Search results for: Poisson model
13010 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method
Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty
Procedia PDF Downloads 2213009 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos
Authors: Hatthaphone Silimanotham, Michael Henry
Abstract:
The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling
Procedia PDF Downloads 16413008 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals
Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar
Abstract:
Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks
Procedia PDF Downloads 19313007 Variational Explanation Generator: Generating Explanation for Natural Language Inference Using Variational Auto-Encoder
Authors: Zhen Cheng, Xinyu Dai, Shujian Huang, Jiajun Chen
Abstract:
Recently, explanatory natural language inference has attracted much attention for the interpretability of logic relationship prediction, which is also known as explanation generation for Natural Language Inference (NLI). Existing explanation generators based on discriminative Encoder-Decoder architecture have achieved noticeable results. However, we find that these discriminative generators usually generate explanations with correct evidence but incorrect logic semantic. It is due to that logic information is implicitly encoded in the premise-hypothesis pairs and difficult to model. Actually, logic information identically exists between premise-hypothesis pair and explanation. And it is easy to extract logic information that is explicitly contained in the target explanation. Hence we assume that there exists a latent space of logic information while generating explanations. Specifically, we propose a generative model called Variational Explanation Generator (VariationalEG) with a latent variable to model this space. Training with the guide of explicit logic information in target explanations, latent variable in VariationalEG could capture the implicit logic information in premise-hypothesis pairs effectively. Additionally, to tackle the problem of posterior collapse while training VariaztionalEG, we propose a simple yet effective approach called Logic Supervision on the latent variable to force it to encode logic information. Experiments on explanation generation benchmark—explanation-Stanford Natural Language Inference (e-SNLI) demonstrate that the proposed VariationalEG achieves significant improvement compared to previous studies and yields a state-of-the-art result. Furthermore, we perform the analysis of generated explanations to demonstrate the effect of the latent variable.Keywords: natural language inference, explanation generation, variational auto-encoder, generative model
Procedia PDF Downloads 15313006 Bridging the Gap through New Media Technology Acceptance: Exploring Chinese Family Business Culture
Authors: Farzana Sharmin, Mohammad Tipu Sultan
Abstract:
Emerging new media technology such as social media and social networking sites have changed the family business dynamics in Eastern Asia. The family business trends in China has been developed at an exponential rate towards technology. In the last two decades, many of this family business has succeeded in becoming major players in the Chinese and world economy. But there are a very few availabilities of literature on Chinese context regarding social media acceptance in terms of the family business. Therefore, this study has tried to cover the gap between culture and new media technology to understand the attitude of Chinese young entrepreneurs’ towards the family business. This paper focused on two cultural dimensions (collectivism, long-term orientation), which are adopted from Greet Hofstede’s. Additionally perceived usefulness and ease of use adopted from the Technology Acceptance Model (TAM) to explore the actual behavior of technology acceptance for the family business. A quantitative survey method (n=275) used to collect data Chinese family business owners' in Shanghai. The inferential statistical analysis was applied to extract trait factors, and verification of the model, respectively. The research results found that using social media for family business promotion has highly influenced by cultural values (collectivism and long-term orientation). The theoretical contribution of this research may also assist policymakers and practitioners of other developing countries to advertise and promote the family business through social media.Keywords: China, cultural dimensions, family business, technology acceptance model, TAM
Procedia PDF Downloads 15513005 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 14613004 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 13113003 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network
Authors: Hossain A., Chowdhury S. I.
