Search results for: professional learning communities (PLCs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10806

Search results for: professional learning communities (PLCs)

6876 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships

Authors: Vijaya Dixit Aasheesh Dixit

Abstract:

Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.

Keywords: learning curve, materials management, shipbuilding, sister ships

Procedia PDF Downloads 504
6875 Teaching Method in Situational Crisis Communication Theory: A Literature Review

Authors: Proud Arunrangsiwed

Abstract:

Crisis management strategies could be found in various curriculums, not only in schools of business, but also schools of communication. Young students, such as freshmen and sophomores of undergraduate schools, may not care about learning crisis management strategies. Moreover, crisis management strategies are not a topic art students are familiar with. The current paper discusses a way to adapt entertainment media into a crisis management lesson, and the importance of learning crisis management strategies in the school of animation. Students could learn crisis management strategies by watching movies with content about a crisis and responding to crisis responding. The students should then participate in follow up discussions related to the strategies that were used to address the crisis, as well as their success in solving the crisis.

Keywords: situational crisis communication theory, crisis response strategies, media effect, unintentional effect

Procedia PDF Downloads 329
6874 Teaching: Using Co-teaching as an Instructional Model

Authors: Beverley Gallimore

Abstract:

The Individuals with Disabilities Education Act of 2004 (IDEA) has helped to improve outcomes for students with special education needs. Through IDEA, students with Special Education Needs (SEN) have opportunities for more equitable education within the General Education classroom. However, students with disabilities lack access to instructions that can help them to maximize their fullest learning potential. Recently, educational stakeholders have emphasized Integrated Co-teaching as a tool to increase engagement and learning outcomes for students with disabilities in general education classrooms. As a result of this new approach, general and special education teachers are working collaboratively to teach students with disabilities. However, co-teaching models are not properly designed and structured to effectively benefit students with disabilities. Teachers must be oriented correctly in the co-teaching models if it is to be beneficial for students.

Keywords: CO-teaching, differentiation, equitable, collaborative

Procedia PDF Downloads 85
6873 Tackling the Digital Divide: Enhancing Video Consultation Access for Digital Illiterate Patients in the Hospital

Authors: Wieke Ellen Bouwes

Abstract:

This study aims to unravel which factors enhance accessibility of video consultations (VCs) for patients with low digital literacy. Thirteen in-depth interviews with patients, hospital employees, eHealth experts, and digital support organizations were held. Patients with low digital literacy received in-home support during real-time video consultations and are observed during the set-up of these consultations. Key findings highlight the importance of patient acceptance, emphasizing video consultations benefits and avoiding standardized courses. The lack of a uniform video consultation system across healthcare providers poses a barrier. Familiarity with support organizations – to support patients in usage of digital tools - among healthcare practitioners enhances accessibility. Moreover, considerations regarding the Dutch General Data Protection Regulation (GDPR) law influence support patients receive. Also, provider readiness to use video consultations influences patient access. Further, alignment between learning styles and support methods seems to determine abilities to learn how to use video consultations. Future research could delve into tailored learning styles and technological solutions for remote access to further explore effectiveness of learning methods.

Keywords: video consultations, digital literacy skills, effectiveness of support, intra- and inter-organizational relationships, patient acceptance of video consultations

Procedia PDF Downloads 78
6872 “Towards Creating a Safe Future”: An Assessment of the Causes of Flooding in Nsanje District, Lower Shire Malawi

Authors: Davie Hope Moyo

Abstract:

The environment is a combination of two things: resources and hazards. One of the hazards that is a result of environmental changes is the occurrence of flooding. Floods are one of the disasters that are highly feared by people because they have a huge impact on the human population and their environment. In recent years, flooding disasters in the Nsanje district are increasing in both frequency and magnitude. This study aims to understand the root causes of this phenomenon. To understand the causes of flooding, this study focused on the case of TA Ndamera in the Nsanje district, southern Malawi. People in the Nsanje district face disruption in their day-to-day life because of floods that affect their communities. When floods happen, people lose their property, land, livestock, and even lives. The study was carried out in order to have a better understanding of the root causes of floods. The findings of this study may help the government and other development agencies to put in place mitigation measures that will make Nsanje District resilient to the occurrence of future flood hazards. Data was collected from the area of TA Ndamera in order to assess the causes of flooding in the district. Interviews, transect walks, and researcher observation was done to appreciate the topography of the district and evaluate other factors that are making the people become vulnerable to the impacts of flooding in the district. It was found that flooding in the district is mainly caused by heavy rainfall in the upper shire, settlements along river banks, deforestation, and the topography of the district in general. The research study ends by providing recommendation strategies that need to be put in place to increase the resilience of the communities to future flood hazards. The research recommends the development of indigenous knowledge systems to alert people of incoming floods, construction of evacuation centers to ease pressure on schools, savings, and insurance schemes, construction of dykes, desilting rivers, and afforestation.

