Search results for: network distributed diagnosis
4389 A Study of Resin-Dye Fixation on Dyeing Properties of Cotton Fabrics Using Melamine Based Resins and a Reactive Dye
Authors: Nurudeen Ayeni, Kasali Bello, Ovi Abayeh
Abstract:
Study of the effect of dye–resin complexation on the degree of dye absorption were carried out using Procion Blue MX-R to dye cotton fabric in the presence hexamethylol melamine (MR 6) and its phosphate derivative (MPR 4) for resination. The highest degree of dye exhaustion was obtained at 400 C for 1 hour with the resinated fabric showing more affinity for the dye than the ordinary fiber. Improved fastness properties was recorded which show a relatively higher stability of dye–resin–cellulose network formed.Keywords: cotton fabric, reactive dye, dyeing, resination
Procedia PDF Downloads 4084388 Development of a Delivery System for Statin Targeted Spray is a Breakthrough Therapy in Alzheimer’s Prevention
Authors: Fakhr Eddin Alnaal, Angela Dahdal, Duaa Aladib, Sabeen Ibrahim, Ibrahim Ghoraibi, Bissan Ahmed
Abstract:
Dementia is one of the diseases which had several stages and Alzheimer’s term was selected in respect for the first doctor Alzheimer who defined the first symptoms of this diseases in a woman whom was well treated by him. The fact that this is a type of a silent disease on which you have a long-term process of neurological degradation and suddenly gives symptoms which are most often irreversible, on clinical level likely we can consider it as a malignancy, one in terms of that it is sudden shocking irreversible and on the level of behavior and some mortality beside the lack of early detection tools for diagnosis. Therefore, the goal of our project is to test the concept of the ability of Statin in prevention of such disease and we investigated that both on experimental level and most importantly on clinical one, the clinical part was performed in a recognized house of aged people who had accidently a high cholesterol and were for years given Statin to treat that elevation, however after the symptoms of Alzheimer’s appeared and when diagnosed, they were well treated and rapidly recovered compared to Alzheimer’s patients in the same house who did not receive Statin had a mild improvement in their symptoms after the therapy, on the other hand we confirmed such observation by a well-organized experimental work.Keywords: Alzheimer's, dementia, silent disease, statin
Procedia PDF Downloads 1334387 Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System
Authors: R. Ghasemi, M. R. Rahimi Khoygani
Abstract:
This paper proposes the designing direct adaptive neural controller to apply for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) neural adaptive controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are importance of this paper. The simulation results show the promising performance of the proposed controller.Keywords: adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control
Procedia PDF Downloads 4824386 A Study of Microglitches in Hartebeesthoek Radio Pulsars
Authors: Onuchukwu Chika Christian, Chukwude Augustine Ejike
Abstract:
We carried out a statistical analyse of microglitches events on a sample of radio pulsars. The distribution of microglitch events in frequency (ν) and first frequency derivatives ν˙ indicates that the size of a microglitch and sign combinations of events in ν and ν˙ are purely randomized. Assuming that the probability of a given size of a microglitch event occurring scales inversely as the absolute size of the event in both ν and ν˙, we constructed a cumulative distribution function (CDF) for the absolute sizes of microglitches. In most of the pulsars, the theoretical CDF matched the observed values. This is an indication that microglitches in pulsar may be interpreted as an avalanche process in which angular momentum is transferred erratically from the flywheel-like superfliud interior to the slowly decelerating solid crust. Analysis of the waiting time indicates that it is purely Poisson distributed with mean microglitch rate <γ> ∼ 0.98year^−1 for all the pulsars in our sample and <γ> / <∆T> ∼ 1. Correlation analysis, showed that the relative absolute size of microglitch event strongly with the rotation period of the pulsar with correlation coefficient r ∼ 0.7 and r ∼ 0.5 respectively for events in ν and ν˙. The mean glitch rate and number of microglitches (Ng) showed some dependence on spin down rate (r ∼ −0.6) and the characteristic age of the pulsar (τ) with (r ∼ −0.4/− 0.5).Keywords: method-data analysis, star, neutron-pulsar, general
Procedia PDF Downloads 4604385 The Correlation between of Medicine and Postural Orthostatic Tachycardia Syndrome (POTS)
Authors: Dian Ariyawati, Romi Sukoco, Sinung Agung Joko
Abstract:
Background: Postural Orthostatic Tachycardia Syndrome (POTS) is a form of orthostatic intolerance caused by autonomic dysfunction. POTS predominantly occurs in young women. Regular exercise has proven to improve the organ system functions, including autonomous systems. The aim of this research was to determine the correlation between exercise frequency and POTS in young women. Method: 510 young women (16-23 years of age) were screened. They were obtained by interview and physical examination. The diagnosis of POTS was performed with Active Stand Test (AST) and heart rate measurement using a pulsemeter. There were 29 young women who suffered from POTS. The exercise frequency was obtained by interview. Data was statistically analyzed using Spearman Correlation test. Result: The subjects’, who tested positive for POTS didn’t perform regular exercise. The Spearman correlation test showed there was a moderate negative correlation between exercise frequency and POTS in young women (r = -0.487, p < 0.00). Conclusion: There is a moderate reverse correlation between exercise frequency and POTS in young women. Further studies are suggested to develop an exercise program for young who suffered from POTS.Keywords: POTS, autonomic dysfunction, exercise frequency, young woman
Procedia PDF Downloads 5574384 Family Firm Internationalization: Identification of Alternative Success Pathways
Authors: Sascha Kraus, Wolfgang Hora, Philipp Stieg, Thomas Niemand, Ferdinand Thies, Matthias Filser
Abstract:
In most countries, small and medium-sized enterprises (SME) are the backbone of the economy due to their impact on job creation, innovation and wealth creation. Moreover, the ongoing globalization makes it inevitable – even for SME that traditionally focused on their domestic markets – to internationalize their business activities to realize further growth and survive in international markets. Thus, internationalization has become one of the most common growth strategies for SME and has received increasing scholarly attention over the last two decades. One the downside internationalization can be also regarded as the most complex strategy that a firm can undertake. Particularly for family firms, that are often characterized by limited financial capital, a risk-averse nature and limited growth aspirations, it could be argued that family firms are more likely to face greater challenges when taking the pathway to internationalization. Especially the triangulation of family, ownership, and management (so-called ‘familiness’) manifests in a unique behavior and decision-making process which is often characterized by the importance given to noneconomic goals and distinguishes a family firm from other businesses. Taking this into account, the concept of socio-emotional wealth (SEW) has been evolved to describe the behavior of family firms. In order to investigate how different internal and external firm characteristics shape internationalization success of family firms, we drew on a sample consisting of 297 small and medium-sized family firms from Germany, Austria, Switzerland, and Liechtenstein. Thus, we include SEW as essential family firm characteristic and added the two major intra-organizational characteristics, entrepreneurial orientation (EO), absorptive capacity (AC) as well as collaboration intensity (CI) and relational knowledge (RK) as two major external network characteristics. Based on previous research we assume that these characteristics are important to explain internationalization success of family firm SME. Regarding the data analysis, we applied a Fuzzy Set Qualitative Comparative Analysis (fsQCA), an approach that allows identifying configurations of firm characteristics, specifically used to study complex causal relationships where traditional regression techniques reach their limits. Results indicate that several combinations of these family firm characteristics can lead to international success, with no permanently required key characteristic. Instead, there are many roads to walk down for family firms to achieve internationalization success. Consequently, our data states that family owned SME are heterogeneous and internationalization is a complex and dynamic process. Results further show that network related characteristics occur in all sets, thus represent an essential element in the internationalization process of family owned SME. The contribution of our study is twofold, as we investigate different forms of international expansion for family firms and how to improve them. First, we are able to broaden the understanding of the intersection between family firm and SME internationalization with respect to major intra-organizational and network-related variables. Second, from a practical perspective, we offer family firm owners a basis for setting up internal capabilities to achieve international success.Keywords: entrepreneurial orientation, family firm, fsQCA, internationalization, socio-emotional wealth
Procedia PDF Downloads 2414383 Evaluation of Energy Supply and Demand Side Management for Residential Buildings in Ekiti State, Nigeria
Authors: Oluwatosin Samuel Adeoye
Abstract:
Ekiti State is an agrarian state located in south western part of Nigeria. The injected power to the Ado-Ekiti and the entire state are 25MW and 37.6 MW respectively. The estimated power demand for Ado Ekiti and Ekiti state were 29.01MW and 224.116MW respectively. The distributed power to the consumers is characterized with shortcomings which include: in-adequate supply, poor voltage regulation, improper usage, illiteracy and wastage. The power generation in Nigeria is presently 1680.60MW which does not match the estimated power demand of 15,000MW with a population of over 170 million citizens. This paper evaluates the energy utilization in Ado Ekiti metropolis, the wastage and its economic implication as well as effective means of its management. The use of direct interviews, administration of questionnaires, measurements of current and voltage with clamp multimeter, and simple mathematical approach were used for the purpose of evaluation. Recommendations were made with the view of reducing energy waste from mean value of 10.84% to 2% in order to reduce the cost implication such that the huge financial waste can be injected to other parts of the economy as well as the management of energy in Ekiti state.Keywords: consumers, demand, energy, management, power supply, waste
Procedia PDF Downloads 3404382 ANDASA: A Web Environment for Artistic and Cultural Data Representation
Authors: Carole Salis, Marie F. Wilson, Fabrizio Murgia, Cristian Lai, Franco Atzori, Giulia M. Orrù
Abstract:
ANDASA is a knowledge management platform for the capitalization of knowledge and cultural assets for the artistic and cultural sectors. It was built based on the priorities expressed by the participating artists. Through mapping artistic activities and specificities, it enables to highlight various aspects of the artistic research and production. Such instrument will contribute to create networks and partnerships, as it enables to evidentiate who does what, in what field, using which methodology. The platform is accessible to network participants and to the general public.Keywords: cultural promotion, knowledge representation, cultural maping, ICT
Procedia PDF Downloads 4264381 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls
Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac
Abstract:
No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations
Procedia PDF Downloads 3194380 Evaluation Rabbit Serum of the Immunodominant Proteins of Mycobacterium avium Paratuberculosis Extracts
Authors: Maryam Hashemi, Nematollah Razmi, Rasool Madani
Abstract:
M. paratuberculosis is a slow growing mycobactin dependent mycobacterial species known to be the causative agent of Johne’s disease in all species of domestic ruminants worldwide. JD is characterized by gradual weight loss; decreased milk production. Excretion of the organism may occur for prolonged periods (1 to 2.5 years) before the onset of clinical disease. In recent years, researchers focus on identification a specific antigen of MAP to use in diagnosis test and preparation of effective vaccine. In this paper, for production of polyclonal antibody against proteins of Mycobacterium avium paratuberculosis cell wall a rabbit immunization at a certain time period with antigen. After immunization of the animal, blood samples were collected from the rabbit for producing enriched serum. Antibodies were purified with ion exchange chromatography. For exact measurement of interaction, western blotting test was used and as it is demonstrated in the study, sharp bands appear in nitrocellulose paper and specific bands were 50 and 150 KD molecular weight. These were indicating immunodominant proteins.Keywords: immunodominant, paratuberculosis, Western blotting, cell wall proteins, protein purification
Procedia PDF Downloads 2544379 The Relationship between Organizations' Acquired Skills, Knowledge, Abilities and Shareholders (SKAS) Wealth Maximization: The Mediating Role of Training Investment
Authors: Gabriel Dwomoh, Williams Kwasi Boachie, Kofi Kwarteng
Abstract:
The study looked at the relationship between organizations’ acquired knowledge, skills, abilities, and shareholders wealth with training playing the mediating role. The sample of the study consisted of organizations that spent 10% or more of its annual budget on training and those whose training budget is less than 10% of the organization’s annual budget. A total of 620 questionnaires were distributed to employees working in various organizations out of which 580 representing 93.5% were retrieved. The respondents that constitute the sample were drawn using convenience sampling. The researchers used regression models for their analyses with the help of SPSS 16.0. Analyzing multiple models, it was discovered that organizations training investment plays a considerable indirect and direct effect with partial mediation between organizations acquired skills, knowledge, abilities, and shareholders wealth. Shareholders should allow their agents to invest part of their holdings to develop the human capital of the organization but this should be done with caution since shareholders returns do not depend much on how much organizations spend in developing its human resource capital.Keywords: skills, knowledge, abilities, shareholders wealth, training investment