Abstract:
Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera
Procedia PDF Downloads 10813002 CFD Simulation of Surge Wave Generated by Flow-Like Landslides
Authors: Liu-Chao Qiu
Abstract:
The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method.Keywords: flow-like landslide, surge wave, VOF, non-Newtonian fluids, multi-phase flows, free surface flow
Procedia PDF Downloads 42113001 Synthesis and Characterization of New Polyesters Based on Diarylidene-1-Methyl-4-Piperidone
Authors: Tareg M. Elsunaki, Suleiman A. Arafa, Mohamed A. Abd-Alla
Abstract:
New interesting thermal stable polyesters containing 1-methyl-4-piperidone moiety in the main chain have been synthesized. These polyesters were synthesized by interfacial polycondensation technique of 3,5-bis(4-hydroxybenzylidene)-1-methyl-4-piperidone (I) and 3,5-bis(4-hydroxy-3-methoxy benzyli-dene)-1-methyl-4-piperidone (II) with terphthaloyl, isophthaloyl, 4,4'-diphenic, adipoyl and sebacoyl dichlorides. The yield and the values of the reduced viscosity of the produced polyesters were found to be affected by the type of an organic phase. In order to characterize these polymers, the necessary model compounds (A), (B) were prepared from (I), (II) respectively and benzoyl chloride. The structure of monomers (I), (II), model compounds and resulting polyesters were confirmed by IR, elemental analysis and 1HNMR spectroscopy. The various characteristic of the resulting polymers including solubility, thermal properties, viscosity and X-ray analysis were also studied.Keywords: synthesis, characterization, new polyesters, chemistry
Procedia PDF Downloads 46313000 Design and Application of a Model Eliciting Activity with Civil Engineering Students on Binomial Distribution to Solve a Decision Problem Based on Samples Data Involving Aspects of Randomness and Proportionality
Authors: Martha E. Aguiar-Barrera, Humberto Gutierrez-Pulido, Veronica Vargas-Alejo
Abstract:
Identifying and modeling random phenomena is a fundamental cognitive process to understand and transform reality. Recognizing situations governed by chance and giving them a scientific interpretation, without being carried away by beliefs or intuitions, is a basic training for citizens. Hence the importance of generating teaching-learning processes, supported using technology, paying attention to model creation rather than only executing mathematical calculations. In order to develop the student's knowledge about basic probability distributions and decision making; in this work a model eliciting activity (MEA) is reported. The intention was applying the Model and Modeling Perspective to design an activity related to civil engineering that would be understandable for students, while involving them in its solution. Furthermore, the activity should imply a decision-making challenge based on sample data, and the use of the computer should be considered. The activity was designed considering the six design principles for MEA proposed by Lesh and collaborators. These are model construction, reality, self-evaluation, model documentation, shareable and reusable, and prototype. The application and refinement of the activity was carried out during three school cycles in the Probability and Statistics class for Civil Engineering students at the University of Guadalajara. The analysis of the way in which the students sought to solve the activity was made using audio and video recordings, as well as with the individual and team reports of the students. The information obtained was categorized according to the activity phase (individual or team) and the category of analysis (sample, linearity, probability, distributions, mechanization, and decision-making). With the results obtained through the MEA, four obstacles have been identified to understand and apply the binomial distribution: the first one was the resistance of the student to move from the linear to the probabilistic model; the second one, the difficulty of visualizing (infering) the behavior of the population through the sample data; the third one, viewing the sample as an isolated event and not as part of a random process that must be viewed in the context of a probability distribution; and the fourth one, the difficulty of decision-making with the support of probabilistic calculations. These obstacles have also been identified in literature on the teaching of probability and statistics. Recognizing these concepts as obstacles to understanding probability distributions, and that these do not change after an intervention, allows for the modification of these interventions and the MEA. In such a way, the students may identify themselves the erroneous solutions when they carrying out the MEA. The MEA also showed to be democratic since several students who had little participation and low grades in the first units, improved their participation. Regarding the use of the computer, the RStudio software was useful in several tasks, for example in such as plotting the probability distributions and to exploring different sample sizes. In conclusion, with the models created to solve the MEA, the Civil Engineering students improved their probabilistic knowledge and understanding of fundamental concepts such as sample, population, and probability distribution.Keywords: linear model, models and modeling, probability, randomness, sample