Keywords: disaster causes, mitigation, safety measures, Nsanje Malawi

Procedia PDF Downloads 90
6871 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 515
6870 The Effect of Season, Fire and Slope Position on Seriphium plumosum L. Forage Quality in South African Grassland Communities

Authors: Hosia T. Pule, Julius T. Tjelele, Michelle J. Tedder, Dawood Hattas

Abstract:

Acceptability of plant material to herbivores is influenced by, among other factors; nutrients, plant secondary metabolites and growth stage of the plants. However, the effect of these factors on Seriphium plumosum L. acceptability to livestock is still not clearly understood, despite its importance in managing its encroachment in grassland communities. The study used 2 x 2 x 2 factorial analysis of variance to investigate the effect of season (wet and dry), fire, slope position (top and bottom) and their interaction on Seriphium plumosum chemistry. We tested the hypothesis that S. plumosum chemistry varies temporally, spatially and pre- and post-fire treatment. Seriphium plumosum edible material was collected during the wet and dry season from burned and unburned areas on both top and bottom slopes before being analysed for protein (CP) content, neutral detergent fibre (NDF), total phenolics (TP) and condensed tannins (CT). Season had a significant effect on S. plumosum protein content, neutral detergent fibre, total phenolics and condensed tannins. Fire had a significant effect on CP. Interaction of season x fire had a significant effect on NDF and CP (p < 0.05). Seriphium plumosum in the wet season (6.69% ± 0.20 (SE)) had significantly higher CP than in the dry season (5.22% ± 0.13). NDF was significantly higher (58.01% ± 0.41) in the dry season than in the wet season (53.17% ± 0.34), while TP were significantly higher in the dry season (14.44 mg/gDw ± 1.03) than in the wet season (11.08 mg/gDw ± 1.07). CT in the wet season were significantly higher (1.56 mg/gDw ± 0.13) than in the dry season (1 mg/gDw ± 0.03). CP was significantly higher in burned (6. 31 % ± 0.22) than in unburned S. plumosum edible material (5.60 % ± 0.15). Seriphium plumosum CP was significantly higher in wet season x burned (7.34 % ± 0.31) than wet season x unburned (6.08 % ± 0.20) material and dry season x burned (5.34 % ± 0.18) and unburned (5.09 % ± 0.18) material were similar. NDF was similar in dry season x burned (58.31% ± 0.54) and dry season x unburned (57.69 % ± 0.62) material and significantly higher than similar wet season x burned (52.43% ± 0.45) and wet season x post-unburned (53.88% ± 0.47) material. This study suggests integrating fire, browsers, and supplements as encroacher S. plumosum control agents, especially in the wet season, following fire due to high S. plumosum CP content.

Keywords: acceptability, chemistry, edible material, encroachment, phenolics, tannins

Procedia PDF Downloads 164
6869 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 158
6868 De-Securitizing Identity: Narrative (In)Consistency in Periods of Transition

Authors: Katerina Antoniou

Abstract:

