routine testing and authentication of durian clones.

Keywords: DNA, SSR analysis, genotype, genetic diversity, cultivars

Procedia PDF Downloads 454
2291 Lowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code

Authors: Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare

Abstract:

Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-error-ratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to lower the error floors of LDPC code. The outer code in the proposed concatenation is the LDPC, and the inner code is a high rate array code. This approach applies an interactive hybrid process between the BCJR decoding for the array code and the SPA for the LDPC code together with bit-pinning and bit-flipping techniques. Margulis code of size (2640, 1320) has been used for the simulation and it has been shown that the proposed concatenation and decoding scheme can considerably improve the error floor performance with minimal rate loss.

Keywords: concatenated coding, low–density parity–check codes, array code, error floors

Procedia PDF Downloads 356
2290 Relation between Physical and Mechanical Properties of Concrete Paving Stones Using Neuro-Fuzzy Approach

Authors: Erion Luga, Aksel Seitllari, Kemal Pervanqe

Abstract:

This study investigates the relation between physical and mechanical properties of concrete paving stones using neuro-fuzzy approach. For this purpose 200 samples of concrete paving stones were selected randomly from different sources. The first phase included the determination of physical properties of the samples such as water absorption capacity, porosity and unit weight. After that the indirect tensile strength test and compressive strength test of the samples were performed. İn the second phase, adaptive neuro-fuzzy approach was employed to simulate nonlinear mapping between the above mentioned physical properties and mechanical properties of paving stones. The neuro-fuzzy models uses Sugeno type fuzzy inference system. The models parameters were adapted using hybrid learning algorithm and input space was fuzzyfied by considering grid partitioning. It is concluded based on the observed data and the estimated data through ANFIS models that neuro-fuzzy system exhibits a satisfactory performance.

Keywords: paving stones, physical properties, mechanical properties, ANFIS

Procedia PDF Downloads 342
2289 Key Frame Based Video Summarization via Dependency Optimization

Authors: Janya Sainui

Abstract:

As a rapid growth of digital videos and data communications, video summarization that provides a shorter version of the video for fast video browsing and retrieval is necessary. Key frame extraction is one of the mechanisms to generate video summary. In general, the extracted key frames should both represent the entire video content and contain minimum redundancy. However, most of the existing approaches heuristically select key frames; hence, the selected key frames may not be the most different frames and/or not cover the entire content of a video. In this paper, we propose a method of video summarization which provides the reasonable objective functions for selecting key frames. In particular, we apply a statistical dependency measure called quadratic mutual informaion as our objective functions for maximizing the coverage of the entire video content as well as minimizing the redundancy among selected key frames. The proposed key frame extraction algorithm finds key frames as an optimization problem. Through experiments, we demonstrate the success of the proposed video summarization approach that produces video summary with better coverage of the entire video content while less redundancy among key frames comparing to the state-of-the-art approaches.

Keywords: video summarization, key frame extraction, dependency measure, quadratic mutual information

Procedia PDF Downloads 266
2288 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 173
2287 Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm

Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine

Abstract:

In this paper, numerical simulations have been carried out to study the performances of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h₀, pitch amplitude θ₀ and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The results reveal an average power coefficient and efficiency of 0.78 and 0.338 with an inexpensive low-fidelity model and a total relative error of 4.1% versus the simulation. The performances of the simulated optimum RBF-NSGA-II have been improved by 1.2% compared with the validated model.

Keywords: numerical simulation, flapping wing, energy extraction, power coefficient, efficiency, RBF, NSGA-II

Procedia PDF Downloads 43
2286 Vortices Structure in Internal Laminar and Turbulent Flows

Authors: Farid Gaci, Zoubir Nemouchi

Abstract:

A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.

Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent

Procedia PDF Downloads 336
2285 Isolation, Screening and Identification of Frog Cutaneous Bacteria for Anti-Batrachochytrium dendrobatidis Activity

Authors: Adria Rae Abigail R. Eda, Arvin C. Diesmos, Vance T. Vredenburg, Merab A. Chan

Abstract:

Mitigating strategies using symbiotic cutaneous bacteria is one of the major concerns in the conservation of amphibian population. Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis associated with mass mortality and amphibian extinctions worldwide. In the Philippines, there is a lack of study on the cutaneous bacteria of Philippine amphibians that may have beneficial effects to ward off the deadly fungal infection. In this study, cutaneous bacteria from frogs were isolated and examined for anti-B. dendrobatidis activity. Eight species of frogs were collected at Mt. Palay-palay Mataas na Gulod National Park in Cavite, a site positive for the presence of B. dendrobatidis. Bacteria were isolated from the skin of frogs by swabbing the surfaces of the body and inoculated in Reasoner´s 2A (R2A) agar. Isolated bacteria were tested for potential inhibitory properties against B. dendrobatidis through zoospore inhibition assay. Results showed that frog cutaneous bacteria significantly inhibited the growth of B. dendrobatidis in vitro. By means of 16S rRNA gene primers, the anti-B. dendrobatidis bacteria were identified to be Enterobacter sp., Alcaligenes faecalis and Pseudomonas sp. Cutaneous bacteria namely Enterobacter sp. (isolates PLd33 and PCv4) and Pseudomonas (isolate PLd31) remarkably cleared the growth of B. dendrobatidis zoospore in 1% tryptone agar. Therefore, frog cutaneous bacteria inhibited B. dendrobatidis in vitro and could possibly contribute to the immunity and defense of frogs against the lethal chytridiomycosis.