Procedia PDF Downloads 2404378 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 894377 Analysis of Subjective Indicators of Quality of Life in Makurdi
Authors: Irene Doosuur Mngutyo
Abstract:
The preliminary stages in the development of human communities are the formation of a correct understanding of people’s needs. However, perception of human needs is highly subjective and difficult to aggregate. Quality of life measurements are an appropriate means for achieving an understanding of Human needs. Hence this study endeavors to measure quality of life in Makurdi using subjective indices to measure three aspects of subjective wellbeing. A sample of 400 respondents achieved by applying the Taro Yamane formula to Makurdi’s projected population. Questionnaires were randomly distributed to residents of nine wards in Makurdi. Findings from a pilot study( N=100) demonstrated that among the 2 aspects of overall quality of life investigated,22% had a mean low overall assessment of quality of life now being3on the scale and an even poorer assessment for projected quality in the next five years by 17%(3)although an equal percentage are hopeful for a better life(10)in the next five years.60% of the respondents record very rare positive feelings while only 10% have positive feelings always on the eudaimonic scale69%strongly agree that they have a purposeful and meaningful life. Findings indicate good social ties as a strong indicator for perceived good feelings and even though quality of life is perceived as low there is optimism for the future.Keywords: quality of life, subjective indicators, development, urban planning
Procedia PDF Downloads 4004376 A Case of Apocrine Sweat Gland Adenocarcinoma in a Tabby Cat
Authors: Funda Terzi, Elif Dogan, Ayse B. Kapcak
Abstract:
In this report, clinical, radiological, macroscopic, and histopathological findings of apocrine sweat gland adenocarcinoma are presented in a 13-year-old male tabby cat. In clinical examination, soft tissue masses were detected in the caudal abdomen and left tuber coxae. On radiological examination, subcutaneous masses with soft tissue contrast appearance were detected, and the masses were surgically removed under general anesthesia. The sizes of the masses were approximately 2x2x3 cm in the caudal abdomen and approximately 1x1x2 cm in the tuber coxae region. The cross-section of the mass was whitish-yellow in color. After the masses were fixed in 10% formaldehyde solution, a routine histopathology procedure was applied. In histopathological examination, apocrine sweat glands in a cystic structure and extensions from the center of the cyst to the lumen were determined, and anisonucleosis, anisocytosis, and anaplastic cells with giant nuclei were observed in the epithelial cells of the gland facing the lumen. A diagnosis of papillary-cystic type apocrine sweat gland adenocarcinoma was made with these findings.Keywords: apocrine sweat gland, carcinoma, cat, histopathology
Procedia PDF Downloads 1764375 Spectrophotometric Determination of L-Dopa in Germinated and Non-Germinated Broad Beans (Vicia faba L.) and Chickpea (Cicer aritinum L.)
Authors: Wissame Gouigah, Amina Medellel, Mahmoud Trachi, Djedjiga Benamara, Salem Benamara
Abstract:
The purpose of this work is to investigate, by UV/VIS spectrophotometry, the distribution of L-dopa, known as precursor of dopamine which is used in the treatment of Parkinson's disease, in broad beans (Vicia faba) (Vf) and chickpea (Cicer aritinum L.) (CA). In the case of Vf, the different organs were analyzed separately: 1) First, in the fresh state: pod (GF), cotyledons (CF), green shell (EF) and placenta (PF) which is the organ through which the seed is attached to the pod, 2) in the dry state (S): peel of the dry seed (ES) and cotyledons (CS), and 3) in the germinated state: peel (EGe), cotyledons (CGe) and germ (GeVf). Results showed that the content of L-dopa is unevenly distributed between different parts of fresh Vf. But the most important result concerns the predominance of L-dopa in placenta with an L-dopa content (~ 60 mg/g of wet weight, ww) sometimes 7-fold higher (p≤0.05) than those of other considered parts of fresh Vf. In the case of CA, the L-dopa concentration in germinated gains was higher than those found in all analyzed Vf organs, excepted PF.Keywords: broad bean (Vicia faba L.), chickpea (Cicer aritinum L.), L-dopa, Parkinson disease, placenta
Procedia PDF Downloads 3474374 Modeling, Analysis and Control of a Smart Composite Structure
Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani
Abstract:
In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection
Procedia PDF Downloads 3874373 Evaluation of Osteoprotegrin (OPG) and Tumor Necrosis Factor A (TNF-A) Changes in Synovial Fluid and Serum in Dogs with Osteoarthritis; An Experimental Study
Authors: Behrooz Nikahval, Mohammad Saeed Ahrari-Khafi, Sakineh Behroozpoor, Saeed Nazifi
Abstract:
Osteoarthritis (OA) is a progressive and degenerative condition of the articular cartilage and other joints’ structures. It is essential to diagnose this condition as early as possible. The present research was performed to measure the Osteoprotegrin (OPG) and Tumor Necrosis Factor α (TNF-α) in synovial fluid and blood serum of dogs with surgically transected cruciate ligament as a model of OA, to evaluate if measuring of these parameters can be used as a way of early diagnosis of OA. In the present study, four mature, clinically healthy dogs were selected to investigate the effect of experimental OA, on OPG and TNF-α as a way of early detection of OA. OPG and TNF-α were measured in synovial fluid and blood serum on days 0, 14, 28, 90 and 180 after surgical transaction of cranial cruciate ligament in one stifle joint. Statistical analysis of the results showed that there was a significant increase in TNF-α in both synovial fluid and blood serum. OPG showed a decrease two weeks after OA induction. However, it fluctuated afterward. In conclusion, TNF-α could be used in both synovial fluid and blood serum as a way of early detection of OA; however, further research still needs to be conducted on OPG values in OA detection.Keywords: osteoarthritis, osteoprotegrin, tumor necrosis factor α, synovial fluid, serum, dog
Procedia PDF Downloads 3184372 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: computational analysis, gendered grammar, misogynistic language, neural networks
Procedia PDF Downloads 1194371 Development of an Improved Paradigm for the Tourism Sector in the Department of Huila, Colombia: A Theoretical and Empirical Approach
Authors: Laura N. Bolivar T.
Abstract:
The tourism importance for regional development is mainly highlighted by the collaborative, cooperating and competitive relationships of the involved agents. The fostering of associativity processes, in particular, the cluster approach emphasizes the beneficial outcomes from the concentration of enterprises, where innovation and entrepreneurship flourish and shape the dynamics for tourism empowerment. Considering the department of Huila, it is located in the south-west of Colombia and holds the biggest coffee production in the country, although it barely contributes to the national GDP. Hence, its economic development strategy is looking for more dynamism and Huila could be consolidated as a leading destination for cultural, ecological and heritage tourism, if at least the public policy making processes for the tourism management of La Tatacoa Desert, San Agustin Park and Bambuco’s National Festival, were implemented in a more efficient manner. In this order of ideas, this study attempts to address the potential restrictions and beneficial factors for the consolidation of the tourism sector of Huila-Colombia as a cluster and how could it impact its regional development. Therefore, a set of theoretical frameworks such as the Tourism Routes Approach, the Tourism Breeding Environment, the Community-based Tourism Method, among others, but also a collection of international experiences describing tourism clustering processes and most outstanding problematics, is analyzed to draw up learning points, structure of proceedings and success-driven factors to be contrasted with the local characteristics in Huila, as the region under study. This characterization involves primary and secondary information collection methods and comprises the South American and Colombian context together with the identification of involved actors and their roles, main interactions among them, major tourism products and their infrastructure, the visitors’ perspective on the situation and a recap of the related needs and benefits regarding the host community. Considering the umbrella concepts, the theoretical and the empirical approaches, and their comparison with the local specificities of the tourism sector in Huila, an array of shortcomings is analytically constructed and a series of guidelines are proposed as a way to overcome them and simultaneously, raise economic development and positively impact Huila’s well-being. This non-exhaustive bundle of guidelines is focused on fostering cooperating linkages in the actors’ network, dealing with Information and Communication Technologies’ innovations, reinforcing the supporting infrastructure, promoting the destinations considering the less known places as well, designing an information system enabling the tourism network to assess the situation based on reliable data, increasing competitiveness, developing participative public policy-making processes and empowering the host community about the touristic richness. According to this, cluster dynamics would drive the tourism sector to meet articulation and joint effort, then involved agents and local particularities would be adequately assisted to cope with the current changing environment of globalization and competition.Keywords: innovative strategy, local development, network of tourism actors, tourism cluster
Procedia PDF Downloads 1414370 Quantifying Parallelism of Vectors Is the Quantification of Distributed N-Party Entanglement