When examining conflicts around the world, it is evident that the majority of intractable conflicts are steeped in identity. Identity seems to be not only a causal variable for conflict, but also a catalytic parameter for the process of reconciliation that follows ceasefire. This paper focuses on the process of identity securitization that occurs between rival groups of heterogeneous collective identities – ethnic, national or religious – as well as on the relationship between identity securitization and the ability of the groups involved to reconcile. Are securitized identities obstacles to the process of reconciliation, able to hinder any prospects of peace? If the level to which an identity is securitized is catalytic to a conflict’s discourse and settlement, then which factors act as indicators of identity de-securitization? The level of an in-group’s identity securitization can be estimated through a number of indicators, one of which is narrative. The stories, views and stances each in-group adopts in relation to its history of conflict and relation with their rival out-group can clarify whether that specific in-group feels victimized and threatened or safe and ready to reconcile. Accordingly, this study discusses identity securitization through narrative in relation to intractable conflicts. Are there conflicts around the world that, despite having been identified as intractable, stagnated or insoluble, show signs of identity de-securitization through narrative? This inquiry uses the case of the Cyprus conflict and its partitioned societies to present official narratives from the two communities and assess whether these narratives have transformed, indicating a less securitized in-group identity for the Greek and Turkish Cypriots. Specifically, the study compares the official historical overviews presented by each community’s Ministry of Foreign Affairs website and discusses the extent to which the two official narratives present a securitized collective identity. In addition, the study will observe whether official stances by the two communities – as adopted by community leaders – have transformed to depict less securitization over time. Additionally, the leaders’ reflection of popular opinion is evaluated through recent opinion polls from each community. Cyprus is currently experiencing renewed optimism for reunification, with the leaders of its two communities engaging in rigorous negotiations, and with rumors calling for a potential referendum for reunification to be taking place even as early as within 2016. Although leaders’ have shown a shift in their rhetoric and have moved away from narratives of victimization, this is not the case for the official narratives used by their respective ministries of foreign affairs. The study’s findings explore whether this narrative inconsistency proves that Cyprus is transitioning towards reunification, or whether the leaders are risking sending a securitized population to the polls to reject a potential reunification. More broadly, this study suggests that in the event that intractable conflicts might be moving towards viable peace, in-group narratives--official narratives in particular--can act as indicators of the extent to which rival entities have managed to reconcile.

Keywords: conflict, identity, narrative, reconciliation

Procedia PDF Downloads 329
6867 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 97
6866 Augmented Reality in Teaching Children with Autism

Authors: Azadeh Afrasyabi, Ali Khaleghi, Aliakbar Alijarahi

Abstract:

Training at an early age is so important, because of tremendous changes in adolescence, including the formation of character, physical changes and other factors. One of the most sensitive sectors in this field is the children with a disability and are somehow special children who have trouble in communicating with their environment. One of the emerging technologies in the field of education that can be effectively profitable called augmented reality, where the combination of real world and virtual images in real time produces new concepts that can facilitate learning. The purpose of this paper is to propose an effective training method for special and disabled children based on augmented reality. Of course, in particular, the efficiency of augmented reality in teaching children with autism will consider, also examine the various aspect of this disease and different learning methods in this area.

Keywords: technology in education, augmented reality, special education, teaching methods

Procedia PDF Downloads 375
6865 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance

Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.

Keywords: machine learning, MR prostate, PI-Rads 3, radiomics

Procedia PDF Downloads 191
6864 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 178
6863 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 115
6862 Challenges to Quality Primary Health Care in Saudi Arabia and Potential Improvements Implemented by Other Systems

Authors: Hilal Al Shamsi, Abdullah Almutairi

Abstract:

Introduction: As primary healthcare centres play an important role in implementing Saudi Arabia’s health strategy, this paper offers a review of publications on the quality of the country’s primary health care. With the aim of deciding on solutions for improvement, it provides an overview of healthcare quality in this context and indicates barriers to quality. Method: Using two databases, ProQuest and Scopus, data extracted from published articles were systematically analysed for determining the care quality in Saudi primary health centres and obstacles to achieving higher quality. Results: Twenty-six articles met the criteria for inclusion in this review. The components of healthcare quality were examined in terms of the access to and effectiveness of interpersonal and clinical care. Good access and effective care were identified in such areas as maternal health care and the control of epidemic diseases, whereas poor access and effectiveness of care were shown for chronic disease management programmes, referral patterns (in terms of referral letters and feedback reports), health education and interpersonal care (in terms of language barriers). Several factors were identified as barriers to high-quality care. These included problems with evidence-based practice implementation, professional development, the use of referrals to secondary care and organisational culture. Successful improvements have been implemented by other systems, such as mobile medical units, electronic referrals, online translation tools and mobile devices and their applications; these can be implemented in Saudi Arabia for improving the quality of the primary healthcare system in this country. Conclusion: The quality of primary health care in Saudi Arabia varies among the different services. To improve quality, management programmes and organisational culture must be promoted in primary health care. Professional development strategies are also needed for improving the skills and knowledge of healthcare professionals. Potential improvements can be implemented to improve the quality of the primary health system.