Procedia PDF Downloads 12112999 Factors Affecting Customer Loyalty in the Independent Surveyor Service Industry in Indonesia
Authors: Sufrin Hannan, Budi Suharjo, Rita Nurmalina, Kirbrandoko
Abstract:
The challenge for independent surveyor service companies now is growing with increasing uncertainty in business. Protection from the government for domestic independent surveyor industry from competitor attack, such as entering the global surveyors to Indonesia also no longer exists. Therefore, building customer loyalty becomes very important to create a long-term relationship between an independent surveyor with its customers. This study aims to develop a model that can be used to build customer loyalty by looking at various factors that determine customer loyalty, especially on independent surveyors for coal inspection in Indonesia. The development of this model uses the relationship marketing approach. Testing of the hypothesis is done by testing the variables that determine customer loyalty, either directly or indirectly, which amounted to 10 variables. The data were collected from 200 questionnaires filled by independent surveyor company decision makers from 51 exporting companies and coal trading companies in Indonesia and analyzed using Structural Equation Model (SEM). The results show that customer loyalty of independent surveyors is influenced by customer satisfaction, trust, switching-barrier, and relationship-bond. Research on customer satisfaction shows that customer satisfaction is influenced by the perceived quality and perceived value, while perceived quality is influenced by reliability, assurance, responsiveness, and empathy.Keywords: relationship marketing, customer loyalty, customer satisfaction, switching barriers, relationship bonds
Procedia PDF Downloads 17212998 Simulation of Stress in Graphite Anode of Lithium-Ion Battery: Intra and Inter-Particle
Authors: Wenxin Mei, Jinhua Sun, Qingsong Wang
Abstract:
The volume expansion of lithium-ion batteries is mainly induced by intercalation induced stress within the negative electrode, resulting in capacity degradation and even battery failure. Stress generation due to lithium intercalation into graphite particles is investigated based on an electrochemical-mechanical model in this work. The two-dimensional model presented is fully coupled, inclusive of the impacts of intercalation-induced stress, stress-induced intercalation, to evaluate the lithium concentration, stress generation, and displacement intra and inter-particle. The results show that the distribution of lithium concentration and stress exhibits an analogous pattern, which reflects the relation between lithium diffusion and stress. The results of inter-particle stress indicate that larger Von-Mises stress is displayed where the two particles are in contact with each other, and deformation at the edge of particles is also observed, predicting fracture. Additionally, the maximum inter-particle stress at the end of lithium intercalation is nearly ten times the intraparticle stress. And the maximum inter-particle displacement is increased by 24% compared to the single-particle. Finally, the effect of graphite particle arrangement on inter-particle stress is studied. It is found that inter-particle stress with tighter arrangement exhibits lower stress. This work can provide guidance for predicting the intra and inter-particle stress to take measures to avoid cracking of electrode material.Keywords: electrochemical-mechanical model, graphite particle, lithium concentration, lithium ion battery, stress
Procedia PDF Downloads 20312997 Determinants of Budget Performance in an Oil-Based Economy
Authors: Adeola Adenikinju, Olusanya E. Olubusoye, Lateef O. Akinpelu, Dilinna L. Nwobi
Abstract:
Since the enactment of the Fiscal Responsibility Act (2007), the Federal Government of Nigeria (FGN) has made public its fiscal budget and the subsequent implementation report. A critical review of these documents shows significant variations in the five macroeconomic variables which are inputs in each Presidential budget; oil Production target (mbpd), oil price ($), Foreign exchange rate(N/$), and Gross Domestic Product growth rate (%) and inflation rate (%). This results in underperformance of the Federal budget expected output in terms of non-oil and oil revenue aggregates. This paper evaluates first the existing variance between budgeted and actuals, then the relationship and causality between the determinants of Federal fiscal budget assumptions, and finally the determinants of FGN’s Gross Oil Revenue. The paper employed the use of descriptive statistics, the Autoregressive distributed lag (ARDL) model, and a Profit oil probabilistic model to achieve these objectives. This model permits for both the static and dynamic effect(s) of the independent variable(s) on the dependent variable, unlike a static model that accounts for static or fixed effect(s) only. It offers a technique for checking the existence of a long-run relationship between variables, unlike other tests of cointegration, such as the Engle-Granger and Johansen tests, which consider