Keywords: Batrachochytrium dendrobatidis, cutaneous bacteria, frogs, zoospore inhibition assay

Procedia PDF Downloads 454
2284 Lipidomic Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Salvador Sanchez Vinces, Caroline F. A. Gatinoni, Vitor P. Iordanu, Carlos A. R. Martinez

Abstract:

Lipidomics methods are widely used in the identification and validation of disease-specific biomarkers and therapy response evaluation. The present study aimed to identify a panel of potential lipid biomarkers to evaluate response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma (RAC). Liquid chromatography–mass spectrometry (LC-MS)-based untargeted lipidomic was used to profile human serum samples from patients with clinical stage T2 or T3 resectable RAC, after and before chemoradiotherapy treatment. A total of 28 blood plasma samples were collected from 14 patients with RAC who recruited at the São Francisco University Hospital (HUSF/USF). The study was approved by the ethics committee (CAAE 14958819.8.0000.5514). Univariate and multivariate statistical analyses were applied to explore dysregulated metabolic pathways using untargeted lipidic profiling and data mining approaches. A total of 36 statistically significant altered lipids were identified and the subsequent partial least-squares discriminant analysis model was both cross validated (R2, Q2) and permutated. Lisophosphatidyl-choline (LPC) plasmalogens containing palmitoleic and oleic acids, with high variable importance in projection score, showed a tendency to be lower after completion of chemoradiotherapy. Chemoradiotherapy seems to change plasmanyl-phospholipids levels, indicating that these lipids play an important role in the RAC pathogenesis.

Keywords: lipidomics, neoadjuvant chemoradiotherapy, plasmalogens, rectal adenocarcinoma

Procedia PDF Downloads 131
2283 Hierarchical Cluster Analysis of Raw Milk Samples Obtained from Organic and Conventional Dairy Farming in Autonomous Province of Vojvodina, Serbia

Authors: Lidija Jevrić, Denis Kučević, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Milica Karadžić

Abstract:

In the present study, the Hierarchical Cluster Analysis (HCA) was applied in order to determine the differences between the milk samples originating from a conventional dairy farm (CF) and an organic dairy farm (OF) in AP Vojvodina, Republic of Serbia. The clustering was based on the basis of the average values of saturated fatty acids (SFA) content and unsaturated fatty acids (UFA) content obtained for every season. Therefore, the HCA included the annual SFA and UFA content values. The clustering procedure was carried out on the basis of Euclidean distances and Single linkage algorithm. The obtained dendrograms indicated that the clustering of UFA in OF was much more uniform compared to clustering of UFA in CF. In OF, spring stands out from the other months of the year. The same case can be noticed for CF, where winter is separated from the other months. The results could be expected because the composition of fatty acids content is greatly influenced by the season and nutrition of dairy cows during the year.

Keywords: chemometrics, clustering, food engineering, milk quality

Procedia PDF Downloads 281
2282 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 350
2281 Application of Biosensors in Forensic Analysis

Authors: Shirin jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Biosensors in forensic analysis are ideal biological tools that can be used for rapid and sensitive initial screening and testing to detect of suspicious components like biological and chemical agent in crime scenes. The wide use of different biomolecules such as proteins, nucleic acids, microorganisms, antibodies and enzymes makes it possible. These biosensors have great advantages such as rapidity, little sample manipulation and high sensitivity, also Because of their stability, specificity and low cost they have become a very important tool to Forensic analysis and detection of crime. In crime scenes different substances such as rape samples, Semen, saliva fingerprints and blood samples, act as a detecting elements for biosensors. On the other hand, successful fluid recovery via biosensor has the propensity to yield a highly valuable source of genetic material, which is important in finding the suspect. Although current biological fluid testing techniques are impaired for identification of body fluids. But these methods have disadvantages. For example if they are to be used simultaneously, Often give false positive result. These limitations can negatively result the output of a case through missed or misinterpreted evidence. The use of biosensor enable criminal researchers the highly sensitive and non-destructive detection of biological fluid through interaction with several fluid-endogenous and other biological and chemical contamination at the crime scene. For this reason, using of the biosensors for detecting the biological fluid found at the crime scenes which play an important role in identifying the suspect and solving the criminal.

Keywords: biosensors, forensic analysis, biological fluid, crime detection

Procedia PDF Downloads 1117
2280 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 171