Keywords: quality, primary health care, Saudi Arabia, health centres, general medical

Procedia PDF Downloads 196
6861 STEM Curriculum Development Using Robotics with K-12 Students in Brazil

Authors: Flavio Campos

Abstract:

This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly.

Keywords: STEM curriculum, educational robotics, constructionist approach, education and technology

Procedia PDF Downloads 344
6860 Measuring the Unmeasurable: A Project of High Risk Families Prediction and Management

Authors: Peifang Hsieh

Abstract:

The prevention of child abuse has aroused serious concerns in Taiwan because of the disparity between the increasing amount of reported child abuse cases that doubled over the past decade and the scarcity of social workers. New Taipei city, with the most population in Taiwan and over 70% of its 4 million citizens are migrant families in which the needs of children can be easily neglected due to insufficient support from relatives and communities, sees urgency for a social support system, by preemptively identifying and outreaching high-risk families of child abuse, so as to offer timely assistance and preventive measure to safeguard the welfare of the children. Big data analysis is the inspiration. As it was clear that high-risk families of child abuse have certain characteristics in common, New Taipei city decides to consolidate detailed background information data from departments of social affairs, education, labor, and health (for example considering status of parents’ employment, health, and if they are imprisoned, fugitives or under substance abuse), to cross-reference for accurate and prompt identification of the high-risk families in need. 'The Service Center for High-Risk Families' (SCHF) was established to integrate data cross-departmentally. By utilizing the machine learning 'random forest method' to build a risk prediction model which can early detect families that may very likely to have child abuse occurrence, the SCHF marks high-risk families red, yellow, or green to indicate the urgency for intervention, so as to those families concerned can be provided timely services. The accuracy and recall rates of the above model were 80% and 65%. This prediction model can not only improve the child abuse prevention process by helping social workers differentiate the risk level of newly reported cases, which may further reduce their major workload significantly but also can be referenced for future policy-making.

Keywords: child abuse, high-risk families, big data analysis, risk prediction model

Procedia PDF Downloads 136
6859 Teaching and Learning Physics via GPS and WikiS

Authors: Hashini E. Mohottala

Abstract:

We report the combine use of Wikispaces (WikiS) and Group Problem Solving (GPS) sessions conducted in the introductory level physics classes. As a part of this new teaching tool, some essay type problems were posted on the WikiS in weekly basis and students were encouraged to participate in problem solving without providing numerical final answers but the steps. Wikispace is used as a platform for students to meet online and create discussions. Each week students were further evaluated on problem solving skills opening up more opportunity for peer interaction through GPS. Each group was given a different problem to solve and the answers were graded. Students developed a set of skills in decision-making, problem solving, communication, negotiation, critical and independent thinking and teamwork through the combination of WikiS and GPS.

Keywords: group problem solving (GPS), wikispace (WikiS), physics education, learning

Procedia PDF Downloads 420
6858 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half

Authors: Said Fares, Mary Fares

Abstract:

It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.

Keywords: failure rate, interactive learning, student engagement, CS1

Procedia PDF Downloads 313
6857 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project

Authors: Soheila Sadeghi

Abstract:

In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management

Procedia PDF Downloads 43
6856 The Experiences and Needs of Fathers’ of Children With Cancer in Coping With the Child's Illness

Authors: Karina Lõbus, Silver Muld, Kadri Kööp, Mare Tupits

Abstract:

Aim: The aim of the research is to describe the experiences and needs of fathers’ of children with cancer in coping with the child's disease. Background: Today, about 80% of children diagnosed with malignancy in developed countries survive. Despite the positive statistics, recovery is not always certain, treatment is often very intensive and long-term. Cancer is affecting an increasing number of the population, which is increasing the demand for quality care, but the nature of expected care is currently unclear. This topic is important for the development of professional practice, as nurses complain that their knowledge to deal with the relatives of a patient with a difficult diagnosis is limited and would therefore like additional information to deal with the situation. Design: Qualitative, empirical, descriptive research. Method: The data were collected through semi-structured interviews and analysed by inductive content analysis method. Interviews were conducted during Autumn 2020. 4 subjects participated in the research. Results and Conclusions: The thesis revealed that fathers had different experiences and needs in dealing with the child's illness. Fathers' experiences of coping with child's diseases encompassed experiences with information, social relationships, healthcare, changes in personal health and experiences regarding the child. Regarding information, the respondents pointed out bad experiences with the availability of information and the ability to convey the necessary information. Experiences regarding social relationships included experiences with relatives and strangers. Regarding healthcare, fathers mentioned experiences related to the child's health and healthcare professionals. In regards to personal health, fathers pointed out negative changes in their mental and physical health. In relation to the child, the subjects revealed experiences regarding changed values, way of life and raising the child. According to the research, fathers’ needs in relation to dealing with child's cancer included material, social, and spiritual needs. In regard to material needs, fathers pointed out the need for state assistance and the needs related to the surrounding environment. The needs concerning social belonging involved needs for a driving force and involvement in the treatment process. Regarding spiritual needs, fathers expressed mixed feelings towards the need for outside and professional help.

Keywords: father, coping, cancer, child, experience, need

Procedia PDF Downloads 139
6855 Training During Emergency Response to Build Resiliency in Water, Sanitation, and Hygiene

Authors: Lee Boudreau, Ash Kumar Khaitu, Laura A. S. MacDonald

Abstract:

In April 2015, a magnitude 7.8 earthquake struck Nepal, killing, injuring, and displacing thousands of people. The earthquake also damaged water and sanitation service networks, leading to a high risk of diarrheal disease and the associated negative health impacts. In response to the disaster, the Environment and Public Health Organization (ENPHO), a Kathmandu-based non-governmental organization, worked with the Centre for Affordable Water and Sanitation Technology (CAWST), a Canadian education, training and consulting organization, to develop two training programs to educate volunteers on water, sanitation, and hygiene (WASH) needs. The first training program was intended for acute response, with the second focusing on longer term recovery. A key focus was to equip the volunteers with the knowledge and skills to formulate useful WASH advice in the unanticipated circumstances they would encounter when working in affected areas. Within the first two weeks of the disaster, a two-day acute response training was developed, which focused on enabling volunteers to educate those affected by the disaster about local WASH issues, their link to health, and their increased importance immediately following emergency situations. Between March and October 2015, a total of 19 training events took place, with over 470 volunteers trained. The trained volunteers distributed hygiene kits and liquid chlorine for household water treatment. They also facilitated health messaging and WASH awareness activities in affected communities. A three-day recovery phase training was also developed and has been delivered to volunteers in Nepal since October 2015. This training focused on WASH issues during the recovery and reconstruction phases. The interventions and recommendations in the recovery phase training focus on long-term WASH solutions, and so form a link between emergency relief strategies and long-term development goals. ENPHO has trained 226 volunteers during the recovery phase, with training ongoing as of April 2016. In the aftermath of the earthquake, ENPHO found that its existing pool of volunteers were more than willing to help those in their communities who were more in need. By training these and new volunteers, ENPHO was able to reach many more communities in the immediate aftermath of the disaster; together they reached 11 of the 14 earthquake-affected districts. The collaboration between ENPHO and CAWST in developing the training materials was a highly collaborative and iterative process, which enabled the training materials to be developed within a short response time. By training volunteers on basic WASH topics during both the immediate response and the recovery phase, ENPHO and CAWST have been able to link immediate emergency relief to long-term developmental goals. While the recovery phase training continues in Nepal, CAWST is planning to decontextualize the training used in both phases so that it can be applied to other emergency situations in the future. The training materials will become part of the open content materials available on CAWST’s WASH Resources website.