only non-stationary series that are integrated of the same order. Finally, even with small sample size, the ARDL model is known to generate a valid result, for it is the dependent variable and is the explanatory variable. The results showed that there is a long-run relationship between oil revenue as a proxy for budget performance and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a short-run relationship between oil revenue and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a long-run relationship between non-oil revenue and its determinants; inflation rate, GDP growth rate, and foreign exchange rate. The grangers’ causality test results show that there is a mono-directional causality between oil revenue and its determinants. The Federal budget assumptions only explain 68% of oil revenue and 62% of non-oil revenue. There is a mono-directional causality between non-oil revenue and its determinants. The Profit oil Model describes production sharing contracts, joint ventures, and modified carrying arrangements as the greatest contributors to FGN’s gross oil revenue. This provides empirical justification for the selected macroeconomic variables used in the Federal budget design and performance evaluation. The research recommends other variables, debt and money supply, be included in the Federal budget design to explain the Federal budget revenue performance further.Keywords: ARDL, budget performance, oil price, oil quantity, oil revenue
Procedia PDF Downloads 18012996 Modeling of CREB Pathway Induced Gene Induction: From Stimulation to Repression
Authors: K. Julia Rose Mary, Victor Arokia Doss
Abstract:
Electrical and chemical stimulations up-regulate phosphorylaion of CREB, a transcriptional factor that induces its target gene production for memory consolidation and Late Long-Term Potentiation (L-LTP) in CA1 region of the hippocampus. L-LTP requires complex interactions among second-messenger signaling cascade molecules such as cAMP, CAMKII, CAMKIV, MAPK, RSK, PKA, all of which converge to phosphorylate CREB which along with CBP induces the transcription of target genes involved in memory consolidation. A differential equation based model for L-LTP representing stimulus-mediated activation of downstream mediators which confirms the steep, supralinear stimulus-response effects of activation and inhibition was used. The same was extended to accommodate the inhibitory effect of the Inducible cAMP Early Repressor (ICER). ICER is the natural inducible CREB antagonist represses CRE-Mediated gene transcription involved in long-term plasticity for learning and memory. After verifying the sensitivity and robustness of the model, we had simulated it with various empirical levels of repressor concentration to analyse their effect on the gene induction. The model appears to predict the regulatory dynamics of repression on the L-LTP and agrees with the experimental values. The flux data obtained in the simulations demonstrate various aspects of equilibrium between the gene induction and repression.Keywords: CREB, L-LTP, mathematical modeling, simulation
Procedia PDF Downloads 29612995 Failure Load Investigations in Adhesively Bonded Single-Strap Joints of Dissimilar Materials Using Cohesive Zone Model
Authors: B. Paygozar, S.A. Dizaji
Abstract:
Adhesive bonding is a highly valued type of fastening mechanical parts in complex structures, where joining some simple components is always needed. This method is of several merits, such as uniform stress distribution, appropriate bonding strength, and fatigue performance, and lightness, thereby outweighing other sorts of bonding methods. This study is to investigate the failure load of adhesive single-strap joints, including adherends of different sizes and materials. This kind of adhesive joint is very practical in different industries, especially when repairing the existing joints or attaching substrates of dissimilar materials. In this research, experimentally validated numerical analyses carried out in a commercial finite element package, ABAQUS, are utilized to extract the failure loads of the joints, based on the cohesive zone model. In addition, the stress analyses of the substrates are performed in order to acquire the effects of lowering the thickness of the substrates on the stress distribution inside them to avoid designs suffering from the necking or failure of the adherends. It was found out that this method of bonding is really feasible in joining dissimilar materials which can be utilized in a variety of applications. Moreover, the stress analyses indicated the minimum thickness for the adherends so as to avoid the failure of them.Keywords: cohesive zone model, dissimilar materials, failure load, single strap joint
Procedia PDF Downloads 12712994 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier
Authors: Girts Zageris, Vadims Geza, Andris Jakovics
Abstract:
Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling
Procedia PDF Downloads 28712993 Application of Principal Component Analysis and Ordered Logit Model in Diabetic Kidney Disease Progression in People with Type 2 Diabetes
Authors: Mequanent Wale Mekonen, Edoardo Otranto, Angela Alibrandi
Abstract:
Diabetic kidney disease is one of the main microvascular complications caused by diabetes. Several clinical and biochemical variables are reported to be associated with diabetic kidney disease in people with type 2 diabetes. However, their interrelations could distort the effect estimation of these variables for the disease's progression. The objective of the study is to determine how the biochemical and clinical variables in people with type 2 diabetes are interrelated with each other and their effects on kidney disease progression through advanced statistical methods. First, principal component analysis was used to explore how the biochemical and clinical variables intercorrelate with each other, which helped us reduce a set of correlated biochemical variables to a smaller number of uncorrelated variables. Then, ordered logit regression models (cumulative, stage, and adjacent) were employed to assess the effect of biochemical and clinical variables on the order-level response variable (progression of kidney function) by considering the proportionality assumption for more robust effect estimation. This retrospective cross-sectional study retrieved data from a type 2 diabetic cohort in a polyclinic hospital at the University of Messina, Italy. The principal component analysis yielded three uncorrelated components. These are principal component 1, with negative loading of glycosylated haemoglobin, glycemia, and creatinine; principal component 2, with negative loading of total cholesterol and low-density lipoprotein; and principal component 3, with negative loading of high-density lipoprotein and a positive load of triglycerides. The ordered logit models (cumulative, stage, and adjacent) showed that the first component (glycosylated haemoglobin, glycemia, and creatinine) had a significant effect on the progression of kidney disease. For instance, the cumulative odds model indicated that the first principal component (linear combination of glycosylated haemoglobin, glycemia, and creatinine) had a strong and significant effect on the progression of kidney disease, with an effect or odds ratio of 0.423 (P value = 0.000). However, this effect was inconsistent across levels of kidney disease because the first principal component did not meet the proportionality assumption. To address the proportionality problem and provide robust effect estimates, alternative ordered logit models, such as the partial cumulative odds model, the partial adjacent category model, and the partial continuation ratio model, were used. These models suggested that clinical variables such as age, sex, body mass index, medication (metformin), and biochemical variables such as glycosylated haemoglobin, glycemia, and creatinine have a significant effect on the progression of kidney disease.Keywords: diabetic kidney disease, ordered logit model, principal component analysis, type 2 diabetes
Procedia PDF Downloads 4512992 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon
Authors: Nadine Yehya, Chantal Maatouk
Abstract:
Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach
Procedia PDF Downloads 22412991 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance
Authors: Yash Bingi, Yiqiao Yin
Abstract:
Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations
Procedia PDF Downloads 14612990 Hardware Co-Simulation Based Based Direct Torque Control for Induction Motor Drive
Authors: Hanan Mikhael Dawood, Haider Salim, Jafar Al-Wash
Abstract:
This paper presents Proportional-Integral (PI) controller to improve the system performance which gives better torque and flux response. In addition, it reduces the undesirable torque ripple. The conventional DTC controller approach for induction machines, based on an improved torque and stator flux estimator, is implemented using Xilinx System Generator (XSG) for MATLAB/Simulink environment through Xilinx blocksets. The design was achieved in VHDL which is based on a MATLAB/Simulink simulation model. The hardware in the loop results are obtained considering the implementation of the proposed model on the Xilinx NEXYS2 Spartan 3E1200 FG320 Kit.Keywords: induction motor, Direct Torque Control (DTC), Xilinx FPGA, motor drive
Procedia PDF Downloads 62412989 Human Behavior Modeling in Video Surveillance of Conference Halls
Authors: Nour Charara, Hussein Charara, Omar Abou Khaled, Hani Abdallah, Elena Mugellini
Abstract:
In this paper, we present a human behavior modeling approach in videos scenes. This approach is used to model the normal behaviors in the conference halls. We exploited the Probabilistic Latent Semantic Analysis technique (PLSA), using the 'Bag-of-Terms' paradigm, as a tool for exploring video data to learn the model by grouping similar activities. Our term vocabulary consists of 3D spatio-temporal patch groups assigned by the direction of motion. Our video representation ensures the spatial information, the object trajectory, and the motion. The main importance of this approach is that it can be adapted to detect abnormal behaviors in order to ensure and enhance human security.Keywords: activity modeling, clustering, PLSA, video representation
Procedia PDF Downloads 39712988 Assessing Transition to Renewable Energy for Transportation in Indonesia through Drop-in Biofuel Utilization