Authors: Shreya Banerjee, Prasanta K. Panigrahi
Abstract:
The three-way distributive entanglement is shown to be related to the parallelism of vectors. Using a measurement-based approach a set of 2−dimensional vectors is formed, representing the post-measurement states of one of the parties. These vectors originate at the same point and have an angular distance between them. The area spanned by a pair of such vectors is a measure of the entanglement of formation. This leads to a geometrical manifestation of the 3−tangle in 2−dimensions, from inequality in the area which generalizes for n− qubits to reveal that the n− tangle also has a planar structure. Quantifying the genuine n−party entanglement in every 1|(n − 1) bi-partition it is shown that the genuine n−way entanglement does not manifest in n− tangle. A new quantity geometrically similar to 3−tangle is then introduced that represents the genuine n− way entanglement. Extending the formalism to 3− qutrits, the nonlocality without entanglement can be seen to arise from a condition under which the post-measurement state vectors of a separable state show parallelism. A connection to nontrivial sum uncertainty relation analogous to Maccone and Pati uncertainty relation is then presented using decomposition of post-measurement state vectors along parallel and perpendicular direction of the pre-measurement state vectors. This study opens a novel way to understand multiparty entanglement in qubit and qudit systems.Keywords: Geometry of quantum entanglement, Multipartite and distributive entanglement, Parallelism of vectors , Tangle
Procedia PDF Downloads 1544369 Mother-Child Attachment and Anxiety Symptoms in Middle Childhood: Differences in Levels of Attachment Security
Authors: Simran Sharda
Abstract:
There is increasing evidence that leads psychologists today to believe that the attachment formed between a mother and child plays a much more profound role in later-life outcomes than previously expected. Particularly, the fact that a link may exist between maternal attachment and the development in addition to the severity of social anxiety in middle childhood seems to be gaining ground. This research will examine and address a myriad of major issues related to the impact of mother-child attachment: behaviors of children with different levels of secure attachment, various aspects of anxiety in relation to attachment security as well as other styles of mother-child attachments, especially avoidant attachment and over-attachment. This analysis serves to compile previous literature on the subject and touch light upon a logical extension of the research. Moreover, researchers have identified links between attachment and the externalization of problem behaviors: these behaviors may later manifest as social anxiety as well as increased severity and likelihood of PTSD diagnosis (an anxiety disorder). Furthermore, secure attachment has been linked to increased health benefits, cognitive skills, emotive socialization, and developmental psychopathology.Keywords: child development, anxiety, cognition, developmental psychopathology, mother-child relationships, maternal, cognitive development
Procedia PDF Downloads 1604368 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 514367 Motivational Factors on Non-Academic Staff of Higher Education
Authors: Atya Nur Aisha, Pamoedji Hardjomidjojo, Yassierli
Abstract:
Motivation is an important aspect which affects employee behavior to achieve performance. Working motivation tend to be unstable, it easily changing. This condition could be affected by individual factors, namely working ability, and organizational factors, such as working condition and incentives system. The purpose of this study was to examine the impact of individual and organizational factors on non-academic staff motivation. A questionnaire was designed and distributed to 150 non-academic staff of a university in Indonesia. Regression analysis was used to identify the relationship. Results revealed that individual working ability and incentives system had a positive impact on non-academic staff motivation (sig 0.001). This study provides information about practical implication for university authorities and theoretical implications for researchers who interested in exploring motivational and employee performance in a higher education context. It was proposed to increase productivity and work motivation of non-academic staff, university authorities should maintain equality and feasibility of incentives system and design a human resource development to improve employee ability.Keywords: motivation, incentives, working ability, non-academic staff
Procedia PDF Downloads 4104366 Chemical Profiling of Farsetia Aegyptia Turra and Farsetia Longisiliqua Decne. and Their Chemosystematic Significance
Authors: Mona M. Marzouk, Ahmed Elkhateeb, Mona Elshabrawy, Mai M. Farid, Salwa A. Kawashty, EL-Sayed S. Abdel-Hameed, Sameh R. Hussein
Abstract:
The genus Farsetia Turra belongs to the family Brassicaceae and has approximately 30 accepted species distributed worldwide. Amongst them, Farsetia aegyptia Turra and Farsetia longisiliqua Decne. are two common species characteristic to the Egyptian flora. The present study considers the first characterization of the chemical constituents of F. longisiliqua, aiming to compare with those identified from the medicinal species (F. aegyptia). Additionally, the chemosystematic relationships between the two studied species were evaluated and highlight the medicinal importance for F. longisiliqua. The chemical profiling of their aqueous methanol extracts were carried out using the LC-ESI-MS technique and afforded 54 compounds belonging to different chemical groups. Flavonoids are the major constituents and are represented by 32 compounds (two C-glycosyl flavone, four flavones, and 26 flavonols). Their structural variations and common constituents confirmed the chemosystematic significance of the two species. Moreover, the flavonoid profiles showed major common constituents between the two investigated species, which predicted the medicinal importance of F. longisiliqua.Keywords: brassicaceae, chemosystematics, farsetia, flavonoids, glucosinolates, LC-ESI-MS
Procedia PDF Downloads 2094365 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach
Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman
Abstract:
Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.Keywords: categorical data, log linear modeling, neural network, shifting cultivation
Procedia PDF Downloads 554364 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 414363 Performance Improvement of Information System of a Banking System Based on Integrated Resilience Engineering Design
Authors: S. H. Iranmanesh, L. Aliabadi, A. Mollajan
Abstract:
Integrated resilience engineering (IRE) is capable of returning banking systems to the normal state in extensive economic circumstances. In this study, information system of a large bank (with several branches) is assessed and optimized under severe economic conditions. Data envelopment analysis (DEA) models are employed to achieve the objective of this study. Nine IRE factors are considered to be the outputs, and a dummy variable is defined as the input of the DEA models. A standard questionnaire is designed and distributed among executive managers to be considered as the decision-making units (DMUs). Reliability and validity of the questionnaire is examined based on Cronbach's alpha and t-test. The most appropriate DEA model is determined based on average efficiency and normality test. It is shown that the proposed integrated design provides higher efficiency than the conventional RE design. Results of sensitivity and perturbation analysis indicate that self-organization, fault tolerance, and reporting culture respectively compose about 50 percent of total weight.Keywords: banking system, Data Envelopment Analysis (DEA), Integrated Resilience Engineering (IRE), performance evaluation, perturbation analysis
Procedia PDF Downloads 1884362 Semi-Supervised Hierarchical Clustering Given a Reference Tree of Labeled Documents
Authors: Ying Zhao, Xingyan Bin
Abstract:
Semi-supervised clustering algorithms have been shown effective to improve clustering process with even limited supervision. However, semi-supervised hierarchical clustering remains challenging due to the complexities of expressing constraints for agglomerative clustering algorithms. This paper proposes novel semi-supervised agglomerative clustering algorithms to build a hierarchy based on a known reference tree. We prove that by enforcing distance constraints defined by a reference tree during the process of hierarchical clustering, the resultant tree is guaranteed to be consistent with the reference tree. We also propose a framework that allows the hierarchical tree generation be aware of levels of levels of the agglomerative tree under creation, so that metric weights can be learned and adopted at each level in a recursive fashion. The experimental evaluation shows that the additional cost of our contraint-based semi-supervised hierarchical clustering algorithm (HAC) is negligible, and our combined semi-supervised HAC algorithm outperforms the state-of-the-art algorithms on real-world datasets. The experiments also show that our proposed methods can improve clustering performance even with a small number of unevenly distributed labeled data.Keywords: semi-supervised clustering, hierarchical agglomerative clustering, reference trees, distance constraints
Procedia PDF Downloads 5474361 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves
Authors: Kamal Upadhyay, Zhou Hua, Yu Rui
Abstract:
This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.Keywords: streamline, cavitation, optimization, computational fluid dynamics
Procedia PDF Downloads 1454360 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran
Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi
Abstract:
Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.Keywords: watershed simulation, WetSpa, stream flow, flood prediction
Procedia PDF Downloads 244