Keywords: water and sanitation, emergency response, education and training, building resilience

Procedia PDF Downloads 310
6854 Automated Manual Handling Risk Assessments: Practitioner Experienced Determinants of Automated Risk Analysis and Reporting Being a Benefit or Distraction

Authors: S. Cowley, M. Lawrance, D. Bick, R. McCord

Abstract:

Technology that automates manual handling (musculoskeletal disorder or MSD) risk assessments is increasingly available to ergonomists, engineers, generalist health and safety practitioners alike. The risk assessment process is generally based on the use of wearable motion sensors that capture information about worker movements for real-time or for posthoc analysis. Traditionally, MSD risk assessment is undertaken with the assistance of a checklist such as that from the SafeWork Australia code of practice, the expert assessor observing the task and ideally engaging with the worker in a discussion about the detail. Automation enables the non-expert to complete assessments and does not always require the assessor to be there. This clearly has cost and time benefits for the practitioner but is it an improvement on the assessment by the human. Human risk assessments draw on the knowledge and expertise of the assessor but, like all risk assessments, are highly subjective. The complexity of the checklists and models used in the process can be off-putting and sometimes will lead to the assessment becoming the focus and the end rather than a means to an end; the focus on risk control is lost. Automated risk assessment handles the complexity of the assessment for the assessor and delivers a simple risk score that enables decision-making regarding risk control. Being machine-based, they are objective and will deliver the same each time they assess an identical task. However, the WHS professional needs to know that this emergent technology asks the right questions and delivers the right answers. Whether it improves the risk assessment process and results or simply distances the professional from the task and the worker. They need clarity as to whether automation of manual task risk analysis and reporting leads to risk control or to a focus on the worker. Critically, they need evidence as to whether automation in this area of hazard management leads to better risk control or just a bigger collection of assessments. Practitioner experienced determinants of this automated manual task risk analysis and reporting being a benefit or distraction will address an understanding of emergent risk assessment technology, its use and things to consider when making decisions about adopting and applying these technologies.

Keywords: automated, manual-handling, risk-assessment, machine-based

Procedia PDF Downloads 126
6853 In the Face of Brokenness: Finding Meaning and Purpose in a Shattered World

Authors: Le Khanh Huyen

Abstract:

This dissertation focuses on the psychological study of children, particularly those who lack parental affection or face family pressures. It will analyze the severe consequences of insufficient parental love and familial pressure on children's psychology, including emotional and behavioral disorders, learning difficulties in academics and daily life, loss of faith, and low self-esteem. Additionally, this dissertation will propose solutions to support children in challenging circumstances, contributing to the protection of children's mental health.

Keywords: child psychology, lack of parental love, family pressure, emotional and behavioral disorders, learning difficulties, loss of faith, self-esteem, mental health

Procedia PDF Downloads 41
6852 Exploring Perspectives and Complexities of E-tutoring: Insights from Students Opting out of Online Tutor Service

Authors: Prince Chukwuneme Enwereji, Annelien Van Rooyen

Abstract:

In recent years, technology integration in education has transformed the learning landscape, particularly in online institutions. One technological advancement that has gained popularity is e-tutoring, which offers personalised academic support to students through online platforms. While e-tutoring has become well-known and has been adopted to promote collaborative learning, there are still students who do not use these services for various reasons. However, little attention has been given to understanding the perspectives of students who have not utilized these services. The research objectives include identifying the perceived benefits that non-e-tutoring students believe e-tutoring could offer, such as enhanced academic support, personalized learning experiences, and improved performance. Additionally, the study explored the potential drawbacks or concerns that non-e-tutoring students associate with e-tutoring, such as concerns about efficacy, a lack of face-to-face interaction, and platform accessibility. The study adopted a quantitative research approach with a descriptive design to gather and analyze data on non-e-tutoring students' perspectives. Online questionnaires were employed as the primary data collection method, allowing for the efficient collection of data from many participants. The collected data was analyzed using the Statistical Package for the Social Sciences (SPSS). Ethical concepts such as informed consent, anonymity of responses and protection of respondents against harm were maintained. Findings indicate that non-e-tutoring students perceive a sense of control over their own pace of learning, suggesting a preference for self-directed learning and the ability to tailor their educational experience to their individual needs and learning styles. They also exhibit high levels of motivation, believe in their ability to effectively participate in their studies and organize their academic work, and feel comfortable studying on their own without the help of e-tutors. However, non-e-tutoring students feel that e-tutors do not sufficiently address their academic needs and lack engagement. They also perceive a lack of clarity in the roles of e-tutors, leading to uncertainty about their responsibilities. In terms of communication, students feel overwhelmed by the volume of announcements and find repetitive information frustrating. Additionally, some students face challenges with their internet connection and associated cost, which can hinder their participation in online activities. Furthermore, non-e-tutoring students express a desire for interactions with their peers and a sense of belonging to a group or team. They value opportunities for collaboration, teamwork in their learning experience, the importance of fostering social interactions and creating a sense of community in online learning environments. This study recommended that students seek alternate support systems by reaching out to professors or academic advisors for guidance and clarification. Developing self-directed learning skills is essential, empowering students to take charge of their own learning through setting objectives, creating own study plans, and utilising resources. For HEIs, it was recommended that they should ensure that a variety of support services are available to cater to the needs of all students, including non-e-tutoring students. HEIs should also ensure easy access to online resources, promote a supportive community, and regularly evaluate and adapt their support techniques to meet students' changing requirements.