Authors: Maslan Lamria, Ralph E. H. Sims, Tatang H. Soerawidjaja
Abstract:
In increasing its self-sufficiency on transportation fuel, Indonesia is currently developing commercial production and use of drop-in biofuel (DBF) from vegetable oil. To maximize the level of success, it is necessary to get insights on how the implementation would develop as well as any important factors. This study assessed the dynamics of transition from existing fossil fuel system to a renewable fuel system, which involves the transition from existing biodiesel to projected DBF. A systems dynamics approach was applied and a model developed to simulate the dynamics of liquid biofuel transition. The use of palm oil feedstock was taken as a case study to assess the projected DBF implementation by 2045. The set of model indicators include liquid fuel self-sufficiency, liquid biofuel share, foreign exchange savings and green-house gas emissions reduction. The model outputs showed that supports on DBF investment and use play an important role in the transition progress. Given assumptions which include application of a maximum level of supports over time, liquid fuel self-sufficiency would be still unfulfilled in which palm biofuel contribution is 0.2. Thus, other types of feedstock such as algae and oil feedstock from marginal lands need to be developed synergically. Regarding support on DBF use, this study recommended that removal of fossil subsidy would be necessary prior to applying a carbon tax policy effectively.Keywords: biofuel, drop-in biofuel, energy transition, liquid fuel
Procedia PDF Downloads 15112987 Measuring the Unmeasurable: A Project of High Risk Families Prediction and Management
Authors: Peifang Hsieh
Abstract:
The prevention of child abuse has aroused serious concerns in Taiwan because of the disparity between the increasing amount of reported child abuse cases that doubled over the past decade and the scarcity of social workers. New Taipei city, with the most population in Taiwan and over 70% of its 4 million citizens are migrant families in which the needs of children can be easily neglected due to insufficient support from relatives and communities, sees urgency for a social support system, by preemptively identifying and outreaching high-risk families of child abuse, so as to offer timely assistance and preventive measure to safeguard the welfare of the children. Big data analysis is the inspiration. As it was clear that high-risk families of child abuse have certain characteristics in common, New Taipei city decides to consolidate detailed background information data from departments of social affairs, education, labor, and health (for example considering status of parents’ employment, health, and if they are imprisoned, fugitives or under substance abuse), to cross-reference for accurate and prompt identification of the high-risk families in need. 'The Service Center for High-Risk Families' (SCHF) was established to integrate data cross-departmentally. By utilizing the machine learning 'random forest method' to build a risk prediction model which can early detect families that may very likely to have child abuse occurrence, the SCHF marks high-risk families red, yellow, or green to indicate the urgency for intervention, so as to those families concerned can be provided timely services. The accuracy and recall rates of the above model were 80% and 65%. This prediction model can not only improve the child abuse prevention process by helping social workers differentiate the risk level of newly reported cases, which may further reduce their major workload significantly but also can be referenced for future policy-making.Keywords: child abuse, high-risk families, big data analysis, risk prediction model
Procedia PDF Downloads 13612986 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories
Authors: Rene Hellmuth
Abstract:
The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.Keywords: augmented reality, digital factory model, factory planning, restructuring
Procedia PDF Downloads 13812985 The Determinants of Trade Flow and Potential between Ethiopia and Group of Twenty
Authors: Terefe Alemu
Abstract:
This study is intended to examine Ethiopia’s trade flow determinants and trade potential with G20 countries whether it was overtraded or there is/are trade potential by using trade gravity model. The sources of panel data used were IMF, WDI, United Nations population division, The Heritage Foundation, Washington's No. 1 think tank online website database, online distance calculator, and others for the duration of 2010 to 2019 for 10 consecutive years. The empirical data analyzing tool used was Random effect model (REM), which is effective in estimation of time-invariant data. The empirical data analyzed using STATA software result indicates that Ethiopia has a trade potential with seven countries of G20, whereas Ethiopia overtrade with 12 countries and EU region. The Ethiopia’s and G20 countries/region bilateral trade flow statistically significant/ p<0.05/determinants were the population of G20 countries, growth domestic products of G20 countries, growth domestic products of Ethiopia, geographical distance between Ethiopia and G20 countries. The top five G20 countries exported to Ethiopia were china, United State of America, European Union, India, and South Africa, whereas the top five G20 countries imported from Ethiopia were EU, China, United State of America, Saudi Arabia, and Germany, respectively. Finally, the policy implication were Ethiopia has to Keep the consistence of trade flow with overtraded countries and improve with under traded countries through trade policy revision, and secondly, focusing on the trade determinants to improve trade flow is recommended.Keywords: trade gravity model, trade determinants, G20, international trade, trade potential