Keywords: online-tutor;, student support;, online education, educational practices, distance education

Procedia PDF Downloads 85
6851 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy

Abstract:

Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 182
6850 Effect of Noise Reducing Headphones on the Short-Term Memory Recall of College Students

Authors: Gregory W. Smith, Paul J. Riccomini

Abstract:

The goal of this empirical inquiry is to explore the effect of noise reducing headphones on the short-term memory recall of college students. Immediately following the presentation (via PowerPoint) of 12 unrelated and randomly selected one- and two-syllable words, students were asked to recall as many words as possible. Using a linear model with conditions marked with binary indicators, we examined the frequency and accuracy of words that were recalled. The findings indicate that for some students, a reduction of noise has a significant positive impact on their ability to recall information. As classrooms become more aurally distracting due to the implementation of cooperative learning activities, these findings highlight the need for a quiet learning environment for some learners.

Keywords: auditory distraction, education, instruction, noise, working memory

Procedia PDF Downloads 341
6849 The Walkway Project: An Exploration of Informal Public Space Upgrading in Gugulethu, Cape Town

Authors: Kathryn Ewing

Abstract:

Safe and accessible public spaces are vital elements of our South African cities. Public spaces hold the potential to act as important, vibrant places for learning, exchange, and practice. Public walkways, however, are some of the most neglected and extremely dangerous public spaces experienced in the local neighborhood of Gugulethu in Cape Town. Walkways feel insignificant, being recognized as informal and undetermined or retain complex fragments of formal erven. They are generally out of sight connecting minor streets and informal settlements. Community residents refer to the walkways as unsafe and dirty spaces. Local authorities allocate minimal to no municipal budgets nor maintenance plans resulting in a lack of basic services, particularly lighting and green infrastructure. ‘The Walkway Project’ presents a series of urban stories collected from co-design workshops, emotional mapping exercises, and fieldwork, including urban walks and urban talks. The narrative interprets the socio-spatial practice and complexity of informal public space in Gugulethu, Cape Town. The Walkway Project research, interrelated to the Master of Urban Design teaching and design-research studio, has a strong focus on participatory and engaged learning and action research methodology within a deliberate pedagogy. A consolidated urban design implementation plan exposes the impact and challenges of waste and water, opening the debate on relevant local solutions for resilience and safety in Cape Town. A small and neglected passage connecting two streets, commonly referred to as iThemba Walkway, is presented as a case study to show-case strategic urban design intervention strategies for urban upgrading. The iThemba walkway is a community-driven project that demonstrates active and responsible co-design and participatory development opportunities. In March 2021, when visited on an urban walk, the public space was covered by rubble and solid waste. By April 2021, the community cleaned the walkway and created an accessible passage for the school children to pass. Numerous co-design workshops have taken place over the past year. The walkway has emerged as a public space upgrading project facilitated, motivated, and implemented by multiple local partners and residents. Social maps from urban walks and talks illustrate the transformation of iThemba Walkway into an inclusive, safe, resilient, and sustainable urban space, linked to Sustainable Development Goal number 11, sustainable cities and communities. The outcomes of the upgrading project facilitate a deeper understanding of co-design methods, urban upgrading processes, and monitoring of public space and informal urbanism.

Keywords: informal, public space, resilience, safety, upgrade, walkways

Procedia PDF Downloads 98
6848 Teaching Turn-Taking Rules and Pragmatic Principles to Empower EFL Students and Enhance Their Learning in Speaking Modules

Authors: O. F. Elkommos

Abstract:

Teaching and learning EFL speaking modules is one of the most challenging productive modules for both instructors and learners. In a student-centered interactive communicative language teaching approach, learners and instructors should be aware of the fact that the target language must be taught as/for communication. The student must be empowered by tools that will work on more than one level of their communicative competence. Communicative learning will need a teaching and learning methodology that will address the goal. Teaching turn-taking rules, pragmatic principles and speech acts will enhance students' sociolinguistic competence, strategic competence together with discourse competence. Sociolinguistic competence entails the mastering of speech act conventions and illocutionary acts of refusing, agreeing/disagreeing; emotive acts like, thanking, apologizing, inviting, offering; directives like, ordering, requesting, advising, and hinting, among others. Strategic competence includes enlightening students’ consciousness of the various particular turn-taking systemic rules of organizing techniques of opening and closing conversation, adjacency pairs, interrupting, back-channeling, asking for/giving opinion, agreeing/disagreeing, using natural fillers for pauses, gaps, speaker select, self-select, and silence among others. Students will have the tools to manage a conversation. Students are engaged in opportunities of experiencing the natural language not as a mere extra student talking time but rather an empowerment of knowing and using the strategies. They will have the component items they need to use as well as the opportunity to communicate in the target language using topics of their interest and choice. This enhances students' communicative abilities. Available websites and textbooks now use one or more of these tools of turn-taking or pragmatics. These will be students' support in self-study in their independent learning study hours. This will be their reinforcement practice on e-Learning interactive activities. The students' target is to be able to communicate the intended meaning to an addressee that is in turn able to infer that intended meaning. The combination of these tools will be assertive and encouraging to the student to beat the struggle with what to say, how to say it, and when to say it. Teaching the rules, principles and techniques is an act of awareness raising method engaging students in activities that will lead to their pragmatic discourse competence. The aim of the paper is to show how the suggested pragmatic model will empower students with tools and systems that would support their learning. Supporting students with turn taking rules, speech act theory, applying both to texts and practical analysis and using it in speaking classes empowers students’ pragmatic discourse competence and assists them to understand language and its context. They become more spontaneous and ready to learn the discourse pragmatic dimension of the speaking techniques and suitable content. Students showed a better performance and a good motivation to learn. The model is therefore suggested for speaking modules in EFL classes.

Keywords: communicative competence, EFL, empowering learners, enhance learning, speech acts, teaching speaking, turn taking, learner centred, pragmatics

Procedia PDF Downloads 180
6847 Graphic Calculator Effectiveness in Biology Teaching and Learning

Authors: Nik Azmah Nik Yusuff, Faridah Hassan Basri, Rosnidar Mansor

Abstract:

The purpose of the study is to find out the effectiveness of using Graphic calculators (GC) with Calculator Based Laboratory 2 (CBL2) in teaching and learning of form four biology for these topics: Nutrition, Respiration and Dynamic Ecosystem. Sixty form four science stream students were the participants of this study. The participants were divided equally into the treatment and control groups. The treatment group used GC with CBL2 during experiments while the control group used the ordinary conventional laboratory apparatus without using GC with CBL2. Instruments in this study were a set of pre-test and post-test and a questionnaire. T-Test was used to compare the student’s biology achievement while a descriptive statistic was used to analyze the outcome of the questionnaire. The findings of this study indicated the use of GC with CBL2 in biology had significant positive effect. The highest mean was 4.43 for item stating the use of GC with CBL2 had saved collecting experiment result’s time. The second highest mean was 4.10 for item stating GC with CBL2 had saved drawing and labelling graphs. The outcome from the questionnaire also showed that GC with CBL2 were easy to use and save time. Thus, teachers should use GC with CBL2 in support of efforts by Malaysia Ministry of Education in encouraging technology-enhanced lessons.

Keywords: biology experiments, Calculator-Based Laboratory 2 (CBL2), graphic calculators, Malaysia Secondary School, teaching/learning

Procedia PDF Downloads 408