Procedia PDF Downloads 21912984 Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test
Authors: S. Al Dandachli, F. Perales, Y. Monerie, F. Jamin, M. S. El Youssoufi, C. Pelissou
Abstract:
The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale.Keywords: cement paste, interface, cohesive zone model, fracture, three-point flexural test bending
Procedia PDF Downloads 15612983 Implementing Lesson Study in Qatari Mathematics Classroom: A Case Study of a New Experience for Teachers through IMPULS-QU Lesson Study Program
Authors: Areej Isam Barham
Abstract:
The implementation of Japanese lesson study approach in the mathematics classroom has been grown worldwide as a model of professional development for teachers. In Qatar, the implementation of IMPULS-QU lesson study program aimed to establish a robust organizational improvement model of professional development for mathematics teachers in Qatar schools. This study describes the implementation of a lesson study model at Al-Markhyia Independent Primary School through different stages; and discusses how the planning process, the research lesson, and the post discussion participates in providing teachers and researchers with a successful research lesson for teacher professional development. The research followed a case study approach in one mathematics classroom. Two teachers and one professional development specialist participated the planning process. One teacher conducted the research lesson study by introducing a problem solving related to the concept of the ‘Mean’ in a mathematics class, 21 students in grade 6 participated in solving the mathematic problem, 11 teachers, 4 professional development specialists, and 4 mathematics professors observed the research lesson. All previous participants except the students participated in a pre and post-lesson discussion within this research. This study followed a qualitative research approach by analyzing the collected data through different stages in the research lesson study. Observation, field notes, and semi-structured interviews conducted to collect data to achieve the research aims. One feature of this lesson study research is that this research describes the implementation for a lesson study as a new experience for one mathematics teacher and 21 students after 3 years of conducting IMPULS-QU project in Al-Markhyia school. The research describes various stages through the implementation of this lesson study model starting from the planning process and ending by the post discussion process. Findings of the study also address the impact of lesson study approach in teaching mathematics for the development of teachers from their point views. Results of the study show the benefits of using lesson study from the point views of participated teachers, theory perceptions about the essential features of lesson study, and their needs for future development. The discussion of the study addresses different features and issues related to the implementation of IMPULS-QU lesson study model in the mathematics classroom. In the light of the study, the research presents recommendations and suggestions for future professional development.Keywords: lesson study, mathematics education, mathematics teaching experience, teacher professional development
Procedia PDF Downloads 18912982 Management by Sufficient Economy Philosophy for Hospitality Business in Samut Songkram
Authors: Krisada Sungkhamanee
Abstract:
The objectives of this research are to know the management form of Samut Songkram lodging entrepreneurs with sufficient economy framework, to know the threat that affect this business and drawing the fit model for this province in order to sustain their business with Samut Songkram style. What will happen if they do not use this philosophy? Will they have a cash short fall? The data and information are collected by informal discussion with 8 managers and 400 questionnaires. We will use a mix of methods both qualitative research and quantitative research for our study. Bent Flyvbjerg’s phronesis is utilized for this analysis. Our research will prove that sufficient economy can help small and medium business firms solve their problems. We think that the results of our research will be a financial model to solve many problems of the entrepreneurs and this way will use to practice in other areas of our country.Keywords: Samut Songkram, hospitality business, sufficient economy philosophy, style
Procedia PDF Downloads 30812981 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure
Authors: Sireetorn Kuharat, Anwar Beg
Abstract:
In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number
Procedia PDF Downloads 122